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ABSTRACT
Medical vision-and-language pre-training (Med-VLP) has received
considerable attention owing to its applicability to extracting generic
vision-and-language representations frommedical images and texts.
Most existing methods mainly contain three elements: uni-modal
encoders (i.e., a vision encoder and a language encoder), a multi-
modal fusion module, and pretext tasks, with few studies consider-
ing the importance of medical domain expert knowledge and ex-
plicitly exploiting such knowledge to facilitate Med-VLP. Although
there exist knowledge-enhanced vision-and-language pre-training
(VLP) methods in the general domain, most require off-the-shelf
toolkits (e.g., object detectors and scene graph parsers), which are
unavailable in the medical domain. In this paper, we propose a
systematic and effective approach to enhance Med-VLP by struc-
tured medical knowledge from three perspectives. First, considering
knowledge can be regarded as the intermediate medium between
vision and language, we align the representations of the vision
encoder and the language encoder through knowledge. Second, we
inject knowledge into the multi-modal fusion model to enable the
model to perform reasoning using knowledge as the supplemen-
tation of the input image and text. Third, we guide the model to
put emphasis on the most critical information in images and texts
by designing knowledge-induced pretext tasks. To perform a com-
prehensive evaluation and facilitate further research, we construct
a medical vision-and-language benchmark including three tasks.
Experimental results illustrate the effectiveness of our approach,
where state-of-the-art performance is achieved on all downstream
tasks. Further analyses explore the effects of different components
of our approach and various settings of pre-training.1
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1The source code is available at https://github.com/zhjohnchan/ARL.
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1 INTRODUCTION
Medical data streams from various sources, among which vision
and language are two critical ones. It includes image data (e.g., radio-
graphy, magnetic resonance imaging, and computed tomography)
and text data (e.g., radiology reports and medical texts). Medical
vision-and-language pre-training (Med-VLP) aims to jointly process
data from these two modalities to learn generalizable multi-modal
representations from large-scale medical image-text data. It enables
a vision-and-language model to address a wide range of medical
vision-and-language tasks (e.g., medical visual question answer-
ing (Med-VQA), medical image-text classification (Med-ITC), and
medical image-text retrieval (Med-ITR)), which can be crucial for
alleviating the data scarcity problem in the medical field.

In the past few years, vision-and-language pre-training (VLP)
has drawn sustaining attention [8, 9, 24, 28, 35, 43, 47] and achieved
state-of-the-art performance on many vision-and-language tasks in
the general domain. In general, a VLP system consists of three ele-
ments: (i) uni-modal encoders (i.e., a vision encoder and a language
encoder) that encode images and texts into image and text features,
respectively; (ii) a multi-modal fusion module that performs the
fusion of the encoded image and text features; (iii) pretext tasks (e.g.,
masked image modeling (MIM), masked language modeling (MLM),
and image-text matching (ITM)) that assist the learning of VLP
models. More recently, some studies [15, 22, 29, 37] applied VLP to
the medical domain and significantly improved the performance for
medical vision-and-language tasks (especially for Med-VQA). These
methods are superior in capturing the mappings between images
and texts and thus enable the pre-trained models to understand
the complicated cross-modal information. For example, [15, 22]
proposed to perform the pre-training on medical image-text pairs
to capture medical knowledge, and the evaluation on Med-VQA has
demonstrated the validity of their proposed methods.

Although these methods have motivated the learning of image-
text correspondences through well-designed model architectures
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and pretext tasks, most of them disregard the complementary in-
formation (i.e., knowledge) shared by different modalities and still
lack the explicit knowledge modeling for Med-VLP. Even in the
general domain, there are only a few VLP studies [7, 9, 28, 55] on
incorporating external knowledge into the pre-training process.
For instance, ERNIE-ViL [55] constructed a scene graph from the
input text to build the semantic connections between vision and
language and emphasized the importance of keywords (e.g., objects,
attributes, and relationships between objects) through the designs
of pretext tasks. ROSITA [9] used a unified scene graph shared by
the input image and text to enhance the semantic alignments be-
tween vision and language. Similarly, KB-VLP [7] used object tags
detected from images and knowledge graph embeddings extracted
from texts to enhance the learning of knowledge-aware represen-
tations. However, the aforementioned studies require off-the-shelf
toolkits (e.g., object detectors and scene graph parsers), which are
generally unavailable in the medical domain. Furthermore, they
might be limited in scalability as their performance depends heav-
ily on the reliability of the object detectors or scene graph parsers.
Therefore, it is expected to have a better solution to exploit exter-
nal knowledge more appropriately and systematically and further
improve the generalization ability of Med-VLP methods.

In this paper, we propose a systematic approach to Med-VLP
enhanced by structured expert domain knowledge from the Unified
Medical Language System [4] (UMLS), a large medical knowledge
base containing many biomedical terminologies with the associ-
ated information, such as synonyms and categorical groupings. To
ensure the effectiveness and efficiency of our approach, structured
knowledge is injected into the Med-VLP system from three per-
spectives: (i) Aligning Through Knowledge: It uses knowledge as
the intermediate medium between vision and language to align the
image and text features encoded by the uni-modal encoders; (ii)
Reasoning Using Knowledge: It develops a knowledge-enhanced
multi-modal fusion module to integrate knowledge into the inter-
action process of the image and text features; (iii) Learning From
Knowledge: It constructs knowledge-induced pretext tasks to assist
the model in capturing underlying critical medical information of
the images and texts to promote the medical vision-and-language
understanding. As a result, the proposed method is able to learn
cross-modal domain-specific knowledge from large-scale medical
image-text datasets and medical knowledge bases to promote the
learning of semantically aligned and knowledge-aware image and
text representations. We perform the pre-training on three large-
scale medical image-text datasets, i.e., ROCO [40], MedICaT [44],
and MIMIC-CXR [21]. To verify the effectiveness of our approach
and facilitate further research, we construct a medical vision-and-
language understanding benchmark including three tasks (i.e., Med-
VQA, Med-ITC, and Med-ITR). Experimental results demonstrate
the effectiveness of our approach, where state-of-the-art perfor-
mance is achieved on all datasets.

