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Abstract— Medical visual question answering (VQA)
aims to correctly answer a clinical question related to a
given medical image. Nevertheless, owing to the expensive
manual annotations of medical data, the lack of labeled
data limits the development of medical VQA. In this pa-
per, we propose a simple yet effective data augmentation
method, VQAMix, to mitigate the data limitation problem.
Specifically, VQAMix generates more labeled training sam-
ples by linearly combining a pair of VQA samples, which
can be easily embedded into any visual-language model
to boost performance. However, mixing two VQA samples
would construct new connections between images and
questions from different samples, which will cause the
answers for those new fabricated image-question pairs
to be missing or meaningless. To solve the missing an-
swer problem, we first develop the Learning with Missing
Labels (LML) strategy, which roughly excludes the miss-
ing answers. To alleviate the meaningless answer issue,
we design the Learning with Conditional-mixed Labels
(LCL) strategy, which further utilizes language-type prior
to forcing the mixed pairs to have reasonable answers
that belong to the same category. Experimental results on
the VQA-RAD and PathVQA benchmarks show that our
proposed method significantly improves the performance
of the baseline by about 7% and 5% on the averaging
result of two backbones, respectively. More importantly,
VQAMix could improve confidence calibration and model
interpretability, which is significant for medical VQA models
in practical applications. All code and models are available
at https://github.com/haifangong/VQAMix.

Index Terms— Visual question answering, VQAMix, Med-
ical image, Vision and language, Medical questions and
answers, Data augmentation

I. INTRODUCTION

Medical visual question answering (VQA) is a domain-
specific VQA task aiming at predicting the correct answer
given a medical image and a corresponding clinical question.
This task requires a system to thoroughly understand the
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Fig. 1. MixUp vs. VQAMix. In MixUp, two images scaled by random
weights (i.e., λ, 1 − λ) are combined linearly, and their corresponding
labels are fused with the same weight. In VQAMix, two image-question
pairs {Vi, Qi} and {Vj , Qj} are mixed. When the mixed sample is
sent to the VQA model, the linguistic feature extracted from Qi will
interact with the visual feature extracted from Vj , which constructs a
new connection {Vj , Qi}. So is {Vi, Qj}. Thus, the label for the mixed
image-question pair consists of four answer labels (Yi for {Vi, Qi}, Yj

for {Vj , Qj}, Yk for {Vi, Qj} and Yl for {Vj , Qi}). And the weights of
those answer labels are the probabilities of occurrence of those image-
question pairs. The answer A is encoded as a one-hot vector Y .

content of medical images and the semantics of the given
question, even involving common sense understanding. Med-
ical VQA can assist clinicians to obtain a second opinion on
diagnosis and enhance their confidence in interpreting complex
medical images. Besides, timely feedback from medical VQA
techniques can be provided to patients who are interested in
their disease status, which is helpful for patients to better
understand their health status.

However, due to the lack of large-scale well-annotated
datasets, the research of medical VQA is still in its infancy.
Considering the types of problems in the VQA-MED [1]
dataset are too simple to match the complex problem types
in the real world, while the SLAKE [2] dataset carries out
additional segmentation mask annotation for each image at
design time, but such pixel-level annotation in real scenes is
often time-consuming. There are only two manually-crafted
medical VQA dataset appropriate: (1) VQA-RAD [3], which is
composed of 315 radiology images and 3,515 question-answer
(QA) pairs; (2) PathVQA [4], which contains 4,998 images
with 32,795 QA pairs. In contrast, VQA 2.0 [5], one of the
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most widely used VQA datasets in the general scene, consists
of 204,721 images and more than 1 million QA pairs. Hence,
compared with general VQA, the annotated data of medical
VQA is quite limited.

In the literature on medical VQA, Nguyen et al. [6] adopted
transfer learning to address the data limitation problem. They
constructed a few-shot classification task and a denoising
reconstruction task to pre-train two convolutional neural net-
works separately based on external datasets and then combined
the two pre-trained networks to extract visual features on the
medical VQA dataset, which enhances the quality of visual
representation. However, they did not consider the impact of
linguistic representation on the medical VQA task, nor did they
address the problem of data limitation on clinical question-
answer pairs.

On the other hand, data augmentation is also a good solution
to relieve data limitations. For the VQA task, it is challenging
to maintain the semantic correctness of the augmented VQA
samples [7]. Generally, previous data augmentation strate-
gies for VQA can be roughly divided into three categories:
language-only, vision-only, and multi-modal approaches. For
language-only augmentation methods [8]–[10], they generate
new questions and answers by rules and/or external language
models. Vision-only augmentation method [11] attempts to
produce new images by using a GAN-based re-synthesis model
to remove objects that are irrelevant to the question and its
corresponding answer. The multi-modal augmentation method
[7] generates new VQA samples from the perspective of
adversarial attacks. However, those methods heavily rely on
complex models and even external datasets to increase the
training data.

In this paper, we propose VQAMix, a data augmentation
method, to generate new VQA samples during the training
process. Technically, VQAMix combines two training sam-
ples with a random coefficient to improve the diversity of
the training data without relying on external data. Unlike
MixUp [12], which linearly weights the input image and
label, VQAMix is related to combining the image-question
pairs. Thus, combining (v, q, a) tuples directly will inevitably
lead to the missing and meaningless answers problem: the
missing answers are attributed to the combination of the
two fabricated image-question pairs in Figure 1, while the
meaningless answers are due to mixing (v, q, a) tuples without
any type constrain on the answer. To address the above-
mentioned issues, we propose the Conditional Triplet Mixup
(CTM) scheme that contains two learning schemes. Firstly,
we introduce a straightforward Learning with Missing Labels
(LML) strategy to roughly exclude those missing answers.
However, the labels in this scheme are meaningless, which has
a negative impact on the learning of models. Thus, we further
propose a Learning with Conditional-mixed Labels (LCL)
strategy to further purify supervisory signals. Specifically, we
leverage the prior knowledge of the question’s category to
constrain the mixup process. In particular, we only mixup the
(v, q, a) tuples with the questions that belong to the same
category, to force the candidate’s answer to be meaningful.
Conclusively, this design pursues the data augmentation on
both images and questions, and thus facilitates the learning of

visual and linguistic representations.
To demonstrate the effectiveness of our proposed method,

we conduct comprehensive evaluations on the VQA-RAD [8]
and PathVQA [4] benchmarks. Guided by the CTM strate-
gies, our proposed VQAMix gains significant improvement
applying to different medical VQA models. In particular, a
strong baseline model [6] trained with VQAMix achieves
state-of-the-art performance. Besides, the experimental results
also demonstrate that VQAMix can improve the confidence
calibration, which means that the predicted scores can better
reflect the actual likelihood of correctness, and therefore can
be used as a guarantee for the reliability of the model.

