
DreamEditor: Text-Driven 3D Scene Editing with Neural Fields
Jingyu Zhuang∗

zhuangjy6@mail2.sysu.edu.cn
Sun Yat-sen University

China

Chen Wang∗
cw.chenwang@outlook.com
University of Pennsylvania

USA

Liang Lin†
linliang@ieee.org

Sun Yat-sen University
China

Lingjie Liu†
lingjie6@seas.upenn.edu
University of Pennsylvania

USA

Guanbin Li†
liguanbin@mail.sysu.edu.cn

Sun Yat-sen University
China

“A ∗ horse standing on a wooden box”

“A ∗ deer” “A ∗ giraffe”

“A ∗ robot horse”

“A ∗ dog wearing sunglasses” “A ∗ dog taking a rose in mouth”

Original
Neural Field

Original
Neural Field

Figure 1: Our approach DreamEditor allows users to edit 3D scenes with text prompts. DreamEditor achieves precise and
high-quality editing that maintains irrelevant regions unchanged.

∗Both authors contributed equally to this research.
†Corresponding authors. Welcome to Code and Project page

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0315-7/23/12. . . $15.00
https://doi.org/10.1145/3610548.3618190

ABSTRACT
Neural fields have achieved impressive advancements in view syn-
thesis and scene reconstruction. However, editing these neural
fields remains challenging due to the implicit encoding of geometry
and texture information. In this paper, we propose DreamEditor,
a novel framework that enables users to perform controlled edit-
ing of neural fields using text prompts. By representing scenes
as mesh-based neural fields, DreamEditor allows localized editing
within specific regions. DreamEditor utilizes the text encoder of a
pretrained text-to-Image diffusion model to automatically identify
the regions to be edited based on the semantics of the text prompts.
Subsequently, DreamEditor optimizes the editing region and aligns

https://github.com/zjy526223908/DreamEditor
https://www.sysu-hcp.net/projects/cv/111.html
https://doi.org/10.1145/3610548.3618190

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Zhuang et al.

its geometry and texture with the text prompts through score dis-
tillation sampling [Poole et al. 2022]. Extensive experiments have
demonstrated that DreamEditor can accurately edit neural fields of
real-world scenes according to the given text prompts while ensur-
ing consistency in irrelevant areas. DreamEditor generates highly
realistic textures and geometry, significantly surpassing previous
works in both quantitative and qualitative evaluations.

CCS CONCEPTS
• Computing methodologies → Rendering; Neural networks.

ACM Reference Format:
Jingyu Zhuang, Chen Wang, Liang Lin, Lingjie Liu, and Guanbin Li. 2023.
DreamEditor: Text-Driven 3D Scene Editing with Neural Fields. In SIG-
GRAPH Asia 2023 Conference Papers (SA Conference Papers ’23), December
12–15, 2023, Sydney, NSW, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3610548.3618190

1 INTRODUCTION
Neural radiance fields [Mildenhall et al. 2021], NeuS [Wang et al.
2021] and subsequent research [Liu et al. 2020; Müller et al. 2022;
Wang et al. 2022c] (collectively referred to as neural fields) have
made significant progress in scene reconstruction and novel view
synthesis. By capturing multi-view images of a 3D scene and us-
ing off-the-shelf structure-from-motion models to estimate camera
poses, one can train neural networks to learn neural fields that
implicitly represent the geometry and texture of the scene. Com-
pared to the traditional pipeline involving tedious 3D matching and
complex postprocessing steps, neural fields offer a more efficient
and accessible approach for reconstructing real-world objects and
scenes into Computer Graphics assets for general users.

However, editing neural fields is not a straightforward task since
the shape and texture information is implicitly encoded within high-
dimensional neural network features. Conventional 3D modeling
techniques are ineffective for manual sculpting and re-texturing
since explicit geometry is not available. Previous research has ex-
plored techniques for neural fields editing, such as moving objects
in a scene [Chen et al. 2021], modifying textures [Xiang et al. 2021],
and altering object shape [Yang et al. 2022]. However, these editing
procedures still require extensive user input. While recent work
has enabled NeRF editing with text prompts [Haque et al. 2023],
it struggles to achieve precise and high-quality editing due to a
restricted diversity of instructions. Consequently, further research
is needed to develop easy-to-use and accurate 3D editing methods,
enabling improved re-creation of existing 3D assets.

In this paper, we present DreamEditor, a framework that allows
users to intuitively and conveniently modify neural fields using
text prompts. As illustrated in Fig. 1, for a given scene represented
by a neural field, e.g., a dog or a complex outdoor environment, text
descriptions can be used to achieve various object-centric editing, in-
cluding re-texturing, object replacement, and object insertion, while
simultaneously preserving irrelevant regions to the text prompts.
This is made possible through two key designs in our method: (1) a
mesh-based neural field representation, and (2) a stepwise frame-
work that leverages pretrained diffusion models for 3D editing.
Compared to an implicit representation, an explicit mesh-based
neural field enables the efficient conversion of 2D editing masks

into 3D editing regions through back projection, facilitating precise
local editing by only modifying the masked regions. Additionally,
the mesh representation disentangles geometry and texture, pre-
venting unnecessary geometry deformation when only appearance
changes are expected. Leveraging the advantages of the mesh repre-
sentation, we propose a stepwise finetune-localization-optimization
framework that efficiently and accurately edits 3D scenes using
simple text prompts, achieved by score distillation sampling within
the masked region.

We extensively evaluate DreamEditor on various synthetic and
real-world scenes, including animals, human faces and outdoor
scenes. Unlike methods that operate on the entire image, our edit-
ing approach enables precise local deformations while naturally
preserving irrelevant areas. For example, in Fig. 1, only the dog’s
mouth is modified when holding a rose in its mouth. Furthermore,
as the edit can be accomplished with a simple text prompt, the
procedure is user-friendly and significantly simplifies the editing
of neural fields, showing its great potential for practical applica-
tions. Both qualitative and quantitative comparisons demonstrate
the superiority of DreamEditor over previous methods in terms of
editing precision, visual fidelity and user satisfaction.