2 RELATEDWORK
Vision-and-Language Pre-training (VLP)Motivated by the suc-
cess of the self-supervised pre-training recipe of BERT in NLP, there
has been an increasing interest in developing VLP methods to ad-
dress a wide range of vision-and-language tasks. In general, VLP

methods can be categorized with respect to three perspectives. For
the designs of the uni-modal encoders, different methods adopt
different image features (e.g., region features [27, 35], patch embed-
dings [24, 26, 51], and grid features [20]) and distinct text features
(e.g., statistic embeddings [24] and dynamic embeddings [13]). For
multi-modal fusion modules, existing methods can be classified
into two categories (i.e., single-stream and dual-stream). In spe-
cific, for the single-stream fusion, the models [8, 27, 28, 43] use a
single Transformer for early and unconstrained fusion between
modalities; for the dual-stream fusion, the models [35, 47, 55] adopt
the co-attention mechanism to interact different modalities. For
pretext tasks, inspired by uni-modal pre-training schemes such as
MLM [10, 33] and causal language modeling [6], existing studies
explore a variety of pre-training tasks, including MLM [27, 35, 47],
MIM [8, 35], ITM [27, 58], image-text contrastive [26] and prefix
language modeling [51]. This paper adopts a purely Transformer-
based backbone architecture using the dual-stream fusion with
ViT-based grid features and BERT-based dynamic text features and
three common pretext tasks (i.e., MLM, MIM, and ITM).
Medical Vision-and-Language Pre-training (Med-VLP) Being
one of the applications and extensions of VLP to themedical domain,
Med-VLP aims to understand the content and relations between
medical images and their corresponding texts. It can be traced
back to [29], which explored the performance of four vision-and-
language models pre-trained in the general domain on a disease
classification task. Then MMBERT [22], PubMedCLIP [14], and
MedViLL [37] performed pre-training on medical image-text data
before fine-tuning on the downstream tasks. Compared with these
studies, we design a more appropriate and systematic scheme for
Med-VLP from four aspects (i.e., pre-training datasets, model de-
signs, pre-training tasks, and evaluation benchmarks).
Knowledge-Enhanced Pre-training For uni-modal pre-training
in CV and NLP, many works have investigated how to incorporate
knowledge into the pre-trainedmodels. According to the knowledge
injection schemes, existing studies can be classified into four cate-
gories: embeddings combination [41, 59], data structure compatibil-
ity [16, 32, 45], knowledge supervision [46, 49], and neural-symbolic
methods [2]. For VLP, knowledge can be acquired from both the
image and text modalities, and there are several works [9, 28, 55]
studying to integrate knowledge into their methods. ERNIE-ViL
[55] built detailed semantic alignments between vision and lan-
guage based on the scene graph parsed from the text. ROSITA
[9] proposed integrating extra cross-modal knowledge mappings
to enhance the learning of semantic alignments between vision
and language. Different from them, we revisit existing knowledge-
enhanced methods and propose to inject knowledge from three
VLP-specific perspectives without requiring object detectors or
scene graph parsers, which are unavailable in the medical domain.

3 THE PROPOSED APPROACH
We follow the standard pre-train-and-fine-tune paradigm for medi-
cal vision-and-language understanding. In the pre-training stage,
the framework develops a variety of pretext tasks to train the Med-
VLP model using medical image-text pairs. In the fine-tuning stage,
the pre-trained Med-VLP model is transferred to various medical
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There is new mild pulmonary
edema with small bilateral pleu-
ral effusions. Lung volumes have
decreased with crowding of va-
sculature. No pneumothorax.
Severe cardiomegaly is likely
accentuated due to low lung vo-
lumes and patient posi-tioning.

Stage 1: Name Entity Recognition and Linking to the UMLS Knoweldge Base

Concept Unique Identifier (CUI): C0032227
Name: Pleural effusion disorder
Definition: Presence of fluid in the pleural cav-
ity resulting from excessive transudation or ex-
udation from the pleural surfaces. It is a sign o-
f disease and not a diagnosis in itself.
Aliases (abbreviated, total: 17): pleural effus-
ion, Pleural effusion, NOS, Pleural effusion
(disorder), Pleural effusion NOS, Fluid around
lungs, Unspecified pleural effusion, Effusions,
Pleural, pleural effusions, Effusion, Pleural,
EFFUSION PLEURAL

Input Text

UMLS Knowledge Base

Entity Information C0006104
C0007226
C0007634
C0015967
C0018787

…
C0024109
C0032227
C0032285
C0037253
C0262950
C0334227
C0441987
C1261322
C0431085

Entity Set (ℰ)

Stage 2: Retain the Knowledge Relevant to the Pre-training Corpus

Knowledge Set (𝓖)

UMLS Knowledge Base

Figure 1: The flowchart of knowledge extraction fromUMLS, amedical knowledge base. It contains twomain stages, where the
first stage is to link entities of each input text to the knowledge base and the second stage is to retain the knowledge relevant
to the pre-training corpus to form our knowledge set. Numbers are marked for ease of reading.

vision-and-language downstream tasks. An overview of the pro-
posed approach is demonstrated in Figure 2, and the details of the
general Med-VLP framework, the knowledge extraction process
(shown in Figure 1), and the injection of knowledge into the general
Med-VLP framework are introduced in the following subsections.