The contribution of this work is summarized as follows:
• We present a data augmentation method VQAMix to

mitigate data limitation in medical VQA. Technically,
VQAMix linearly combines two training samples with
a random coefficient to generate a new synthetic sample.
To our best knowledge, we are the first to apply MixUp
to the vision and language domain.

• We propose the Learning with Missing Label (LML) and
Learning with Conditional-mixed Label (LCL) strategy,
to alleviate the missing answer and meaningless answer
resulting from the combination of (v, q, a) tuples, re-
spectively. LML roughly discards the missing Answers,
while LCL further utilizes the language category prior to
constraining the mixed answer being meaningful, which
makes the mixup process more reasonable.

• We conduct extensive experiments on two medical VQA
benchmarks to demonstrate the effectiveness of our pro-
posed method. Experimental results show that our pro-
posed method not only improves the performance but also
shows a great confidence calibration and interpretability
of medical VQA.

The rest of the paper is organized as follows. Section 2
reviews related works on VQA, Medical VQA, and data aug-
mentation. Section 3 introduces the mechanisms of VQAMix
and conditional learning strategies in detail. Section 4 evalu-
ates the VQAMix on VQA-RAD [8] and PathVQA [4] bench-
marks, including comparisons with state-of-the-art methods
and an ablation study. Section 5 and Section 6 give the
discussion and conclusion, respectively.

II. RELATED WORK

A. Visual Question Answering
VQA has been a prevailing research field in recent years.

A lot of large-scale VQA datasets and VQA algorithms have
been proposed, which boost the development of VQA. Existing
VQA algorithms mainly focus on reasoning on multi-modal
representation, including attention mechanisms, compositional
methods, and bilinear pooling schemes. Attention mechanisms
[13]–[17] aim to adaptively focus on the relevant image
regions based on the question representation. Compositional
methods [18]–[22] attempt to compose several modules with
different functions for answer inference. As for bilinear pool-
ing, [23]–[26], [26], [27] proposed to employ the compact
bilinear pooling methods to obtain joint representations of
visual and linguistic features.
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Many existing medical VQA approaches directly apply
general VQA models to the medical domain. Typically, [3],
[28]–[34] utilize an ImageNet pre-trained CNN like VGG or
ResNet to extract feature of medical images and leverage a
LSTM or transformer-based model to capture feature of ques-
tions. And they borrowed the cross-modal reasoning strategies
from general VQA (e.g., SAN [35], MCB [23], BAN [24])
with a simple classifier for answers prediction. However, due
to the large variance and scarcity of data, direct adaptation
from the natural domain to the medical domain is prone to
over-fitting. To deal with this problem, Nguyen et al. [6]
utilized a meta-learning method MAML [36] and designed
an unsupervised denoising reconstruction task to pre-train a
visual feature extractor on external medical datasets to capture
suitable visual representation for subsequent cross-modal rea-
soning. However, they only consider the data limitation in the
aspect of medical image and neglect the influence of linguistic
representation. In this paper, different from [6], we attempt to
mitigate the data limitation problem by an ingenious cross-
modal MixUp between two pairs of images and questions for
data augmentation.

B. Data Augmentation

MixUp and its variants. MixUp was first introduced
by Zhang et al. [12] for image classification. It works by
generating synthetic samples by linearly combining a pair
of images as well as their labels using the same mixing
coefficients. MixUp has shown its superiorities in reducing the
memorization of corrupt labels and improving the robustness
of the model. Verma et al. [37] extended MixUp to feature
level to produce better-generalized models. In addition to
image classification, MixUp has also been applied to text
classification. Guo et al. [38] attempted to adopt MixUp on
word embeddings and sentence embeddings for data augmen-
tation, which resulted in significant accuracy improvement on
different models. Guo et al. [39] further improved MixUp in
text classification by considering non-linear mixing operations.
In this paper, we design the conditional VQAMix to medical
VQA to improve the diversities of training data as a solution
to data limitation.

Data augmentation in VQA. Compared to image and text
classification, a few works have been done on overcoming
data augmentation in VQA. Kafle et al. [8] firstly attempted to
generate new questions by using preset templates and LSTM.
Ray et al. [9] proposed to generate a set of logically consistent
QA pairs to enhance the consistency of VQA models, relying
on external datasets to improve the diversity of the generated
questions. Similarly, the work of [10] aimed to solve the
problem that VQA models lack consistency. It utilized a visual
question generation model to generate a rephrasing question
and required the VQA model to predict consistent answers
among the rephrasing questions and original questions. From
the perspective of image consistency, Agarwal et al. [11]
generated new samples by removing inconsequential objects
to enhance the robustness of VQA models against visual
semantic variations. Tang et al. [7] proposed to generate
adversarial examples for both images and questions to improve

the performance of VQA models and resist adversarial attacks.
Recently, Gong et al. [40] designed a multi-task learning
framework by generating the pseudo labels to the unlabeled
data according to the modal of medical image. It is worth
noting that all of those methods rely heavily on complex
models and even external datasets to augment data. This paper
introduces a simple yet effective data augmentation method,
which can be used to generate new VQA samples during the
training process without additional networks or datasets.

III. METHODOLOGY

VQAMix is designed for data augmentation, which en-
hances the generalization of the model by increasing the diver-
sity of training samples while reducing the possibility of rote
memorization. Figure 2 shows an overview of our proposed
method VQAMix which is composed of three operations:
images mixing, questions mixing and labels mixing. In the
following, we define the vanilla setting of medical VQA, then
elaborate on the proposed VQAMix. After that, we introduce
two learning strategies to handle the missing label issues and
the meaningless labels issue, respectively.

A. Vanilla Setting for Medical VQA

The mainstream formulation of medical VQA is to select the
answer A which best fits the given image V and question Q
from the candidate answer set A according to previous works
[6], [29], [31], [40]–[43]. For this purpose, we need to learn a
function F (·) which maps each {V,Q} pair to a score vector S
where Si denotes the score for the i-th candidate answer. The
function F (·) usually consists of four parts: image encoder
Fv(·), question encoder Fq(·), cross-modal reasoning Fcm(·),
and classifier Fcls(·). We elaborate on each part below.

Image encoder. To extract the visual features of images
for medical VQA, we usually utilize pre-trained convolution
neural networks to obtain the intermediate or hierarchical
feature maps.