The contributions of this paper can be summarized as follows: (1)
We introduce a novel framework for text-guided 3D scene editing,
which achieves highly realistic editing results for a wide range of
real-world scenes; (2) We propose to use a mesh-based neural field
to enable local modification of the scene and decouple texture and
geometric features for flexible editing; (3) We devise a stepwise
editing framework that first identifies the specific regions requiring
editing according to text prompts and then performs modifications
exclusively within the selected regions. This systematic procedure
ensures precise 3D editing while minimizing unnecessary modifi-
cations in irrelevant regions.

2 RELATEDWORKS
2.1 Text-guided image generation and editing
The denoising diffusion probabilistic model [Ho et al. 2020; Song
et al. 2020] has drawn great attention for its ability to generate
high-quality images. Later, diffusion models [Ramesh et al. 2022;
Rombach et al. 2022; Saharia et al. 2022] trained on large-scale
image-text paired datasets demonstrated astonishing performance
in understanding complex semantics from text prompts (including
nouns, adjectives, verbs, etc.) and generating corresponding high-
quality images. Due to the rich semantics and high controllability of
pretrained text-to-image diffusion models, a series of studies [Avra-
hami et al. 2022; Couairon et al. 2022; Hertz et al. 2022; Kawar et al.
2022] have employed them to text-guided image editing. Most re-
lated to our work is subject-driven generation with text-to-image
diffusion models [Gal et al. 2022a; Ruiz et al. 2022], which enables
users to personalize their image generation for specific subjects
and concepts given. DreamBooth [Ruiz et al. 2022] expands the
language-vision dictionary using rare tokens and finetunes the
model with a preservation loss for regularization. Similarly, Textual
Inversion [Gal et al. 2022a] optimizes a new “word" in the embed-
ding space of the pre-trained diffusion model to represent the input
objects. These works generate images with novel concepts, but it is
non-trivial to extend these 2D methods to 3D.

https://doi.org/10.1145/3610548.3618190

DreamEditor: Text-Driven 3D Scene Editing with Neural Fields SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

2.2 Text-to-3D generation
With the development of text-to-image generation models, there
has been a growing interest in text-to-3D generation. Some works
use the CLIP model to optimize mesh [Chen et al. 2022; Michel
et al. 2022; Mohammad Khalid et al. 2022] or neural fields [Jain
et al. 2022]. The seminar work DreamFusion [Poole et al. 2022]
first proposes score distillation sampling (SDS) loss to distill the
knowledge in pretrained 2D Text-to-Image diffusion models for
text-to-3D generation. A series of works [Chen et al. 2023; Lin et al.
2022; Metzer et al. 2022; Raj et al. 2023] based on SDS loss, further
improve the generation results by introducing geometry prior or
changing 3D representation. Score Jacobian Chaining [Wang et al.
2022b] arrives at a similar training objective from the perspective
of approximating 3D score with the 2D score. However, all these
methods lack the ability to edit existing 3D scenes. One of the main
reasons is the difficulty in fully aligning an existing 3D scene with
text, resulting in these methods tending to generate a new scene and
breaking the consistency before and after editing. To overcome this
limitation, we propose a novel text-guided 3D editing framework
that can edit an existing 3D scene based on text prompts.

2.3 Neural Field Editing
Editing neural fields is inherently difficult due to its entangled
shape and appearance. EditNeRF [Liu et al. 2021] is the first work
to support editing the shape and color of neural fields conditioned
on latent codes. Some works [Bao et al. 2023; Gao et al. 2023; Wang
et al. 2022a, 2023] further leverage a CLIP model to allow editing
with text prompts or reference images. Another line of work uses
pre-defined template models or skeletons to support re-posing or re-
rendering [Noguchi et al. 2021; Peng et al. 2021], but is constrained
in a specific category. 3D editing can also be achieved by combin-
ing 2D image manipulation such as inpainting with neural fields
training [Kobayashi et al. 2022; Liu et al. 2022]. Geometry-based
methods [Li et al. 2022; Xu and Harada 2022; Yang et al. 2022; Yuan
et al. 2022] export neural fields to mesh and synchronize the defor-
mation of the mesh back to implicit fields. TEXTure [Richardson
et al. 2023] uses a text prompt to generate the textures of the mesh
using an iterative diffusion-based process.

The most similar work to ours is Instruct-NeRF2NeRF [Haque
et al. 2023] and Vox-E [Sella et al. 2023], which edit a neural field
freely text prompts. Instruct-NeRF2NeRF uses image-based dif-
fusion model [Brooks et al. 2022] to edit the input image with
instructions for optimizing the neural field. Nonetheless, since it
manipulates the entire image, usually undesired regions will also
be changed. Vox-E adopts SDS loss and performs local editing in 3D
space by 2D cross-attention maps. However, due to the constraints
inherent of Vox-E’s volumetric representation, the editing quality
of real scenes remains suboptimal.

3 BACKGROUND
Optimizing Neural Fields with SDS Loss. DreamFusion [Poole et al.

2022] proposed the score distillation sampling (SDS) loss to distill
the priors Text-to-Image (T2I) diffusion models for 3D generation.
It first adds random Gaussian noise at level 𝑡 to a random rendered
view 𝐼 to get 𝐼𝑡 . The pretrained diffusion model 𝜙 is used to predict
the added noise given 𝐼𝑡 and the input text condition 𝑦. The SDS

loss is calculated as the per-pixel gradient as follows:

∇𝜃L𝑆𝐷𝑆 (𝜙, 𝐼 = 𝑔(𝜃)) = E𝜖,𝑡
[
𝑤 (𝑡) (𝜖𝜙 (𝐼𝑡 ;𝑦, 𝑡) − 𝜖)

𝜕𝐼

𝜕𝜃

]
, (1)

where𝑤 (𝑡) is a weighting function that depends on noise level 𝑡 ,
𝜃 is the parameters of neural field and 𝑔 is the rendering process.
During training, the diffusion model is frozen and gradients are
back-propagated to 𝜃 , enforcing the neural field’s renderings to
resemble the images generated by the diffusion model with the text
condition 𝑦.