3.1 The General Med-VLP Framework
The general Med-VLP framework can be partitioned into three
major components, i.e., the uni-modal encoders, the multi-modal
fusion module, and the pretext tasks. The overall description of the
three components is detailed below.
Uni-modal Encoders In the Med-VLP framework, there is a vision
encoder and a language encoder, which encode the input image
and text into image and text features, respectively.

For the vision encoder, we study the use of vision Transformer
[12] (ViT). In ViT, an input image 𝑰 ∈ R𝐻×𝑊 ×𝐶 is first segmented
into patches {𝒙𝒗1 , 𝒙

𝒗
2 , . . . , 𝒙

𝒗
𝑵𝒗

}, where 𝐻 ×𝑊 is the image resolu-
tion, 𝐶 is the number of channels, 𝑁𝑣 is the number of patches,
𝒙𝒗𝒊 ∈ R𝑃2×𝐶 and 𝑃 × 𝑃 is the patch resolution. Then the patches
{𝒙𝒗1 , 𝒙

𝒗
2 , . . . , 𝒙

𝒗
𝑵𝒗

} are flattened and linearly projected into patch

embeddings through a linear transformation 𝑬𝒗 ∈ R𝑃2𝐶×𝐷 and
a special learnable token embedding 𝒙𝒗𝑰 ∈ R𝐷 is prepended for
the aggregation of visual information. Therefore, the input image
representations are obtained via summing up the patch embeddings
and learnable 1D position embeddings 𝑬𝒗

𝒑𝒐𝒔 ∈ R(𝑁𝑣+1)×𝐷 :

𝑿𝒗 = [𝒙𝒗𝑰 ; 𝒙
𝒗
1 𝑬

𝒗 ; 𝒙𝒗2 𝑬
𝒗 ; . . . ; 𝒙𝒗𝑵𝒗

𝑬𝒗] + 𝑬𝒗
𝒑𝒐𝒔 . (1)

Then 𝑿𝒗 is fed into a Transformer model with 𝐿𝑣 Transformer
layers. Finally, we obtain the contextualized image representations
𝑯𝒗 = [𝒉𝒗𝑰 ;𝒉

𝒗
1 ;𝒉

𝒗
2 ; ...;𝒉

𝒗
𝑵𝒗

].
For the language encoder, we follow BERT [10] to tokenize the

input text to subword tokens {𝑥𝑙1, 𝑥
𝑙
2, . . . , 𝑥

𝑙
𝑁𝑙
} by WordPiece [53]

and then represent subword tokens as {𝒙 𝒍1, 𝒙
𝒍
2, . . . , 𝒙

𝒍
𝑵𝒍

}, where

𝒙 𝒍𝒊 ∈ R
𝑉 are the one-hot form of 𝑥𝑙

𝑖
, 𝑉 is the vocabulary size, and

𝑁𝑙 is the number of tokens. Subsequently, the tokens are linearly
projected into embeddings through a linear transformation 𝑬 𝒍 ∈
R𝑉×𝐷 . Afterwards, a start-of-sequence token embedding 𝒙 𝒍𝑻 ∈ R𝐷

and a special boundary token embedding 𝒙 𝒍𝑺𝑬𝑷 ∈ R𝐷 are added
to the text sequence. Therefore, the input text representations are
computed via summing up the token embeddings and text position
embeddings 𝑬 𝒍

𝒑𝒐𝒔 ∈ R(𝑁𝑙+2)×𝐷 :

𝑿 𝒍 = [𝒙 𝒍𝑻 ; 𝒙
𝒍
1𝑬

𝒍 ; . . . ; 𝒙 𝒍𝑵𝒍
𝑬 𝒍 ; 𝒙 𝒍𝑺𝑬𝑷 ] + 𝑬 𝒍

𝒑𝒐𝒔 . (2)

Then 𝑿 𝒍 is fed into a Transformer model with 𝐿𝑙 Transformer
layers. Finally, we obtain the contextualized text representations
𝑯 𝒍 = [𝒉𝒍𝑻 ;𝒉

𝒍
1;𝒉

𝒍
2; . . . ;𝒉

𝒍
𝑵𝒍

;𝒉𝒍𝑺𝑬𝑷 ].
Multi-model Fusion ModuleWe adopt the co-attention mecha-
nism in the multi-modal fusion module to fuse the contextualized
representations from images and texts. In detail, the multi-modal
fusion module consists of two Transformer models for vision and
language, respectively, each of which is a stack of 𝐿𝑚 Transformer
layers. In each Transformer layer, there are three sub-layers, i.e.,
a self-attention sub-layer, a cross-attention sub-layer, and a feed-
forward sub-layer. The attention mechanism is applied in the self-
attention and cross-attention sub-layers and is defined as

ATTN(𝑸,𝑲 , 𝑽 ) = softmax
(
𝑸𝑲⊤/

√︁
𝐷𝑘

)
· 𝑽 , (3)

where 𝑸 , 𝑲 , and 𝑽 are the query, key, value matrices linearly trans-
formed from the corresponding input sequences, respectively, and
𝐷𝑘 is the dimension of 𝑲 . In the self-attention sub-layer, the repre-
sentations interact within modalities:

𝑯𝒗𝒔 = ATTN(𝑯𝒗 ,𝑯𝒗 ,𝑯𝒗), (4)

𝑯 𝒍𝒔 = ATTN(𝑯 𝒍 ,𝑯 𝒍 ,𝑯 𝒍 ), (5)

where 𝑯𝒗𝒔 and 𝑯 𝒍𝒔 are the self-attention outputs for vision and
language, respectively. Then residual connections followed by layer
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Self-Attention

Cross-Attention

Feed-Forward

Image Embed

Self-Attention

Feed-Forward

Self-Attention

Cross-Attention

Feed-Forward

Text Embed

Self-Attention

Feed-Forward

Graph Neural Networks

Sim Sim

…

… …C0034063

C0032227

Self-Attention

Cross-Attention

Feed-Forward

Fusion

There is new mild pulmona-
ry edema with small bilateral
pleural effusions. Lung volu-
mes have decreased with cr-
owding of vasculature. No
pneumothorax. Severe card-
iomegaly is likely accentua-
ted due to low lung volumes
and patient positioning.