Question encoder. The linguistic features of questions are
commonly extracted by the recurrent neural networks (e.g.,
LSTM [44], GRU [45]) or transformer-based neural networks
(e.g., BERT [46], [47]). Given padded word tokens, we first
encode each word to word embedding, then we obtain the
linguistic features with the above-mentioned neural networks.

Cross-modal reasoning. Cross-modal reasoning, also
called cross-modal feature fusion, aims to encode the rela-
tionship between the visual features and linguistic features.
Conventionally, attention mechanisms and bilinear pooling
schemes are applied to model the above-mentioned relation-
ship. The representative cross-modal reasoning modal includes
SAN [35], BAN [24], MCB [23], etc.

Classifier. Since medical VQA is generally defined as
a classification problem, distinct answers are considered as
different categories. A common choice of the classifier is the
multilayer perceptron (MLP).

With the above mentioned four components, we get the
score vector S by the following formulation:

S = sigmoid(Fcls(Fcm(Vfeat, Qfeat))), (1)
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Fig. 2. An overview of our proposed VQAMix enhanced by Learning with Missing Labels (LML) and Learning with Conditional-mixed Labels (LCL)
strategies. Two VQA samples are combined linearly in the training phase. To ensure that the mixed label can be used to supervise the learning of
VQA models, both LML and LCL scheme discards those two unspecified labels to solve the missing labels issue. Moreover, to avoid meaningless
answers, the LCL scheme further utilizes the category of the question to avoid the model suffering from meaningless mixed labels.

where Vfeat and Qfeat denotes the visual feature and question
feature extracted by Fv(·) and Fq(·), respectively.

After that, the predicted answer is the one with the highest
score.

B. VQAMix

Let {V,Q,A} denote a sample in the VQA dataset, where
V , Q, A refer to an input image, a given question, and the
corresponding answer respectively. The answer A is encoded
as a one-hot vector Y . Given two VQA training samples
{{Vi, Qi, Ai}, {Vj , Qj , Aj}}, VQAMix is used to generate a
new training sample {V ′, Q′, A′}. Firstly, VQAMix obtains
a mixing coefficient λ from a Beta distribution Beta(α, α),
where α is a hyperparameter. Then, a linear combination is
applied to two input images Vi, Vj with the mixing coefficient
λ to obtain the mixed image V ′ as follows:

V ′ = λVi + (1− λ)Vj . (2)

Different from image mixing, questions mixing is not ap-
plied at the input space, since the input space of the question is
not continuous. Thus, VQAMix adopts the linear combination
of two input questions at the embedding space:

E′ = λEi + (1− λ)Ej . (3)

where E′ is the mixed question’s embedding representation,
Ei and Ej represent the embedding representation of the
question Qi and Qj . More specifically, Ei and Ej are extracted
by the following process. Two input questions are firstly

trimmed to a maximum of N words, and they are zero-
padding when their lengths are less than N . Thus, we get
Qi = {wi

1, w
i
2, ..., w

i
N} and Qj = {wj

1, w
j
2, ..., w

j
N}. Then, we

utilize word embedding to map each word to a D-dim vector
and obtain the representation embedding of the two questions
as Ei = {ei1, ei2, ..., eiN} and Ej = {ej1, e

j
2, ..., e

j
N}.

Given the mixed image and the mixed question, there exists
4 image-question pairs in this situation, including {Vi, Qi},
{Vj , Qj}, {Vi, Qj}, and {Vj , Qi}. The answers of {Vi, Qi}
and {Vj , Qj} are Ai and Aj respectively, while the answers
of {Vi, Qj} and {Vj , Qi} are not given. We suppose that the
answers of {Vi, Qj} and {Vj , Qi} are Ak and Al. And the
answer labels of {Vi, Qi}, {Vj , Qj}, {Vi, Qj}, and {Vj , Qi}
are Yi, Yj , Yk, and Yl respectively. Then the labels mixing
process can be constructed as:

Y ′ = λ2Yi + (1− λ)2Yj + λ(1− λ)Yk + λ(1− λ)Yl, (4)

The coefficient of each label represents the corresponding
image-question pair’s probability distribution (also refer to
Figure 1).

Due to that the answers Ak and Al are missing, directly
using Y ′ in the Eq. 4 to supervise the learning of VQA models
could be non-optimal. Moreover, the mixed labels might be un-
meaningful as there is no constrain of the mixed type of (V’,
Q’). Based on these consideration, we propose the conditional
triplet mixup scheme to handle the above mentioned issues.
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C. Conditional Triplet Mixup Scheme
Learning with missing labels. To handle the missing label

issues in this work, we propose a simple and straightforward
strategy named “Learning with Missing Labels” (LML) that
directly discards those labels, which is expressed as:

Y ′ = λ2Yi + (1− λ)2Yj . (5)

With this strategy, we calculate the binary cross-entropy loss
between the predicted score S′ (after sigmoid function) and
the noisy label Y ′ to train VQA models:

L(S′, Y ′) =
1

C

C∑
c=1

[Y ′
c log(S

′
c) + (1− Y ′

c ) log(1− S′
c)], (6)

where C is the number of answers in the candidate answer set
A.

Learning with conditional-mixed labels. In the strategy
of LML, there exist noise components in label Y ′, which may
negatively affect the performance of deep neural networks. To
deal with this problem, we propose another strategy to make
the mixed labels being meaningful, termed as “Learning with
Conditional-mixed Labels (LCL)”.

Considering the missing labels are intrinsically caused by
mixing the answers that are not in the same domain, we
propose conditional mixing to make the model learn with the
conditional-mixed label. Specifically, there are three ways to
implement the conditional mixing: (1) only mixup the (v, q, a)
tuples with the same imaging model; (2) only mixup the (v, q,
a) tuples with the same question category; (3) mixup the (v, q,
a) tuples with the same image model and question category.
However, here comes the question that which strategy should
we use for meaningful data augmentation? In this work, we
propose to mixup the (v, q, a) tuples with questions in the same
category based on the following concerns: (1) the question and
the answer are closer in the latent space compared with the
question and the image, and the type of the question could
directly reflect the type of answer, thus makes the mixed
label to be meaningful; (2) the images of different modals are
easy to distinguish, and the images are much more limited in
medical VQA task compared with question pair, so that mixup
images from the different modal could improve the diversity
of image; (3) as some questions are related to the model &
organ of the image, constraining the images from the same
model & organ will reduce the uncertainty during the training
process, thus making the model overfitted on these samples.
For example, assuming there are two mixed pairs with (q1:
what is the modal of the imaging; v1: a CT imaging; a1:
CT), (q2: What modality might be the figure belong to; v2:
an MRI imaging; a2: MRI). If we mix these pairs, the model
can better learn the feature representation from the images
with different modalities. Thus, we proposed the conditional
question constrain, the category-specific question set Qc which
could be formulated as:

Qc = {qi ∈ Q| category of q equals to each other}, (7)

where the category of the questions are obtained by the
“question type” in the corresponding dataset. Based on mixing
the (v, q, a) tuples with the question q in the same Qc, the

TABLE I
DETAILS OF MEDICAL VISUAL QUESION ANSWERING DATASET.