DreamBooth. DreamBooth [Ruiz et al. 2022] is a subject-driven
image generation method based on T2I models. Given a few images
of the same subject, DreamBooth embeds the subject into a T2I
diffusion model by binding it to a unique identifier (denoted as ∗).
It uses an L2 reconstruction loss to fine-tune the diffusion model on
the input images and a class prior-preserving loss to prevent overfit-
ting. The details of its training can be found in Ruiz et al [2022]. In
this paper, we also adopt DreamBooth to fine-tune the T2I diffusion
models for expressing a specific scene.

4 METHOD
4.1 Overview
The inputs of our method are a set of posed images of a 3D scene
to be edited and a text prompt for editing. Our goal is to change
the shape and appearance of the object of interest in the original
3D scene according to the text prompt. Fig. 3 gives an example
of turning a horse sculpture into a real giraffe. This task requires
keeping the 3D contents irrelevant to the text prompt unchanged
before and after editing.

The framework of DreamEditor is shown in Fig. 3, which consists
of three stages. We first transform the original neural radiance field
into a mesh-based neural field (Section 4.2), which enables us to
achieve spatially-selective editing. In Section 4.3, we customize the
T2I model to the input scene and use the cross-attention maps of it
to locate the editing area in the 3D space according to the keywords
in the text prompts. Finally, we edit the target object in the neural
field under the control of text prompts through the T2I diffusion
model (Section 4.4).

4.2 Distilling Neural Fields
Inspired by [Yang et al. 2022], we first learn a neural radiance
field from input images and decompose it into many local implicit
fields organized in an explicit mesh, where the mesh is extracted
from the neural radiance field using marching cubes [Lorensen
and Cline 1987]. Representing a scene as a mesh-based neural field
introduces two benefits. First, a mesh-based neural field enables
precise editing of specific regions in the scene. The regions, such as
background and irrelevant objects, can remain unchanged during
editing by fixing the specific implicit fields. Second, the extracted
mesh can explicitly represent the surface and outline of the objects
in the scene. Compared with other explicit representations such
as voxels [Liu et al. 2020] and point clouds [Ost et al. 2022], it is
more convenient to determine the range of editing area with mesh.
Combining the attention scheme of the diffusion model, we further
propose a method to automatically determine the editing area,

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Zhuang et al.

DreamBooth

Original
Neural Field

Mesh-based
Neural Field

Distill

Sample point Ray Casting
Feature representations

1.𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 2. 𝐿𝑜𝑐𝑎𝑡𝑖𝑛𝑔
𝑒𝑑𝑖𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

Get Attention
Back-Project

Mesh

"𝑎 ∗ 𝑔𝑖𝑟𝑎𝑓𝑓𝑒"

3.𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑖𝑛𝑔 Render
Backpropagation

𝑆𝐷𝑆 𝐿𝑜𝑠𝑠

Mesh-based
Neural Field

"𝑎 ∗ 𝑔𝑖𝑟𝑎𝑓𝑓𝑒"
DreamBooth

Figure 2: The overview of our method. Our method edits a 3D scene by optimizing an existing neural field to conform with a
target text prompt. The editing process involves three steps: (1) The original neural field is distilled into a mesh-based one.
(2) Based on the text prompts, our method automatically identifies the editing region of the mesh-based neural field. (3) Our
method utilizes the SDS loss to optimize the color feature 𝑓𝑐 , geometry feature 𝑓𝑔, and vertex positions 𝑣 of the editing region,
thereby altering the texture and geometry of the respective region. Best viewed in color.

which can accurately locate the editing area in the mesh according
to the input text.

Specifically, after the neural radiance field is obtained, we adopt
a teacher-student based training framework to perform distillation,
where the neural radiance field is taken as the teacher model to
guide the student model, i.e., the mesh-based neural field. We define
the mesh-based neural field by assigning each mesh vertex v a
color feature 𝑓𝑐 and a geometry feature 𝑓𝑔 to represent the local
shape and texture information near v, respectively. During the
volume rendering process, for a sampled point 𝑥 , we first obtain
the aggregated features 𝑓𝑐 and 𝑓𝑔 by interpolating the features of
the top 𝐾 nearest vertices of 𝑥 weighted by the inverse distance
(v𝑘 − 𝑥) [Qi et al. 2017]:

𝑓𝑡 (𝑥) =
∑𝐾
𝑘=1𝑤𝑘 𝑓𝑡,𝑘∑𝐾
𝑘=1𝑤𝑘

,𝑤𝑘 =
1

| |v𝑘 − 𝑥 | |
, 𝑡 ∈ {𝑔, 𝑐} (2)

Then, 𝑓𝑔 and 𝑓𝑐 are decoded to the s-density 𝑠 and color 𝑐 of 𝑥 :

𝑠 = 𝐷𝐺 (𝑓𝑔, ℎ̃), 𝑐 = 𝐷𝐶 (𝑓𝑐 , ℎ̃, d,∇𝑥𝑠) (3)

where 𝐷𝐺 and 𝐷𝐶 are the geometry decoder and color decoder
respectively, ℎ̃ is the interpolated signed distance of 𝑥 to v𝑘 , d is
the ray direction and ∇𝑥𝑠 is the gradient of s-density 𝑠 at point 𝑥 .
The framework of the network is shown in Fig. 9.