[C0034063] [C0032227]
[C0231953] [C0005839]
[C0032326] [C0018800]

…

Image (𝑰) Knowledge Set (𝓖) Text (𝑻)

Residule Connections & Layer Norm

pulmonary edemaThere with

…
. [C0034064] [C0032227] [C0018800]

…

Learning from (Knowledge-Induced) Pretext Tasks

Entity Sequence (𝑬𝑺)

Knowledge Set (𝓖) Image (𝑰)

Uni-modal Encoders

Multi-modal Fusion Module

FusionPretext Tasks

Entity Sequence (𝑬𝑺)

Text (𝑻)

𝑿𝒗 𝑿𝒍

𝑳𝒗× ×	𝑳𝒍

𝑯𝒍𝑯𝒗

𝒉𝑰𝒗 𝒉𝑻𝒍

𝒁𝒗 𝒁𝒍𝒁𝒆

𝑳𝒎×

Figure 2: The overall architecture of our proposed approach, where the inputs, uni-modal encoders (with the “aligning through
knowledge” process), multi-modal fusion module (with the “reasoning using knowledge” process), pretext tasks (with the
“learning from knowledge” process) are shown in blue dash boxes. Numbers are marked for ease of reading.

normalization are employed to 𝑯𝒗𝒔 and 𝑯 𝒍𝒔 and we denote the
results as 𝑯𝒗𝒔 and 𝑯 𝒍𝒔 , respectively, for simplicity. In the cross-
attention sub-layer, the representations interact across modalities
to integrate cross-modal information into their representations:

𝑯𝒗𝒄 = ATTN(𝑯𝒗𝒔 ,𝑯 𝒍𝒔 ,𝑯 𝒍𝒔 ), (6)

𝑯 𝒍𝒄 = ATTN(𝑯 𝒍𝒔 ,𝑯𝒗𝒔 ,𝑯𝒗𝒔 ), (7)

where 𝑯𝒗𝒄 and 𝑯 𝒍𝒄 are the cross-attention outputs for vision and
language, respectively. Similarly, residual connections followed by
layer normalization are employed to 𝑯𝒗𝒄 and 𝑯 𝒍𝒄 , and we denote
the results as𝑯𝒗𝒄 and𝑯 𝒍𝒄 , respectively, for simplicity. Finally,𝑯𝒗𝒄

and 𝑯 𝒍𝒄 are input to the feed-forward sub-layer (i.e., a multi-layer
perceptron (MLP)) to obtain the multi-modal representations 𝒁𝒗 =

[𝒛𝒗𝑰 ; 𝒛
𝒗
1 ; 𝒛

𝒗
2 ; . . . ; 𝒛

𝒗
𝑵𝒗

] for vision and𝒁 𝒍 = [𝒛𝒍𝑻 ; 𝒛
𝒍
1; 𝒛

𝒍
2; . . . ; 𝒛

𝒍
𝑵𝒍

; 𝒛𝒍𝑺𝑬𝑷 ]
for language.
Pretext Tasks Given the aforementioned structure (denoted as
M𝜃 ) with its parameters 𝜃 , the Med-VLP framework develops vari-
ous pretext tasks (e.g., masked language modeling (MLM), masked
image modeling (MIM), and image-text matching (ITM)) to guide
the learning of 𝜃 . Assuming there are 𝑆 pretext tasks, the learning
process can be formalized as

𝜃∗, 𝜃∗1 , ..., 𝜃
∗
𝑆 = argmin

𝜃,𝜃1,...,𝜃𝑆

𝑆∑︁
𝑖=1

𝐿𝑖 (𝑌𝑖 ,D𝜃𝑖 (M𝜃 (𝐼 ,𝑇 )), (8)

where 𝐿𝑖 are the loss functions of pretext tasks, 𝑌𝑖 are the corre-
sponding ground-truth labels, and D𝜃𝑖 are the prediction heads
with their parameters 𝜃𝑖 .

3.2 Knowledge Extraction
Although knowledge graphs (KGs) have shown their effectiveness
in many natural language processing (NLP) tasks [32, 41, 59] and
computer vision (CV) tasks [36, 50], the existing Med-VLP meth-
ods rarely consider incorporating KGs to provide rich structured
knowledge for better vision-and-language understanding.

Therefore, we propose to enhance Med-VLP by leveraging exter-
nal domain expert knowledge from UMLS. In doing so, we extract
knowledge through two stages, as illustrated in Figure 1. The first
stage is to apply a named entity recognition, and linking tool Scis-
paCy [38] to pre-process the texts in the pre-training corpus to link
entities in the texts to the UMLS knowledge base for entity disam-
biguation. Therefore, for each image-text pair, there is an entity
sequence 𝐸𝑆 = {𝑥𝑒1 , 𝑥

𝑒
2 , . . . , 𝑥

𝑒
𝑁𝑒𝑠

} aligning to the token sequence
𝑇 = {𝑥𝑙1, 𝑥

𝑙
2, . . . , 𝑥

𝑙
𝑁𝑙
}, where 𝑥𝑒

𝑖
are the extracted entities and 𝑁𝑒𝑠 is

the length of the entity sequence. Following [11], to record the po-
sition of the extracted entities, we adopt an entity matching matrix
𝑷 ∈ R𝑁𝑙×𝑁𝑒𝑠 , where each element is represented by