Dataset Data category Training set Validation set Test set

VQA-RAD [3] Images 315 - 315
QA pairs 3,064 - 451

PathVQA [4] Images 3,021 987 990
QA pairs 19,755 6,279 6,761

mixed category of answers could be meaningful and we define
the label of meaningful answers as Y ′′. With the Y ′′, we can
calculate the loss to ignore the answers with unknown presence
to reduce the impact of noise:

L(S′, Y ′′) =
1

C

C∑
c=1

[Y ′′
c log(S′

c) + (1− Y ′′
c ) log(1− S′

c)],

(8)
where C is the number of answers in the candidate answer
set A. Thus, let B be the batchsize, the final loss of a training
batch is:

LB =

B∑
b=1

Lb. (9)

IV. EXPERIMENTS

In this section, we comprehensively evaluate the perfor-
mance of VQAMix on two commonly used medical VQA
benchmarks: the VQA-RAD [3] and the PathVQA [4]. We
compare it with several medical VQA models and other
augmentation-based methods. After that, we carry out exper-
iments to deeply analyze the proposed method, including the
influence of VQAMix in different layers and the performance
of different conditional mixing methods.

A. Dataset

The details of the dataset used in this work are shown in
Table I. The VQA-RAD dataset [3] contains 315 radiology
images and 3515 question-answer (QA) pairs generated by
clinicians. And the whole dataset is split into a training
set of 3064 QA pairs and a test set of 451 QA pairs.
There are 11 categories of clinical questions: abnormality,
attribute, color, count, modality, organ, plane, positional rea-
soning, object/condition presence, size, and others. According
to different answer forms, questions can be divided into two
parts: closed-ended questions with answers “yes/no” and other
limited choices, and open-ended questions whose answers do
not have a limited structure. This dataset contains a total of
458 kinds of answers in the training set, and the questions are
different from each other.

The PathVQA dataset [4] contains 4,998 pathology im-
ages with 32,795 question-answer pairs, which are collected
from PEIR digital library and the pathology book. There are
eight types of questions, which includes closed-form, ‘what’,
‘where’, ‘when’, ‘how’, ‘why’, ‘whose’, and ‘how much’. The
minimum and the maximum number of questions with respect
to one image are 1 and 14, respectively.
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B. Metrics

To quantitatively measure the model’s performance, we
adopt accuracy as the evaluation criterion. Let Pi and Yi

denote the prediction and the label of sample i in the test
set, and T represents the set of samples in the test set. The
model accuracy is calculated as:

accuracy =
1

|T|
∑
i∈T

1(Pi = Yi), (10)

To measure the confidence calibration of the network,
we follow [48] to use two widely-used evaluation criteria:
Expected Calibration Error (ECE) and Maximum Calibration
Error (MCE). Expected Calibration Error reflects the differ-
ence in expectation between confidence and accuracy. Before
calculation, we divide all the predictions on the test set into
M = 15 interval bins of equal size. Then, it is computed by:

ECE =

M∑
m=1

|Bm|
|T|

|acc (Bm)− conf (Bm)| , (11)

where Bm denotes the set of samples whose predicted top-1
scores fall into the m-th bin. acc(Bm) and conf(Bm) are the
accuracy and confidence of Bm, which are defined as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(Pi = Yi), (12)

conf(Bm) =
1

|Bm|
∑
i∈Bm

Ŝi, (13)

where Ŝi is the predicted top-1 score of sample i, which
represents the confidence of the prediction.

Maximum Calibration Error reflects the worst-case devia-
tion between accuracy and confidence, which is obtained by:

MCE = max
m∈{1,...,M}

| acc (Bm)− conf (Bm) |. (14)

C. Experiments Setup

Baseline methods. To illustrate the generality of our pro-
posed method, we use two medical VQA models as baselines
including SAN-MEVF [6] and BAN-MEVF [6]. SAN-MEVF
utilizes the proposed MEVF module as an image encoder,
which is composed of two pre-trained branches. One branch
that contains four 3 × 3 convolutional layers and a mean-
pooling layer is pre-trained by the MAML algorithm [36]
to address the few-shot classification task, while the other
branch that consists of three 3×3 convolutional layers and two
max-pooling layers is a convolutional denoising auto-encoder.
SAN-MEVF leverages a GloVe [50] word embedding and
a LSTM to capture question features. Then it uses a SAN
module [35] to carry out multi-step reasoning on image and
question features. Finally, a 2-layer MLP is adopted to predict
the answer. As for BAN-MEVF, its composition is basically
the same as SAN-MEVF, except for the cross-modal reasoning
strategy. BAN-MEVF utilizes a BAN module [24] to obtain
the joint representations of the image and question features and
then feeds the multi-modal representations to the classifier.

Implementation details. Following the setting of the base-
line methods mentioned above, the length of question N is set
to 12. We apply the pre-trained MEVF module [6] to extract
the 128-d visual feature. For linguistic features, we applied
GloVe [50] to encode a word into a 600-d embedding. Then a
1024-d LSTM is applied to extract the semantic information
from the question. All codes are implemented in PyTorch-1.10
and the models are trained on a single NVIDIA Tesla V100
GPU with 32GB memory. We use the Adam optimizer with
a learning rate of 0.02 and with a weight decay of 0.0001 to
train all the models. The batch size is set to 32. All models
are trained for 80 epochs. For evaluation, we only use the
manually collected (v, q, a) tuples (i.e., free-form) in the test
set of VQA-RAD [3], and the test set of PathVQA [4]. All
the reported results are obtained by averaging the results of 5
different seeds.