During the distillation process, we randomly sample rays 𝑟 in the
scene and use the output of the teacher model given 𝑟 as the ground
truth, including the rendered pixel color𝐶 (𝑟), s-density 𝑠𝑖 and point
color 𝑐𝑖 of each sampling point 𝑥 on this ray. The distillation loss is
computed as:

L𝑑𝑖𝑠 =
∑︁
𝑟 ∈𝑅

∑︁
𝑖∈𝑁

(∥𝑠𝑖 − 𝑠𝑖 ∥ + ∥𝑐𝑖 − 𝑐𝑖 ∥) +
∑︁
𝑟 ∈𝑅

𝐶 (𝑟) −𝐶 (𝑟)22 , (4)

where the volume rendering formulation of teacher and student
models (i.e.,𝐶 and𝐶) is the same as NeuS [Wang et al. 2021]. Besides,
we add Eikonal loss [Gropp et al. 2020] on the sampled points to

regularize the norm of the spatial gradients with weight 𝜆𝑟𝑒𝑔 = 0.01

L𝑟𝑒𝑔 =
∑︁
𝑟 ∈𝑅

∑︁
𝑖∈𝑁

∇𝑥𝑖 𝑠𝑖 − 1
2
2 . (5)

In our framework, all camera pose sampling is based on the
spherical coordinate system. We transform the target object to the
origin and make the y-axis point upwards. We confine the scope of
sampled views by setting the range of the elevation and azimuth
angles in the following locating and optimizing step, thereby im-
proving editing efficiency.

4.3 Locating Editing Regions
As illustrated in themiddle part of Fig 2, given text prompts, DreamEd-
itor first determines the target editing area in a rendered view. As a
preparation step, we first fine-tune the Stable Diffusion model with
DreamBooth with the sampled views, which adapts the model’s
knowledge to the specific scene. Then, we utilize the fine-tuned
diffusion model to obtain a 2D mask for each rendered view. Finally,
we obtain the 3D editing region by back-projecting the masked
target region from different views onto the mesh.

The locating is motivated by the fact that cross-attention layers
in T2I diffusion models control the relationship between the layout
of the generated images and each word [Hertz et al. 2022]: 𝑀 =

Softmax(𝑄𝐾𝑇 /√𝑞), where 𝑄 is the query features projected from
the spatial features of the noisy image with dimension 𝑞, 𝐾 is the
key matrix projected from the textual embedding,𝑀 is the attention
map that defines the weight of a token for each pixel. Therefore,𝑀
indicates the probability that a pixel corresponds to a word in the
text prompt and can be utilized to locate the editing area.

Specifically, the noisy image 𝐼𝑡 of a rendered view and the text
prompt are fed into the diffusion model for denoising. We select the
keyword that represents the intended editing results (e.g., "apron",
"giraffe", "hat" as in Fig. 3) and extracts all its attention maps pro-
duced during the generation process. In practice, the backbone
of the diffusion model usually consists of 𝐿 convolutional blocks,
which are equipped with𝐻 multi-headed attention layers [Vaswani

DreamEditor: Text-Driven 3D Scene Editing with Neural Fields SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

et al. 2017]. Therefore, after 𝑇 rounds of denoising, the final set
of attention maps M can be represented as

{
𝑀𝑡,𝑙,ℎ

}
, where 𝑡 , 𝑙 , ℎ

represent the index of the time step, convolution block, attention
head, respectively. We resize all attention maps to the same reso-
lution by bilinear interpolation and aggregate them to obtain the
aggregated attention map𝑀 .𝑀 are further normalized to [0,1] and
binarized with a threshold 𝜏 = 0.75, where the area with a value of
1 is the editing area. We back-project all the pixels belonging to the
editing area in the mask onto the mesh and mark the intersected
mesh faces as the editing region. It is worth highlighting that the
keywords are not restricted to the objects in the initial scene, as
the attention maps of a keyword delineate regions in the generated
image where the likelihood of keyword presence is highly probable.
As shown in Fig. 6), even though "sunglasses" is not part of the
original scene, it remains feasible to identify the reasonable region
on the scene mesh.

In this stage, we traverse all elevation and azimuth angles at 45°
intervals within the scope of sampled views to ensure the coverage
of all potential editing regions. Subsequently, we get the masks of all
sampled views and back-project them onto the mesh. After merging
the results of back-projection, we employ two steps to refine the
masked region: (1) Discard: we discard the small pieces within the
editing region where the number of faces is less than 10% of the
total projected area, which typically emerges from inaccuracy 2D
masks (e.g., masks larger than target object is projected outside the
object); (2) Fill: we use breadth-first search to fill in the “holes” in
the editing region, i.e., a non-editing region surrounded by editing
regions. Such "holes" usually come from occluded (e.g., the bottom
of a horse) or concave areas. By integrating these regions into the
editing area, we enhance the completeness of the editing area. We
denote the final editing region as V = {𝑣𝑒 }𝐸𝑒=1.

4.4 Optimizing Editing Regions
In this step, we adopt the SDS Loss from DreamFusion [Poole et al.
2022] to guide the optimization of the editing region in the neu-
ral field with the T2I diffusion model, making the scene conforms
to the text prompt. By feeding random rendered views and the
text prompt to the T2I diffusion model, we calculate the SDS Loss
and backpropagate the gradients to the neural field. Since the Ima-
gen [Saharia et al. 2022] in DreamFusion is proprietary, we compute
the SDS Loss in the latent space with Stable Diffusion [Rombach
et al. 2022] as follows:

∇𝜔L𝑆𝐷𝑆 (𝜙,𝑔(𝜔)) = E𝜖,𝑡
[
𝑤 (𝑡) (𝜖𝜙 (𝑧𝑡 ;𝑦, 𝑡) − 𝜖)

𝜕𝑧

𝜕𝐼

𝜕𝐼

𝜕𝜔

]
, (6)

where 𝜔 = {𝑓𝑔,𝑘 , 𝑓𝑐,𝑘 , v𝑘 }𝑘 are the set of geometry features, color
features and positions for all mesh vertices in V, 𝑧𝑡 denotes the
noisy latent, and 𝑧 is the original latent generated by the encoder
of the Stable Diffusion model.