𝑷𝑖 𝑗 =

{
1 𝑥𝑙

𝑖
∈ 𝑥𝑒

𝑗

0 𝑥𝑙
𝑖
∉ 𝑥𝑒

𝑗

, (9)

where 𝑃 is employed to assist the interaction between the text and
the entity sequence in the knowledge injection process (as described
in the next subsection). After pre-processing all the texts, we can
obtain an entity set E = {𝑒𝑖 }𝑁𝑒

𝑖=1 containing all the𝑁𝑒 entities related
to the pre-training corpus. The second stage is to extract relevant
knowledge graph triples from the UMLS knowledge base once both
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the head and tail entities of the triple are in the entity set E. We
denote the extracted knowledge graph (i.e., a sub-graph of the UMLS
knowledge base) as the knowledge set G = {𝑘𝑖 = (ℎ𝑖 , 𝑟𝑖 , 𝑡𝑖 )}

𝑁𝑔

𝑖=1,
where 𝑁𝑔 is the number of knowledge graph triples, 𝑘𝑖 are the
knowledge graph triples, and ℎ𝑖 , 𝑟𝑖 and 𝑡𝑖 represent the head entity,
relation, and tail entity, respectively.

3.3 Knowledge Injection
To integrate knowledge into the general Med-VLP framework, first,
we perform knowledge representation following two steps: (i) We
apply knowledge representation learning algorithm (e.g., TransE
[5]) to the knowledge graph G = {𝑘𝑖 = (ℎ𝑖 , 𝑟𝑖 , 𝑡𝑖 )}

𝑁𝑔

𝑖=1 to obtain the
entity embeddings {𝒆𝒊}𝑁𝑒

𝑖=1, where 𝒆𝒊 ∈ R
𝐷𝑒 and𝐷𝑒 is the dimension

of the entity embeddings; (ii) We adopt Graph Neural Networks
(e.g., Graph Attention Networks [48]) to take account of the whole
structure of the graph to aggregate local information in the graph
neighborhood for each node, and obtain the entity representations
(denoted as {𝒆𝒊}𝑁𝑒

𝑖=1 for simplicity, where 𝒆𝒊 ∈ R𝐷𝑒 ).
Afterwards, given the input image 𝐼 and text𝑇 = {𝑥𝑙1, 𝑥

𝑙
2, . . . , 𝑥

𝑙
𝑁𝑙
}

with its corresponding entity sequence 𝐸𝑆 = {𝑥𝑒1 , 𝑥
𝑒
2 , . . . , 𝑥

𝑒
𝑁𝑒𝑠

}, we
develop three essential and systematic designs to inject knowledge
from the following perspectives:
(i) Aligning Through Knowledge Knowledge can be regarded
as the intermediate medium between vision and language, where
knowledge can be used as an explanation of the meaning behind
both images and texts. In most cases, entities in knowledge graph
triples can be treated as anchor points that appear in the image and
are mentioned in the accompanying text. Motivated by this fact, we
propose to align the image representations and the text representa-
tions from uni-modal encoders through knowledge. Similar to [26],
it serves two purposes: It improves the unimodal encoders to better
understand the semantic meaning of images and texts; It eases the
learning of semantic alignments between images and texts.

Formally, given the aggregated image representation 𝒉𝒗𝑰 and
text representation 𝒉𝒍𝑻 , we calculate the image-knowledge and text-
knowledge similarity followed by a sigmoid function:

𝑝𝑣𝑖 = sigmoid(𝒆𝒊⊤𝑾𝒗𝒌𝒉
𝒗
𝑰 ), 𝑖 = 1, ..., 𝑁𝑒 , (10)

𝑝𝑙𝑖 = sigmoid(𝒆𝒊⊤𝑾𝒍𝒌𝒉
𝒍
𝑻 ), 𝑖 = 1, ..., 𝑁𝑒 , (11)

where 𝑾𝒗𝒌 ∈ R𝐷𝑒×𝐷 and 𝑾𝒍𝒌 ∈ R𝐷𝑒×𝐷 are trainable weights
for the linear transformation. Therefore, the alignments for image-
knowledge and text-knowledge are learned explicitly through min-
imizing the following functions:

𝐿𝑣𝑘 = −
𝑁𝑒∑︁
𝑖=1

(𝑦𝑖 log𝑝𝑣𝑖 + (1 − 𝑦𝑖 ) log
(
1 − 𝑝𝑣𝑖

)
), (12)

𝐿𝑙𝑘 = −
𝑁𝑒∑︁
𝑖=1

(𝑦𝑖 log 𝑝𝑙𝑖 + (1 − 𝑦𝑖 ) log
(
1 − 𝑝𝑙𝑖

)
), (13)

where 𝑦𝑖 can be defined as

𝑦𝑖 =

{
1 𝑒𝑖 ∈ 𝐸𝑆

0 𝑒𝑖 ∉ 𝐸𝑆
. (14)

Therefore, knowledge is employed as an intermediate medium to
enhance and smooth image-text mappings by doing so.
(ii) Reasoning Using Knowledge As the supplementation of the
input image and text, knowledge can also be utilized to assist the
reasoning of the Med-VLP model. In doing so, we enhance the
multi-modal fusion module by knowledge.