D. Comparison with State-of-the-art Methods

As shown in Table II, our proposed method is compared
with 9 existing medical VQA models including SAN [3],
MCB [3], HQS [34], BAN [6], SAN-MEVF [6], BAN-MEVF
[6], BAN-MEVF+CR [42], BAN-MEVF+MMQ [41], CMSA-
MTPT [40]. We re-implement two baselines with our training
strategy for a fair comparison. Furthermore, we also re-
implement BAN-MEVF+CR [42] by following its available
code1, since its reported result is based on both free-form
and rephrased questions instead of just on free-form questions.
Besides, we re-implement two advanced VQA data-augment
methods, DAVQA [8] and SEADA [7], and apply them to
the strong baseline model BAN-MEVF. We use the publicly
available implementation of BAN-MEVF+SEADA [7]2. Ex-
cept for those re-implemented models, the results of other
models are cited from their corresponding papers. Before the
comparison, we first briefly introduce several existing state-
of-the-art methods.

• SAN [35] modeled multi-step reasoning progress with
a stacked attention model which gradually discovers the
image regions related to the given question.

• MCB [23] proposed a multi-modal compact bilinear
pooling mechanism that reduces the computational cost
of feature fusion by mapping the outer product to a lower-
dimensional space.

• HQS [34] is a hierarchical deep the multi-modal network
that segregates questions with a query-specific approach
to give the answer.

• BAN [24] stemmed from the bilinear multi-modal fusion
in MCB [23]. For the sake of lower computational cost, it
utilizes the low-rank bilinear pooling to reduce the rank
of the weight matrix.

• SAN-MEVF [6] applied the MEVF framework on SAN
[35] to better extract the feature of medical images. The
details of the MEVF framework are illustrated in Section
4.1.

1https://github.com/Awenbocc/med-vqa
2https://github.com/zaynmi/seada-vqa
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TABLE II
COMPARISON RESULTS WITH STATE-OF-THE-ART METHODS ON THE TEST SET OF VQA-RAD AND THE TEST SET OF PATHVQA. ⋆ INDICATES THE

RE-IMPLEMENTED RESULT RUNNING ON OUR DEVICE WITH 5 DIFFERENT SEEDS. THE BEST RESULT IS SHOWN IN BOLD.

Setting Models VQA-RAD Dataset PathVQA Dataset

Closed Open All Closed Open All

MCB [23] 60.6% 25.4% 46.5% - - -
HQS [34] 63.4% 12.9% 41.1% - - -
SAN [35] 57.2% 24.2% 44.0% 59.4% 1.6% 30.5%
BAN [24] 66.5% 27.6% 51.0% 68.2% 2.9% 35.6%

SAN-MAML [49] 69.7% 38.2% 57.1% 75.3% 5.4% 40.5%
Baselines BAN-MAML [49] 72.4% 40.1% 60.7% 79.5% 5.9% 42.9%

SAN-MEVF [6] 74.1% 40.7% 60.8% 81.0% 6.0% 43.6%
BAN-MEVF [6] 75.1% 43.9% 62.6% 81.4% 8.1% 44.8%

BAN-MEVF+CR⋆ [42] 79.3±1.1% 52.4±0.9% 68.5±1.0% - - -
CMSA-MTPT⋆ [40] 77.8±0.4% 52.8±1.8% 67.9±0.8% - - -

SAN-MEVF+MMQ⋆ [41] 73.0±1.4% 46.3±1.8% 62.3±1.1% 83.7±0.4% 9.6±0.5% 46.8±0.3%
BAN-MEVF+MMQ⋆ [41] 72.4±0.9% 52.0±1.1% 64.3±0.7% 82.1±0.5% 11.8±0.6% 47.1±0.4%

Augmentation

BAN-MEVF+DAVQA⋆ [8] 76.2±1.4% 51.2±1.4% 66.2±1.3% 83.4±0.2% 8.5±0.4% 46.1±0.2%
BAN-MEVF+SEADA⋆ [7] 72.4±1.5% 49.6±2.0% 63.3±1.2% 81.3±0.3% 9.1±0.5% 45.3±0.4%
SAN-MEVF+VQAMix-C 74.0±2.4% 53.8±1.9% 65.9±1.9% 84.4±0.2% 12.1±0.5% 48.4±0.2%
BAN-MEVF+VQAMix-C 79.6±1.5% 56.6±1.3% 70.4±1.1% 83.5±0.2% 13.4±0.6% 48.6±0.3%

• BAN-MEVF [6] used the bilinear attention network [24]
to fuse the visual features extracted by the MEVF frame-
work and the semantic textual feature.

• BAN-MEVF+CR [42] established a conditional
reasoning-based framework that decouples the
confounder of open-ended questions and close-ended
questions.

• BAN-MEVF+MMQ [41] is a multiple meta-model quan-
tifying method to learn meta-annotation for medical vi-
sual question answering.

• BAN-MEVF+DAVQA [8] proposed to expand the train-
ing data in visual question answering by leveraging a
language model to generate new questions.

• BAN-MEVF+SEADA [7] designed a framework that
expands the training data with the question translation
and adversary training.

• CSMA-MTPT [40] proposed a multi-task pre-training
method to enforce the image encoder and the feature fu-
sion module to learn both linguistic compatibility feature
and the visual concept.

Quantitative comparison with the state of the art meth-
ods. It can be seen from the left part of Table II that a strong
baseline, BAN-MEVF [6], is equipped with our proposed
VQAMix and LCL strategy achieves the best performance and
significantly outperforms all the existing methods. In partic-
ular, the proposed method considerably surpasses the state-
of-the-art approach CMSA-MTPT [40] by 1.6% and 2.7%
w.r.t. accuracy on open-ended and closed-ended questions
respectively. It is worth noting that our proposed method does
not increase the parameters of networks.

Besides, compared with the two baseline methods, our
proposed VQAMix with two learning strategies brings obvi-
ous performance improvement. Specifically, SAN-MEVF [35]
gains 4.3% and 11.7% accuracy improvement on closed-ended
and open-ended questions with the proposed VQAMix for
training. VQAMix with LCL scheme effectively increases the
performance of BAN-MEVF [24] by 7.9% accuracy overall.

Furthermore, we compare the proposed method VQAMix
with two other data augmentation methods DAVQA [8] and
SEADA [7].We apply those methods to the framework of
BAN-MEVF [6]. As shown in Table II, the proposed method
significantly outperforms DAVQA [8] by 5.3% overall. And
our algorithm exceeds SEADA [7] by 7.2% accuracy on
overall questions. It is worth noting that DAVQA [8] and
SEADA [7] rely on additional model (e.g., NMT [51]) to
generate new questions, which is time-consuming.