We can see from Equation 6 that during training, apart from
optimization of the color feature 𝑓𝑐 and geometry feature 𝑓𝑔 of the
vertices in the editing region, the positions of the vertices are also
included. This implies that the structure of the mesh is also dy-
namically adjusted during the optimization, which is a critical part
of our approach. In local implicit fields, geometry features mainly
represent shape details near the vertices. The smoothness of the
object’s surface will be disrupted if there are significant changes in

the s-density of the points situated away from the vertices. Hence,
we propose a complementary optimization approach, which simul-
taneously optimizes the vertex position and geometry features. The
optimization of the vertex position ensures that the overall shape
of the mesh conforms to the text prompt, while the optimization
of the geometry features refines the local geometry of the object.
This optimization approach enables DreamEditor to generate com-
plex shapes, such as rose petals. Our ablation study in Section 5.4
demonstrates the necessity of the joint optimization of the vertex
position and geometry features.

Tomaintain a smooth surface and encourage natural deformation
during vertex position optimization, we introduce widely-used
mesh regularization terms, including the Laplacian loss and ARAP
(as-rigid-as-possible) loss [Sumner et al. 2007]:

L𝑙𝑎𝑝 =
1
𝐸

𝐸∑︁
𝑖=1

v𝑖 − 1
|𝑁𝑖 |

∑
𝑗∈𝑁𝑖

v𝑗
2 , (7)

L𝐴𝑅𝐴𝑃 =

𝐸∑︁
𝑖=1

∑︁
𝑗∈𝑁𝑖

���| |v𝑖 − v𝑗 | |2 − ||v′𝑖 − v′𝑗 | |2
��� , (8)

where 𝑁𝑖 is the set of one-ring neighbours for vertex 𝑣𝑖 , 𝑣 ′ indicates
the vertex position in the last iteration. We set 𝜆𝑙𝑎𝑝 = 10−4 and
𝜆𝐴𝑅𝐴𝑃 = 10−4 to balance them respectively.

We perform both the SDS Loss and mesh regularization terms
during optimization in each iteration. We found that optimizing
the SDS and regularization terms separately achieves better results
empirically. Given a rendered view, we first optimize 𝑓𝑐 , 𝑓𝑔 , v of the
editing region with the SDS loss. Then, 𝑓𝑐 and 𝑓𝑔 are fixed, and only
v is optimized with the mesh regularization terms.

5 EXPERIMENTS
5.1 Experimental Setup

Dataset. To verify the effectiveness of our method in various
scenes, we select six scenes with different levels of complexity
from four datasets: DTU [Jensen et al. 2014], BlendedMVS [Yao
et al. 2020], Co3D [Reizenstein et al. 2021], and GL3D [Shen et al.
2018]. These scenes include objects in simple backgrounds, human
faces, and outdoor scenes with complex backgrounds. We use high-
resolution images and the corresponding camera poses from the
respective datasets to learn the original neural fields. Then, we edit
the original scenes based on text prompts.

Baselines. We compare with three baselines. (1) D-DreamFusion*:
as pointed out by Instruct-N2N, DreamFusion fails to edit a neural
field due to the difficulty of finding an exact textual description that
matches a scene. To learn a better neural representation of a specific
scene, we combine Stable-DreamFusion with DreamBooth [Ruiz
et al. 2022] as another baseline. (2) Instruct-NeRF2NeRF (Instruct-
N2N): we also compare with a recent work Instruct-NeRF2NeRF and
use the text instructions provided by the paper [Haque et al. 2023]
to edit a 3D scene. (3) NeRF-Art [Wang et al. 2023]: Since NeRF-Art
only supports stylized editing, we compare it in the stylization task.

Evaluation Criteria. Following [Haque et al. 2023], we use the
CLIP Text-Image directional similarity to evaluate the degree of
alignment between the change in both the images and text prompts

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Zhuang et al.

Original D-DreamFusion* Ours

“A ∗ doll wearing a blue apron” “A ∗ doll wearing a blue apron”

“A ∗ giraffe”“A ∗ giraffe”

“A ∗ man wearing a cowboy hat” “A ∗ man wearing a cowboy hat”

Instruct-N2N

“Give it a blue apron”

“Turn the stone horse into a giraffe”

“Give him a cowboy hat”

Figure 3: Visual results of our method compared with two baselines on three different scenes. The results clearly show that
DreamEditor can precisely locate the relevant region, perform faithful editing to the text, and prevent undesirablemodifications,
which are difficult to be achieved by the baseline methods.

and its detailed definition can be found in [Gal et al. 2022b]. For
each editing result, we uniformly sample 50 viewpoints around the
editing region and take the mean value as the result. Since the CLIP
directional similarity can only approximately evaluate the edit-
ing quality, we additionally conduct user studies to obtain human
evaluations. We distribute 50 copies of questionnaires, presenting
rotation video results of all methods side by side and asking users
to choose the best editing result. The voting rates are calculated for
each method. We compare our method with the aforementioned
baselines in four selected scenes, covering a total of 20 distinct
editing operations. We exclude NeRF-Art in the quantitative com-
parison due to it only supports stylized editing.

Implementation Details. In our experiments, we adopt NeuS to
learn the original neural field. The training parameters can be
found in [Wang et al. 2021]. As for the diffusion model, we use
the public pretrained Stable Diffusion model V2. For each original
neural field, we use the rendered images from the locating step,
applying DreamBooth to fine-tune the Stable Diffusion model over
500 iterations. In the distilling step, we use the Adam optimizer
with 𝑙𝑟 = 10−4 to optimize the local fields for 100K iterations. In
the optimizing step, the size of the rendered images is gradually
increased from 96×96 to 192×192. We set the Adam optimizer with
𝑙𝑟 = 10−2 to optimize the 𝑓𝑐 , 𝑓𝑔, v of vertices in the editing region
for 2K iterations. We implement our editing framework in Pytorch.