Formally, given the entity sequence 𝐸𝑆 = {𝑥𝑒1 , 𝑥
𝑒
2 , ..., 𝑥

𝑒
𝑁𝑒𝑠

}, first,
we extract its entity representations 𝑯 𝒆 = [𝒉𝒆1 ;𝒉

𝒆
2 ; . . . ;𝒉

𝒆
𝑵𝒆𝒔

]. Sec-
ond, we apply self-attention to the entity representations to encode
the contextualized information:

𝑯 𝒆𝒔 = ATTN(𝑯 𝒆,𝑯 𝒆,𝑯 𝒆), (15)

where 𝑯 𝒆𝒔 is the self-attention outputs of entity representations.
Residual connections followed by layer normalization are employed
to 𝑯 𝒆𝒔 , and we denote the outputs as 𝑯 𝒆𝒔 for simplicity. Third,
to interact the entities with the image, since there is no available
toolkits to structuralize the input image to construct mappings
between image patches and entities, we directly perform cross-
attention on 𝑯 𝒆𝒔 and 𝑯𝒗𝒔 :

𝑯 𝒆𝒄 = ATTN(𝑯 𝒆𝒔 ,𝑯𝒗𝒔 ,𝑯𝒗𝒔 ), (16)

where 𝑯 𝒆𝒄 is the cross-attention outputs of entity representations.
Residual connections followed by layer normalization are employed
to 𝑯 𝒆𝒄 , and we denote the outputs as 𝑯 𝒆𝒄 for simplicity. Fourth,
since the mappings between the entities and the text are recorded
by 𝑷 , we can use it to fuse 𝑯 𝒆𝒄 and 𝑯 𝒍𝒔 through:

𝑯̃ 𝒍𝒄 = 𝑷𝑯 𝒆𝒄 + 𝑯 𝒍𝒄 , (17)

where 𝑯̃ 𝒍𝒄 is the text representations encoded with the image and
entity information. Finally, we apply residual connections followed
by layer normalization to ˜𝑯 𝒍𝒄 and input it to the feed-forward
sub-layer to complete the knowledge-enhanced multi-modal fusion.
In the meantime, 𝑯 𝒆𝒄 is input to another feed-forward sub-layer
to produce the representations 𝒁𝒆 for the next layer.
(iii) Learning FromKnowledgeKnowledge can help us to induce
more sophisticated pretext tasks to guide the model to learn more
informative representations. In our paper, we follow [46] to design
a knowledge-induced mask generation strategy. Specifically, when
performing the MLM task given the input text𝑇 = {𝑥𝑙1, 𝑥

𝑙
2, . . . , 𝑥

𝑙
𝑁𝑙
}

with its entity sequence 𝐸𝑆 = {𝑥𝑒1 , 𝑥
𝑒
2 , . . . , 𝑥

𝑒
𝑁𝑒𝑠

}, we do not mask
subword tokens in 𝑇 randomly. Instead, we randomly sample enti-
ties from 𝐸𝑆 and then mask consecutive spans of subword tokens
belonging to the sampled entities. Since entities can be abstract or
have a physical existence, it can force the model to focus on critical
medical information in both images and texts.

Therefore, knowledge can be injected into the Med-VLP frame-
work in a systematic way through the above three designs.

4 EXPERIMENTAL SETTINGS
4.1 Pre-training Setup
Datasets In our experiments, we perform the pre-training on three
datasets, which are described as follows:

• ROCO [40]: a dataset of radiology figure-caption pairs from
PubMed Central, an open-access biomedical literature data-
base. It has over 81,000 radiology images (from various imag-
ing modalities) and their corresponding captions.
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Table 1: Results on the Med-VQA task (including three datasets, i.e., VQA-RAD, SLACK, and VQA-2019) to compare with the
state-of-the-art methods. Dark and light grey colors highlight the top and second best results on each evaluation metric.

MFB SAN BAN MEVF-SAN MEVF-BAN CPRD-BAN COND-REA MTPT MMBERTDataset [56] [54] [23] [39] [39] [30] [57] [15] [22] Ours

Open 14.50 31.30 37.40 49.20 49.20 52.50 60.00 61.50 63.10 67.60
Closed 74.30 69.50 72.10 73.90 77.20 77.90 79.30 80.90 77.90 86.76VQA-RAD
Overall 50.60 54.30 58.30 64.10 66.10 67.80 71.60 73.20 72.00 79.16

Open 72.20 74.00 74.60 75.30 77.80 79.50 - - - 81.89
Closed 75.00 79.10 79.10 78.40 79.80 83.40 - - - 91.35SLACK
Overall 73.30 76.00 76.30 76.50 78.60 81.10 - - - 85.59

VQA-2019 Overall - - - 68.90 77.86 - - - 77.90 80.32

Table 2: Results on the Med-ITC task (i.e., the MELINDA
dataset) to compare with the state-of-the-art methods.

Dataset Modalities Methods Accuracy

Image-Only ResNet-101 [18] 63.84

LSTM [19] 59.20
RoBERTa [33] 75.40Text-Only
SciBERT [3] 77.70

NLF [52] 76.60
SAN [54] 72.30
ViL-BERT [35] 78.60

MELINDA

Multi-Modal

Ours 80.51

• MedICaT [44]: a dataset of medical figure-caption pairs also
extracted from PubMed Central. Different from ROCO, 75%
of its figures are compound figures, including several sub-
figures. It contains over 217,000 images with their captions
and inline textual references.

• MIMIC-CXR [21]: the largest radiology dataset to date that
consists of 473,057 chest X-ray images (in frontal or lateral
views) and 206,563 reports from 63,478 patients from the
Beth Israel Deaconess Medical Center.

For all the datasets, we exclude those samples with the length
of their texts less than 3. For ROCO and MedICaT, we filter non-
radiology samples, and for MIMIC-CXR, we only keep images in the
frontal view. As for the dataset split, we adopt the official splits of
ROCO and MIMIC-CXR. For MedICaT, we randomly sample 1,000
image-text pairs for validation and 1,000 for test, and the remaining
image-text pairs are used for training.
Implementation Details For the uni-modal encoders, we use the
vision encoder with CLIP-ViT-B [42] (𝐿𝑣 = 12) and the language
encoder with RoBERTa-base [33] (𝐿𝑙 = 12). For the multi-modal
fusion module, we set the number of Transformer layers 𝐿𝑚 = 6,
and the dimension of the hidden states 𝐷 = 768 with the number
of heads set to 12. For knowledge representation and injection, we
set the dimension of the hidden states 𝐷𝑒 = 256. For the pretext
tasks, we adopt (knowledge-enhanced) MLM, MIM [17], and ITM,
where the masking ratios of MLM and MIM are set to 15% and
75%, respectively. For the optimization, the models are trained with

Table 3: Results on theMed-ITR task (i.e., the ROCO dataset)
to compare with the state-of-the-art methods, where the
zero-shot (Ours (ZS)) and fine-tuned results (Ours (FT)) are
shown.