The right part of Table. II presents the quantitative results
on the PathVQA [4] dataset. It can be seen that the proposed
BAN-MEVF+VQAMix-C outperformed the previous BAN-
MEVF+MMQ [41] by 2.5% on overall answers, which is
due to the fact that the MMQ [41] merely consider the
overfitting in the medical VQA domain. Although the MEVF
[6] framework uses the auto-encoder method to alleviate data
limitation by enhancing the visual feature representation, the
VQAMix dramatically improves the performance by 3.8% on
account of enhancing data diversity both linguistically and
visually.

Trade-off analysis on efficiency and accuracy. We study
the efficiency-accuracy trade-off of 5 state-of-the-art models
on the VQA-RAD dataset, which is shown in Figure 3. The
larger the circle is, the larger the number of parameters is
in the model. The X and Y axes represent inference speed
and accuracy, respectively. As we can see, the proposed BAN-
VQAMix model significantly outperforms other baselines with
similar parameters by a large margin, and it is about 8 times
faster than the BAN-CR [42] with better performance, which
demonstrates that the proposed VQAMix is quite effective and
efficient.

E. Ablation Study

Ablation study of conditional triplet mixup strategies.
To demonstrate the superiority of the proposed conditional
triplet mixup strategies, we evaluate the learning methods
based on the BAN-MEVF [6] on the VQA-RAD dataset.
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state-of-the-art methods on the VQA-RAD dataset. The model closer to
the upper right corner performed better.

TABLE III
ABLATION STUDY ON THE DIFFERENT LEARNING METHODS OF VQAMIX

BASED ON BAN-MEVF BACKBONE. THE STUDENT’S T-TEST IS

COMPARED BETWEEN THE BEST PERFORMING METHOD (I.E.,
VQAMIX-COND-Q) AND OTHER METHODS WITH RESPECT TO THE

VALUES OBTAINED BY 5 RUNS UNDER 5 SEEDS.

Methods V Q Accuracy P-value
VQAMix-LNL 67.7±0.8% <0.001 (0.0008)
VQAMix-LML 68.4±1.1% <0.005 (0.0014)

VQAMix-Cond-V ✓ 68.5±0.9% <0.05 (0.0317)
VQAMix-Cond-V-FB ✓ 50.4±0.7% <0.001 (1.06E-5)

VQAMix-Cond-Q (LCL) ✓ 70.4±1.1% -
VQAMix-Cond-VQ-IN ✓ ✓ 69.0±0.9% <0.05 (0.0147)

VQAMix-Cond-VQ-UNION ✓̄ ✓̄ 68.2±0.8% <0.005 (0.0032)

The first row named “VQAMix-LNL” denotes the learning
with the noisy label that directly takes all the terms in Eq.4
and uses Yi and Yj to replace Yk and Yl directly. The
second row named “VQAMix-LML” denotes the learning with
missing label strategy in Eq.5. “VQAMix-Cond-V” denotes
only mixing the (v, q, a) tuples with the image in the same
category and organ. “VQAMix-Cond-V-FB” denotes mixing
the (v, q, a) tuples with the image in the same category/organ
using the “Fixed batch” sampling strategy, which means the
samples in a mini-batch are selected from the same organ
and modal. “VQAMix-Cond-Q” mixing the (v, q, a) tuples
with the question in the same category. “VQAMix-Cond-VQ-
IN” denotes mixup (v, q, a) tuples with the question and
image in the same category and organ. ‘VQAMix-Cond-VQ-
UNION” denotes mixing the (v, q, a) tuples with the questions
or the images in the same category. In this work, we use
the student’s t-test to demonstrate the effectiveness of the
proposed methods by comparing the overall accuracy of the
best-performed “VQAMix-Cond-Q” and other methods under
5 different seeds. The requirements of the student’s t-test are:
(1) the compared sets of data contain the same number of
elements; (2) comparisons of two units/groups; (3) the data
are normally distributed. Since the first two requirements are
satisfied (i.e., all samples in the group are the overall accuracy
that comes from five different seeds), we focus on confirming
the (3) assumption. As there are 7 groups of data with 5 in

TABLE IV
EXPERIMENT RESULTS OF THE PROPOSED METHODS ON THE TESTSET

OF VQA-RAD BASED ON FIVE-FOLD CROSS-VALIDATION.
“BAN-MEVF” IS REPRESENTED BY “BAN-M” FOR SHORT. THE

STUDENT’S T-TEST IS COMPARED BETWEEN THE BEST PERFORMING

METHOD (I.E., BAN-M+VQAMIX-LCL) AND OTHER METHODS ON THE

METRIC OF ACCURACY AND MACRO F1, RESPECTIVELY.

Models Accuracy P-value Macro F1 P-value

BAN-M 58.7±1.3% 0.0006 29.3±2.3% 0.0002
BAN-M+VQAMix-LML 62.4±0.9% 0.007 41.2±2.4% 0.04
BAN-M+VQAMix-LCL 64.7±1.2% - 44.3±2.0% -

each group (i.e., the limited number of the data is less than
50), we adopt the Shapiro-Wilk statistic to prove whether the
sampled data are normally distributed, and the result shows
that the data in each group are normally distributed.

As shown in Table. III, the “VQAMix-LNL” under-
performance as it intrinsically contains the non-existing an-
swers which are regarded as noise. By neglecting the terms
of non-existing answers, “VQAMix-LML” boosts the perfor-
mance by 0.9% on average. The “VQAMix-Cond-V” merely
improves the performance compared with the “VQAMix-
LML”, as it restricts the diversity of the mixed pairs. Moreover,
all the conditional mixup methods outperform the “VQAMix-
LML”, while the “VQAMix-Cond-Q” (i.e., “VQAMix-Cond-
LCL”) strategy outperforms the “VQAMix-LML” by around
2%, which confirms our assumption in Section 3-C. It is also
worth noting that although the “Fixed Batch” strategy used
in “VQAMix-Cond-V-FB” could improve the possibility of
mixing in the mini-batch, it is harmful to the optimization
algorithm (e.g., Adam used in this work) as it will make the
model over-fit on the mini-batch’s data that come from the
same organ & modal.

To alleviate the uncertainty caused by data partitioning, we
further conduct the 5-fold cross-validation on the VQA-RAD
dataset based on the BAN-MEVF backbone in Table IV with
the metric of accuracy and Macro F1 score. As we can see,
our VQA-Mix method is quite significant as it can not only
improve the accuracy, but also significantly boosts the Macro
F1 score (i.e., exceeds the baseline by 15%), which is quite
significant as the class imbalance is quite common in the
medical visual question answering domain.