5.2 Qualitative Results
Results of Editing 3D Scenes. We provide qualitative results of our

method in Fig.1 and Fig. 10. Results demonstrate that our method
can effectively perform targeted editing of neural fields in various
scenes. As depicted in the middle row of Fig.1, even in complex

scenes such as outdoor gardens, our method can accurately deter-
mine the horse sculpture as the editing region, subsequently turning
it into a deer or giraffe with high-quality textures and geometry.
Moreover, our method is capable of local editing, such as wearing
sunglasses for the dog in the bottom of Fig. 1. Notably, as shown
in Fig. 7, the editing results produced by our method demonstrate
excellent consistency in 3D geometry, as can be intuitively observed
in the extracted mesh.

Fig.3 presents a comparison of the results of our method with
baselines. Instruct-N2N has difficulties in executing abstract op-
erations (e.g. give an apron to a doll) and generates suboptimal
results in some scenes. This is largely attributed to the fact that the
Instruct-Pix2Pix model is not always reliable, and it operates on
the full image. Therefore, Instruct-N2N changes the entire scene
and may underperform when executing the instructions beyond
the Instruct-Pix2Pix training set. The DreamBooth finetuning in
D-DreamFusion* enables the T2I diffusion model to roughly learn
the representation of the input objects, such as the toy in the first
row and the man in the third. However, due to the complexity and
diversity of real-world scenes, D-DreamFusion* cannot accurately
represent a specific scene, leading the irrelevant regions of the
scenes edited by D-DreamFusion* to change significantly, such as
the deformation of the doll in the first row, the background in the
second row. Moreover, all compared baselines can not guarantee
the consistency of the scenes before and after editing in complex
scenes (such as the garden in the second row), and their editing pro-
cess may change the entire scene. In contrast, our method has more
details and faithfully generates the content of the text prompts,
while successfully maintaining the consistency of the input objects
and scenes before and after editing.

DreamEditor: Text-Driven 3D Scene Editing with Neural Fields SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Table 1: Results of the CLIP Text-Image Direction Loss and
user studies.

Method CLIP Text-Image
Direction Similarity ↑

Editing performance
voting percentage ↑

D-DreamFusion* 12.43 12.1%
Instruct-N2N 10.86 6.8%
Ours 18.49 81.1%

Results of stylization task. As shown in Fig.8, we compare our
method with NeRF-Art and Instruct-N2N. In this task, we omit the
locating step to stylize the whole scene. Since stylization editing
is a subjective task, we only provide the qualitative results as a
reference and do not conduct quantitative analysis.

Results of locating editing region. In Fig.6, we also show our
method’s results of locating editing regions. We can see that our
method can locate reasonable editing regions precisely.

5.3 Quantitative Results
In Table 1, we present the results of the CLIP text-to-image di-
rectional loss. The results clearly demonstrate that our method
achieves significantly higher scores, indicating that our method
generates shapes and textures that are clearer and more aligned
with the edited text prompts. Additionally, our method receives
over 81.1% of the votes, surpassing the other methods by a signifi-
cant margin. This further demonstrates DreamEditor can achieve
much higher user satisfaction across various scenes.

5.4 Ablation Study
Effectiveness of locating step. To demonstrate the necessity of

locating step, we design two variants: (1) w/o locating: We omit
the locating step and optimize all local implicit fields on the mesh.
(3) Our method: we determine the editing region through locating
step, and fix the non-editing region in optimization. As illustrated
in Fig.4 (1), editing without the locating step will inadvertently
change irrelevant regions of the scene, such as shortening the doll’s
arm, which destroys the consistency of the object. In contrast, the
locating step allows our framework to optimize exclusively the
region of interest.

Effectiveness of optimizing approach. To evaluate whether our
optimizing approach can generate more detailed 3D shapes during
optimization, we ablate with three variants of DreamEditor as fol-
lows: (1) Fixing v: fixing the mesh structure during the updating
process, only optimizing the geometry features. (2) Fixing𝑓𝑔 : only
changing the mesh structure without optimizing the geometry fea-
ture. (3) Our method: v and 𝑓𝑔 are optimized simultaneously. We
select a challenging scene to evaluate: generating a rose on a cup.

We present the rendered images of the generated results and the
extracted 3D shape using the marching cubes algorithm in Fig. 5.
Fig.5 (1) displays the rose generated by fixing vertex positions,
which are full of spikes. This is because, in regions far from the
mesh surface, constraining the smoothness of the s-density of the
sampling points across implicit fields is quite challenging. Fixing
geometry features, as shown in Fig.5 (2), can generate a rough shape

(1) w/o locating (2) OursOriginal

Figure 4: Ablation study of locating step. Editing without the
locating step will deform the doll.

(1) Fixing v (2) Fixing 𝑓𝑔 (3) Ours

Figure 5: Ablation study of optimizing approach. Obviously,
our method generates red roses with more detailed and real-
istic 3D shapes.

but lacks details. In contrast, our method simultaneously optimizes
both the geometric features and vertex positions, which eliminates
the spikes as well as generates more detailed buds and petals.

6 CONCLUSION AND LIMITATIONS
In this paper, we present DreamEditor, a text-driven framework
for editing 3D scenes represented by neural fields. Given a neural
field and text prompts describing the desired edits, DreamEditor
automatically identifies the editing region within the scene and
modifies its geometry and texture accordingly. Experiments across
a diverse range of scenes, including faces, objects, and large outdoor
scenes, showcase the robust editing capabilities of DreamEditor to
generate high-quality textures and shapes compared with other
baselines while ensuring the edited scene remains consistent with
the input text prompts.

Limitations of DreamEditor include the Janus problem, an issue
inherited from DreamFusion, where the generated object appears as
a front view from different viewpoints. Furthermore, DreamEditor
does not directly model environmental lighting, which limits con-
trol over the lighting condition.While DreamEditor generally works
well, due to the dependence of rendered views in editing, its per-
formance may suffer in the presence of significant self-occlusions
in the scene, consequently impacting the final synthesis results.
Considering that NeuS faces difficulties in effectively reconstruct-
ing backgrounds in unbounded scenes, our current focus lies on
object-centric editing in the foreground of the scene. In the future
work, by combining recent unbounded real-world scene mesh re-
construction methods, such as BakedSDF [Yariv et al. 2023], our
method can be extended to the whole scene editing.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China (NO. 62322608, 61976250), in part by the Open
Project Program of State Key Laboratory of Virtual Reality Tech-
nology and Systems, Beihang University (No.VRLAB2023A01), and
in part by the Guangdong Basic and Applied Basic Research Foun-
dation (NO. 2020B1515020048).