T2I I2T
Methods R@1 R@5 R@10 R@1 R@5 R@10

ViT+BERT [13] 5.25 15.85 25.85 6.85 21.25 31.60
ViLT [24] 9.75 28.95 41.40 11.90 31.90 43.20
METER [13] 11.30 27.25 39.60 14.45 33.30 45.10

Ours (ZS) 23.50 49.05 63.00 23.45 50.60 62.05
Ours (FT) 29.65 56.95 69.30 29.35 57.50 70.40

AdamW optimizer [34] for 100,000 steps with the learning rates
for the uni-modal encoders and the remaining parameters set to
1e-5 and 5e-5, respectively. The warm-up ratio is set to 10%, and
the learning rate is linearly decayed to 0 after warm-up. Besides,
we use center-crop to resize each image to the size of 288×288.

4.2 Vision-and-Language Transfer Tasks
To evaluate the performance, we construct a medical vision-and-
language understanding benchmark including three tasks. The de-
tails of the tasks and fine-tuning strategies are described below.
Medical Visual Question Answering (Med-VQA) This task re-
quires the model to answer natural language questions about a med-
ical image.We adopt three publicly available Med-VQA datasets (i.e.,
VQA-RAD [25], SLACK [31] and VQA-2019 [1]), where VQA-RAD
consists of 315 images and 3515 questions, SLACK contains 642
images and 14,028 questions, and VQA-2019 contains 4,200 images
and 15,292 questions. To fine-tune on this task, we regard it as a
multi-label classification task and feed the concatenation of the
image and text representations to a two-layer MLP to predict the
corresponding answer. During training, the models are trained with
a binary cross-entropy loss with a batch size of 64.
Medical Image-Text Classification (Med-ITC) This task aims
to produce the classification label given an image-text pair. We eval-
uate the performance on MELINDA [52], a Biomedical Experiment
Method Classification dataset that contains 5,371 image-text pairs.
To fine-tune on this task, we learn a two-layer MLP on top of the
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concatenation of the image and text representations. We train the
models with a cross-entropy loss with a batch size of 16 over a
maximum of 20 epochs.
Medical Image-Text Retrieval (Med-ITR) The target of this task
is to calculate a similarity score between an image and a text and
then perform cross-modal retrieval. There are two subtasks for this
task, where image-to-text (I2T) retrieval requires retrieving the
most relevant texts from a large pool of texts given an image, and
vice versa for text-to-image (T2I) retrieval. We conduct experiments
on the ROCO dataset and measure both zero-shot and fine-tuned
performance. To fine-tune on this task, we initialize the similarity
score head from the pre-trained ITM head. The model is tuned with
cross-entropy loss to maximize the scores on positive pairs with
15 random texts sampled as negative samples with a batch size
of 256 over a maximum of 10 epochs. During the evaluation, we
sample 2,000 image-text pairs from the ROCO test set and report
the results on the sampled 2,000 image-text pairs due to the large
time complexity of the ranking process.2

For all tasks, we use the AdamW optimizer with the learning
rate set to 5e-6 and 2.5e-5 for the model backbone and prediction
heads, respectively, and the warm-up ratio set to 10%. For the eval-
uation metrics, we adopt accuracy for Med-VQA and Med-ITC, and
Recall@K3 (K=1, 5, 10) for Med-ITR.

5 EXPERIMENTAL RESULTS
5.1 Main Results
We compare the proposed approach with existing methods on the
same datasets, with their results reported in Table 1, 2, and 3. There
are several observations drawn from different aspects. First, our
approach achieves the best performance on all tasks, which con-
firms the validity of the proposed pre-training approach. Second, for
Med-VQA, our approach achieves significant improvements even
compared with those pre-training methods (e.g., MTPT and MM-
BERT), which indicates the usefulness of incorporating knowledge
into the pre-training process. Third, for Med-ITC, the results of
those strong baselines (i.e., RoBERTa, SciBERT, and ViL-BERT) are
achieved by continued pre-training on the MELINDA dataset. Our
approach achieves better performance without such requirements,
which indicates that an appropriate design can alleviate the need
for continued pre-training on downstream datasets. Fourth, for
Med-ITR, the proposed approach achieves a substantial improve-
ment compared with the state-of-the-art methods, where ViLT and
METER are two strong baselines in the general domain. This shows
that it is necessary to design an appropriate approach (including
pre-training data and methods) for the medical domain.

5.2 Ablation Studies
To illustrate the effectiveness of our proposed approach, we per-
form an ablation study on the three proposed knowledge injection
designs. The experiments are conducted on the VQA-RAD dataset,
and the results are reported in Table 4.

We have the following observations. First, for the model parame-
ters, only the RK design brings extra 12M parameters (∼3.4% of the
whole model) while other designs do not add additional parameters,
2The time complexity of the ranking process is𝑂 (𝑁 2) , where𝑁 is the sample number.
3Recall@K corresponds to whether the ground truth is included among top K results.

Table 4: Ablation study on the three knowledge injection de-
signs (i.e., aligning through knowledge (AK), reasoning us-
ing knowledge (RK), and learning from knowledge (LK)) on
the VQA-RAD dataset, with the model parameters (Para.).