Influence of VQAMix in different layers. To verify the
effectiveness of each component in our proposed framework
shown in Figure 2, we conduct experiments on several de-
signed schemes, including mixing images only, mixing ques-
tions only, and applying VQAMix on the latent representations
(i.e., feature maps). As shown in Table V, VQAMix with
LCL strategy is applied to different layers of BAN-MEVF
even partly applied. M2 is our proposed scheme which mixes
images before the image encoder and mixes questions before
the question encoder. It achieves the highest accuracy on
the overall questions, which confirms the superiority of our
proposed mixing strategy shown in Figure 2. As for M0 and
M1, both of them only apply the mixing operation in single-
modal. Compared to M2, their performance drops sharply,
which suggests that it is of significance to mix images and
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TABLE V
EXPERIMENTAL RESULTS OF APPLYING VQAMIX-LCL IN DIFFERENT

LAYERS. REPORTED RESULTS ARE THE ACCURACY AND ECE SCORE

OF OVERALL QUESTIONS ON THE VQA-RAD TEST SET. VMIX: MIXING

IMAGES. QMIX: MIXING QUESTIONS. BE: BEFORE ENCODER. AE:
AFTER ENCODER. THE BEST RESULT IS SHOWN IN BOLD.

Methods VMix QMix Accuracy↑ ECE↓BE AE BE AE
M0 ✓ × × × 64.0±1.1% 15.1±1.6%
M1 × × ✓ × 64.8±0.9% 21.0±2.4%
M2 ✓ × ✓ × 70.4±1.1% 11.4±1.2%
M3 × ✓ ✓ × 69.8±1.6% 11.8±1.3%
M4 ✓ × × ✓ 64.3±0.9% 14.2±1.6%
M5 × ✓ × ✓ 63.7±1.4% 13.4±1.8%
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Fig. 4. Visualization results of the training loss and validation loss
between the BAN-MEVF, the proposed VQAMix-LML, and VQAMix-LCL
cross epochs on VQA-RAD dataset.

questions before encoder. As for M5, its result reflects that
mixing both images and questions on the features extracted
by encoders harms the performance of the model, which is
similar to the result reported in [12].

To uncover the rationale underlying better calibration, we
further evaluate the calibration performance with ECE score
by applying mixup to different layers of the VQAMix-LCL,
which is shown in the right row of TableV. Compared with
applying the mixup to the questions, mixing the images could
lead to a much more calibrated result. Moreover, mixup before
the encoder could lead to better calibration than mixup after
the encoder.

V. DISCUSSION

In this section, we first analyze the results of the training
and validation loss curve. Then we provide insights on the
hyperparameter of Beta distribution and the exponent of the
mixing coefficient, and analysis the model calibration and
interpretability by visualizing some medical VQA samples.
Finally, we provide some insights on why VQAMix works
well on the medical visual question answering task.

A. Analysis on the Loss Curve

We visualize the training and validation losses in Figure 4.
The loss curves of the vanilla BAN-MEVF, VQAMix-LML,
and the VQAMix-LCL are colored in blue, orange, and green,
respectively. Both VQAMix-LML and VQAMix-LCL could
effectively alleviate the over-fitting on the training set by
empirical risk minimization [12] and data-adaptive regular-
ization [52]. More importantly, the losses of VQAMix-LCL
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Fig. 5. Evaluation result of hyperparameters sensitivity and confidence
calibration. In the left part, the red line denotes the performance of
the BAN-MEVF while the black line represents the proposed BAN-
MEVF+VQAMIX-LCL. The light blue area represents the error interval
obtained by the seeds of 5 different runs. The right part shows the
calibration result on the model BAN-MEVF (i.e., “Baseline” in the figure),
BAN-MEVF equipped with VQAMix-LML, and BAN-MEVF equipped with
VQAMix-LCL.

are lower than VQAMix-LML in the training phrases while
achieving a lower loss in the validation phrases. The reason for
this phenomenon is that VQAMix-LCL could generate more
reasonable (v, q, a) tuples with the question category constrain,
thus avoiding the model being affected by the noisy (v, q, a)
tuples with the un-meaningful label.

B. Analysis on Beta Distribution and Exponent of Mixing
Coefficient

Influence of hyperparameters on Beta distribution. The
hyperparameter α decides a Beta distribution that is used to
generate a mixing coefficient. Under the premise of no special
conditions or different sampling rules, two samples of a pair
should be equivalent, so the sampling needs to be between
0-1 and symmetric at about 0.5, and the Beta distribution
exactly conforms to this characteristic. Given the specific
α, the relationship between the distribution and the possible
mixed images is shown in Figure 6. When alpha is lower than
1, the distribution would be a u-shape, and one image may
dominate the mixture of images (e.g., Figure 6-(a)). When
alpha equals 1, the Beta distribution is equivalent to uniform
distribution that random samples images and questions without
preference. In this situation, all kinds of different combinations
are going to happen with equal probability (e.g., Figure 6-(b)).
While alpha is greater than 1, the Beta distribution is bell-
shaped, and the mixed images tend to evenly reflect the two
mixed images (e.g., Figure 6-(c)).

To investigate its impact on performance, we evaluate
VQAMix with different mixing rates. We sample the mixing
rates from the beta distribution (i.e., Beta (α, α)) with the
hyperparameter alpha varies from 0.2 to 2 with step 0.2. The
results are shown in Figure 5 (left plot). For all α values
considered, VQAMix significantly improves upon the baseline
(62.6%). And the best performance is achieved when α = 1.0.
It is worth noting that we use the same hyper-parameters (i.e.,
α = 1) to train the models on the PathVQA dataset.

Analysis on the exponent of the mixup coefficient. The
rationale underlying this formulation is that the λ represents
the possibility of mixup (v, q, a) pair. In that situation, when
we only mix the images or questions, the power of λ should
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TABLE VI
ANALYSIS ON THE EXPONENT OF MIXING COEFFICIENT BASED ON

BAN-MEVF BACKBONE THAT ENHANCED BY VQAMIX-LCL. THE

RESULTS ARE OBTAINED BY AVERAGING THE ACCURACY UNDER 5
DIFFERENT SEEDS.

Exponent value 1 2 3
Accuracy 46.6±1.0% 70.4±1.1% 68.9±1.3%

𝜆 1-𝜆

0.50.5 11 22

(a) (b) (c)

Fig. 6. Visualization result of the shape of Beta distribution under
different alpha value, and the mixed images based on different mixing
coefficient.

be 1. When we mix the (v, q, a) pair, the power of λ should be
2. We further conduct the experiments on the influence of the
power value, which is shown in Table VI. The power value
of 1 is not working as it disobeys the probability of mixing,
which further confirms our design is reasonable as it could
reflect the possibility distribution.