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Zhuang et al.

REFERENCES
Omri Avrahami, Dani Lischinski, and Ohad Fried. 2022. Blended diffusion for text-

driven editing of natural images. In CVPR 2022. 18208–18218.
Chong Bao, Yinda Zhang, and Bangbang et al. Yang. 2023. Sine: Semantic-driven image-

based nerf editing with prior-guided editing field. In CVPR 2023. 20919–20929.
Tim Brooks, Aleksander Holynski, and Alexei A Efros. 2022. Instructpix2pix: Learning

to follow image editing instructions. arXiv preprint arXiv:2211.09800 (2022).
Jianchuan Chen, Ying Zhang, Di Kang, Xuefei Zhe, Linchao Bao, Xu Jia, and Huchuan

Lu. 2021. Animatable neural radiance fields from monocular rgb videos. arXiv
preprint arXiv:2106.13629 (2021).

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. 2023. Fantasia3D: Disentangling
Geometry and Appearance for High-quality Text-to-3D Content Creation. arXiv
preprint arXiv:2303.13873 (2023).

Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and Kui Jia. 2022. Tango: Text-
driven photorealistic and robust 3d stylization via lighting decomposition. arXiv
preprint arXiv:2210.11277 (2022).

Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. 2022.
Diffedit: Diffusion-based semantic image editing with mask guidance. arXiv preprint
arXiv:2210.11427 (2022).

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik,
and Daniel Cohen-Or. 2022a. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022).

Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. 2022b. StyleGAN-NADA: CLIP-guided domain adaptation of image
generators. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–13.

William Gao, Noam Aigerman, Thibault Groueix, Vladimir G Kim, and Rana Hanocka.
2023. TextDeformer: Geometry Manipulation using Text Guidance. arXiv preprint
arXiv:2304.13348 (2023).

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Implicit
geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099 (2020).

Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo
Kanazawa. 2023. Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions. arXiv
preprint arXiv:2303.12789 (2023).

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel
Cohen-Or. 2022. Prompt-to-prompt image editing with cross attention control.
arXiv preprint arXiv:2208.01626 (2022).

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. NeurIPS 2020 33 (2020), 6840–6851.

Ajay Jain, Ben Mildenhall, Jonathan T Barron, and et al. 2022. Zero-shot text-guided
object generation with dream fields. In CVPR 2022. 867–876.

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs. 2014.
Large scale multi-view stereopsis evaluation. In CVPR 2014. 406–413.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar
Mosseri, andMichal Irani. 2022. Imagic: Text-based real image editing with diffusion
models. arXiv preprint arXiv:2210.09276 (2022).

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. 2022. Decomposing nerf
for editing via feature field distillation. arXiv preprint arXiv:2205.15585 (2022).

Yuan Li, Zhi-Hao Lin, David Forsyth, Jia-Bin Huang, and Shenlong Wang. 2022. Cli-
mateNeRF: Physically-based Neural Rendering for Extreme Climate Synthesis.
arXiv e-prints (2022), arXiv–2211.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang,
Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2022. Magic3D: High-
Resolution Text-to-3D Content Creation. arXiv preprint arXiv:2211.10440 (2022).

Hao-Kang Liu, I Shen, Bing-Yu Chen, et al. 2022. NeRF-In: Free-form NeRF inpainting
with RGB-D priors. arXiv preprint arXiv:2206.04901 (2022).

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, and et al. 2020. Neural sparse voxel fields.
NeurIPS 2020 33 (2020), 15651–15663.

Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang, Jun-Yan Zhu, and Bryan
Russell. 2021. Editing conditional radiance fields. In ICCV 2021. 5773–5783.

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. ACM siggraph computer graphics 21, 4 (1987),
163–169.

Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. 2022.
Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures. arXiv
preprint arXiv:2211.07600 (2022).

Oscar Michel, Roi Bar-On, Richard Liu, and et al. 2022. Text2mesh: Text-driven neural
stylization for meshes. In CVPR 2022. 13492–13502.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields
for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa. 2022.
CLIP-Mesh: Generating textured meshes from text using pretrained image-text
models. In SIGGRAPH Asia 2022. 1–8.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Transactions
on Graphics (ToG) 41, 4 (2022), 1–15.

Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya Harada. 2021. Neural articulated
radiance field. In ICCV 2021. 5762–5772.

Julian Ost, Issam Laradji, Alejandro Newell, and et al. 2022. Neural point light fields.
In CVPR 2022. 18419–18429.

Sida Peng, Yuanqing Zhang, Yinghao Xu, and et al. 2021. Neural body: Implicit neural
representations with structured latent codes for novel view synthesis of dynamic
humans. In CVPR 2021. 9054–9063.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. 2022. Dreamfusion:
Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988 (2022).

Charles R Qi, Hao Su, KaichunMo, and Leonidas J Guibas. 2017. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In CVPR 2017. 652–660.

Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer, Nataniel Ruiz, Ben Mildenhall,
Shiran Zada, Kfir Aberman,Michael Rubinstein, Jonathan Barron, et al. 2023. Dream-
Booth3D: Subject-Driven Text-to-3D Generation. arXiv preprint arXiv:2303.13508
(2023).

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022.
Hierarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125 (2022).

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, and et al. 2021. Common
objects in 3d: Large-scale learning and evaluation of real-life 3d category recon-
struction. In ICCV 2021. 10901–10911.

Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. 2023.
Texture: Text-guided texturing of 3d shapes. arXiv preprint arXiv:2302.01721 (2023).