ID AK RK LK Para. Open Closed Overall

1 350M 65.36 84.19 76.72

2 ✓ 350M 67.04 84.98 77.88
3 ✓ 362M 65.56 86.40 78.10
4 ✓ 350M 65.92 85.29 77.61

5 ✓ ✓ 362M 67.60 86.08 78.76
6 ✓ ✓ 350M 66.11 86.40 78.32
7 ✓ ✓ 362M 65.36 86.40 78.05

8 ✓ ✓ ✓ 362M 67.60 86.76 79.16

which justifies introducing knowledge to Med-VLP through our
approach can be done with a small price. Second, the results of
pre-training with two designs (ID 5, 6, and 7) and one design (ID 2,
3, and 4) are consistently better than those of pre-training with one
design (ID 2, 3, and 4) and without any knowledge injection design
(ID 1), respectively. This demonstrates the excellent compatibility
and complementarity of our design perspectives, which is critical
in a multi-component approach and allows us to develop more
designs under such a framework. Third, injecting the knowledge
into the multi-modal fusion module (ID 3) achieves a significant
improvement. The reason behind this might be that knowledge
(i.e., entities here) serves three functions: (i) It smooths the interac-
tion process of the image and text representations; (ii) It provides
information at a greater granularity than words; (iii) It removes
ambiguity between diverse words by linking to the knowledge base.
Fourth, performing the aligning process can further improve the
performance of the RK design (ID 5), which can be explained by
the fact that the aligning processing can produce better knowledge
representations for the RK process. Fifth, our full approach (ID 8)
achieves the best performance, which confirms the effectiveness of
the proposed framework for medical knowledge injection.

5.3 Qualitative Analysis
To further investigate the effectiveness of our approach, we per-
form qualitative analysis on some cases with their results shown
in Figure 3. For “aligning through knowledge”, in the input text
of this case, there is an entity “Brain magnetic resonance imaging”
which links to the entity “C4028269: Nuclear magnetic resonance
imaging brain” in the UMLS knowledge base. The sub-figures (3(C)
and 3(D)) show that the image and text representations produced
by the uni-modal encoders have high similarity with the entity
representation of “C4028269”, which implicitly pulls the image and
text representations close (as shown in the sub-figure 3(E)). For
“reasoning using knowledge”, the sub-figures 3(H), 3(I), and 3(J)
illustrate that using entities is beneficial for aligning the text with
the image, where the learned entity-image attention mappings are
better than the subword-image mappings. The reason behind this is
that entities are more complete semantic units. In contrast, words
(or subwords) have a smaller granularity than entities, making the
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Case Study (Aligning Through Knowledge)

Input Image Input Text

Brain magnetic resonance
imaging (MRI) showed that
the lesion was hyperintensi-
ty on fluid-attenuated inve-
rsion recovery (FLAIR) se-
quences.

Image-Knowledge Text-Knowledge Image-Text-Knowledge

Image
Text
Knowledge

… …

A B C ED

Case Study (Reasoning Using Knowledge)

Input Image Input Text “ple” -(ural) “effu”-(sions) “pleural effusions”
The bilateral pleural effusi-
ons, lower lobe volume loss,
and dense lower lobe opaci-
ty compatible with a com-
bination of volume loss/inf-
iltrate/effusion. The heart
continues to be moderately
enlarged. There is mild vas-
cular redistribution.

F G H JI

Case Study (Learning From Knowledge)

Masked Image Masked Text

No relevant change as com-
pared to the previous image.
Moderate [MASK]. Mild
central enlargement of the
[MASK] [MASK]. No pleu-
ral effusions. No parenchy-
mal opacities. No [MASK].

Original Image Recovered Image Recovered Text

No relevant change as com-
pared to the previous image.
Moderate cardiomegaly. Mi
ld central enlargement of
the pulmonary arteries. No
pleural effusions. No paren-
chymal opacities. No pneu-
mothorax.

K L M ON

Figure 3: Visualizations of the three proposed designs from the pre-trained model, where image-knowledge and text-
knowledge similarity and the image-text-knowledge t-SNE visualization are shown for "aligning through knowledge";
subword-image and entity-image attention mappings (colors from blue to red representing the weights from low to high)
are shown for "reasoning using knowledge"; the recovered text (with the addition reconstructed image) is shown for “learning
from knowledge”.

correspondences between images and texts more challenging to
learn. For “learning from knowledge”, the masked medical entities
are correctly recovered by the pre-trained model (as shown in the
sub-figure 3(O)) since the knowledge-induced pretext task guides
the model to put more emphasis on the medical knowledge-related
information. In addition, the masked and recovered images are also
shown in the sub-figures 3(K) and 3(M), respectively, which shows
the high quality of the image reconstruction. In summary, these
cases reveal that injecting knowledge through the three proposed
designs is essential in modeling the hidden structures among the
images and texts better to promote Med-VLP.

6 CONCLUSION
In this paper, we propose to pre-train the medical vision-and-
language model with medical domain knowledge, where the knowl-
edge is injected into the Med-VLP framework from three aspects:
(i) aligning the image and text representations through knowledge
before their interaction; (ii) treating knowledge as the supplemen-
tation of the input image and text to assist the reasoning during the

multi-modal fusion process; (iii) utilizing knowledge to induce more
sophisticated pretext tasks to guide the model put more emphasis
on the critical medical information. To perform a comprehensive
evaluation and facilitate further research, we construct a medical
vision-and-language understanding benchmark, including three
tasks (i.e., Med-VQA, Med-ITC, and Med-ITR). Experimental re-
sults on the downstream datasets demonstrate the effectiveness of
our approach, which achieves state-of-the-art performance. Fur-
ther analyses investigate the effects of different components in our
approach and show that our approach is able to better learn the
correspondences between vision and language so as to produce
more generic and effective vision-and-language representations.
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