C. Analysis on Model Calibration and Interpretability

Effect of confidence calibration. The calibration of the
model represents the matching degree between prediction
confidence and accuracy, which is essential in the medical
domain. In this part, we evaluate the confidence calibra-
tion of three medical VQA models including BAN-MEVF,
BAN-MEVF+VQAMix-LML, and BAN-MEVF+VQAMix-
LCL, with the ECE and MCE illustrated in Section 4.2. The
results are shown in Figure 5 (right plot). Both VQAMix-LML
and VQAMix-LCL can improve confidence calibration. This
implies that neural networks tend to be more calibrated on the
test set with the newly generated samples during the training
progress, as the mixed (v, q, a) tuple with the meaningful
label learning strategies mitigates the discrepancy between the
average confidence and average accuracy. This implies that
neural networks trained by our proposed method tend to be
better calibrated on the test set since our proposed method can
mitigate the discrepancy between the average confidence and
average accuracy.

Interpretability analysis based on class-map activation.
As shown in Figure 7, we conduct a qualitative compari-
son between the baseline BAN-MEVF [6] and our proposed
VQAMix-LCL which is applied to BAN-MEVF with the help
of grad class activation map (Grad-CAM) [53]. The visualized
examples include four modalities (i.e., CT, MRI, X-Ray, and
FFPE) of radiology images on different organs or tissues. The
first column is the original images, the second column shows
the visualization results of the baseline BAN-MEVF, and the

last column shows the visualization results of our model BAN-
MEVF+VQAMix-LCL.

The first row to the left shows an abdomen CT image. Our
model focuses on the boundary area of the image while the
baseline focuses on the center, which is not the region of the
skeletal joint. The second row to the left shows a brain MRI
image. The baseline locates non-organic areas, which leads to
an incorrect answer. The first row to the right introduces an
example of the chest X-Ray image. As the question focuses
on whether the position of the image is tilted, medical VQA
models should pay attention to as many regions as possible.
In comparison, our model correctly answers the question by
focusing on a larger area of the image. The second row to
the right involves the example of the pathology FFPE images.
The question asked the model to be aware of the cells in the
imaging rather than the upper part of the imaging. Thus, the
proposed method gives the right answer by focusing on the
cells in the imaging. These examples have demonstrated that
our model can focus on the reasonable regions of the image
to answer the question, by taking advantage of the VQAMix
strategy and the Meaningful label handling schedule.

From this figure, our model can give a reasonable answer
even facing the complex Med-VQA task, by taking advantage
of the MixUp strategy and the Meaningful label learning
schedule. Still, there is a long way to go to achieve better
interpretability.

D. Discussion on Why VQAMix Works

Mixup [12] has been a prevailing data augmentation-based
technology to boost the performance of the model, and there
are many successful attempts [37]–[39], [54], [55]. Still, the
rationale underlying Mixup is unclear until a recent work
[52] that theoretically proves Mixup corresponds to approx-
imately minimizing an upper bound of the adversarial loss
while serving as a data-adaptive regularization that reduces
overfitting. Thus, we proposed the VQA-Mix that mainly
focuses on the handle the overfitting of the limited training
data. Still, we can’t guarantee that all the mixed (v, q, a) pairs
are with meaningful labels, even with the conditional mixed
strategies proposed in this work. Nevertheless, by embedding
the VQAMix into the current VQA models, we witness great
success not only in the boost of accuracy and the Macro F1
score but also leads to better model calibration.

Moreover, according to [52] that mixup is served as the
adversarial loss, we can explain the constraining the question
type in another way. As the mixed labels are closer in the
latent space in the learning with conditional-mixed strategy,
the adversarial loss could be much more effective. Thus,
the VQAMix process could achieve better performance and
interpretability. In VQAMix, we generated the VQA pair
by linearly combining the original VQA pairs. This process
will be unavoidable to generate meaningless pairs. Still, the
meaningless generated pairs with the soft labels can avoid the
model over-fitting the limited samples in the training set with
the hard label. Thus, we reasonably guess that VQAMix may
contribute to the model’s interpretability by taking the soft
label as the supervision during the training process according
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A: No O

Original Image BAN-MEVF Ours

Abdomen
(CT)

Brain
(MRI)

Chest
(X-Ray)

A: Fat O

A: Pons O

A: Sacroiliac joint P

A: Cavum vergae P

A: Yes P

Original Image BAN-MEVF Ours

Pathology
(FFPE)

A: Yes O A: No PQ: Is histologic appearance in active takayasu 
aortitis illustrating destruction and fibrosis of 
the arterial media prominent?

Q: Was the patient positioned 
appropriately without tilting?

Q:  What skeletal joint is seen in 
this image?

Q :  What was probably found 
incidentally on this image?

Fig. 7. Several visualized results between the baseline BAN-MEVF and our proposed method that embeds the VQAMix-LCL into the BAN-MEVF
backbone. These examples are selected from the CT, MRI, X-Ray, and Formalin-Fixed Paraffin-Embedded (FFPE) modality with its corresponding
organ (tissue).

to [56]. And we also believe that it is valuable to further
discuss the impact of meaningless mixed images on the model
in the future work to increase the interpretability of the model.

VI. CONCLUSION

In this paper, we present a new data augmentation method
VQAMix to relieve data limitations in medical VQA. Techni-
cally, VQAMix combines two training samples with a random
coefficient to improve the diversity of the training data without
relying on external data. To alleviate the inherent missing
answer issue and meaningless answer problem resulting from
the combination of (v, q, a) tuples, we first develop the learning
with the missing label strategy, which roughly discards the
missing answers. After that, we further established the learning
with conditional-mixed labels by adding the conditional mixup
constrain with the prior knowledge of language category,
which makes labels meaningful. Extensive experimental re-
sults on the VQA-RAD and PathVQA benchmarks show
that our proposed method brings significant gains to different
models. Furthermore, VQAMix could improve confidence cal-
ibration to make the predicted score better reflect the accuracy,
and provides more reasonable class activation maps, which is
meaningful for medical VQA models in practical applications.

For future works, our group may dig deeper into the
reasoning process of medical VQA, which is a crucial issue
in the current VQA models. Also, it would be interesting to
broaden the VQAMix to other VQA methods which contain
the open answer set. We leave these works to future efforts.
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