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
2022. High-resolution image synthesis with latent diffusion models. In CVPR 2022.
10684–10695.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and
Kfir Aberman. 2022. Dreambooth: Fine tuning text-to-image diffusion models for
subject-driven generation. arXiv preprint arXiv:2208.12242 (2022).

Chitwan Saharia, William Chan, and Saurabh et al. Saxena. 2022. Photorealistic text-
to-image diffusion models with deep language understanding. NeurIPS 2022 35
(2022), 36479–36494.

Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar Averbuch-Elor. 2023. Vox-E:
Text-guided Voxel Editing of 3D Objects. arXiv preprint arXiv:2303.12048 (2023).

Tianwei Shen, Zixin Luo, Lei Zhou, and et al. 2018. Matchable image retrieval by
learning from surface reconstruction. In ACCV 2018. Springer, 415–431.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion implicit
models. arXiv preprint arXiv:2010.02502 (2020).

Robert W Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded deformation
for shape manipulation. In ACM siggraph 2007 papers. 80–es.

Ashish Vaswani, Noam Shazeer, Niki Parmar, and et al. 2017. Attention is all you need.
NeurIPS 2017 30 (2017).

Can Wang, Menglei Chai, Mingming He, and et al. 2022a. Clip-nerf: Text-and-image
driven manipulation of neural radiance fields. In CVPR 2022. 3835–3844.

Can Wang, Ruixiang Jiang, Menglei Chai, Mingming He, Dongdong Chen, and Jing
Liao. 2023. Nerf-art: Text-driven neural radiance fields stylization. IEEE Transactions
on Visualization and Computer Graphics (2023).

ChenWang, XianWu, Yuan-Chen Guo, and et al. 2022c. NeRF-SR: High Quality Neural
Radiance Fields using Supersampling. In ACM MM 2022. 6445–6454.

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich.
2022b. Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D
Generation. arXiv preprint arXiv:2212.00774 (2022).

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. Neus: Learning neural implicit surfaces by volume rendering for
multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021).

Fanbo Xiang, Zexiang Xu, Milos Hasan, and et al. 2021. Neutex: Neural texture mapping
for volumetric neural rendering. In CVPR 2021. 7119–7128.

Tianhan Xu and Tatsuya Harada. 2022. Deforming radiance fields with cages. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXXIII. Springer, 159–175.

Bangbang Yang, Chong Bao, and Junyi et al. Zeng. 2022. Neumesh: Learning disentan-
gled neural mesh-based implicit field for geometry and texture editing. In ECCV
2022. Springer, 597–614.

Yao Yao, Zixin Luo, Shiwei Li, and et al. 2020. BlendedMVS: A Large-scale Dataset for
Generalized Multi-view Stereo Networks. In CVPR 2020.

Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P Srinivasan, Richard
Szeliski, Jonathan T Barron, and Ben Mildenhall. 2023. BakedSDF: Meshing Neural
SDFs for Real-Time View Synthesis. arXiv preprint arXiv:2302.14859 (2023).

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, and et al. 2022. NeRF-editing: geometry
editing of neural radiance fields. In CVPR 2022. 18353–18364.

DreamEditor: Text-Driven 3D Scene Editing with Neural Fields SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

"𝑎 𝒍𝒂𝒖𝒈𝒉𝒊𝒏𝒈
∗ 𝑑𝑜𝑔"

"𝑎 ∗𝑚𝑎𝑛 𝑤𝑖𝑡ℎ
𝒎𝒖𝒔𝒕𝒂𝒄𝒉𝒆"

"𝑎 ∗ 𝑑𝑜𝑙𝑙 𝑤𝑒𝑎𝑟𝑖𝑛𝑔
𝒔𝒖𝒏𝒈𝒍𝒂𝒔𝒔𝒆𝒔"

Figure 6: Visualization of the editing region, where the bold
words indicate keywords and the red area on the mesh repre-
sents the editing region.

Original “A ∗ deer” “A ∗ giraffe”

Figure 7: Visualization of the extractedmesh fromour editing
results.

N
eR

F-
A
rt

In
st
ru

ct
-N

2N
O
ur

s

Original

“Vincent van Gogh” “Fauvism” “Lord Voldemort”“Tolkien Elf”

Figure 8: Visualization of the stylization editing results, we compare with NeRF-Art and Instruct-NeRF2NeRF.

𝛾(𝐝)
27

෩𝑓𝑔
128

𝑥

𝐝

aggregating
feature

෩𝑓𝑐
128

𝛾(ሚℎ)
17

256

256

256

256 256 𝑐

𝑠

∇𝑥𝑠

Figure 9: The network of the mesh-based neural fields. It takes the sampled point 𝑥 and the ray direction d as input, output the
s-density 𝑠 and color 𝑐. 𝛾 (·) denotes positional encoding adopted in NeRF [Mildenhall et al. 2021].

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Zhuang et al.

“A ∗ gold doll”

Original Neural Field “A ∗ robot horse”“A ∗ zebra”

“A ∗ horse with rainbow hair” “A ∗ giraffe” “A ∗ deer”

Original Neural Field

Original Neural Field

“A ∗ Ironman doll” “A ∗ doll wearing sunglasses”

“A ∗ doll wearing a red top hat” “A ∗ gold doll” “A ∗ doll with tiger pattern”

“A ∗ man wearing sunglasses” “A ∗ man wearing a navy hat”

“A ∗ man wearing a cowboy hat” “A ∗ clown man” “A ∗ man with moustache”

Figure 10: More editing results.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Text-guided image generation and editing
	2.2 Text-to-3D generation
	2.3 Neural Field Editing

	3 Background
	4 Method
	4.1 Overview
	4.2 Distilling Neural Fields
	4.3 Locating Editing Regions
	4.4 Optimizing Editing Regions

	5 Experiments
	5.1 Experimental Setup
	5.2 Qualitative Results
	5.3 Quantitative Results
	5.4 Ablation Study

	6 Conclusion and Limitations
	Acknowledgments
	References

