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Abstract— Since math word problem (MWP) solving aims to
transform natural language problem description into executable
solution equations, an MWP solver needs to not only comprehend
the real-world narrative described in the problem text but also
identify the relationships among the quantifiers and variables
implied in the problem and maps them into a reasonable
solution equation logic. Recently, although deep learning models
have made great progress in MWPs, they ignore the grounding
equation logic implied by the problem text. Besides, as we
all know, pretrained language models (PLM) have a wealth
of knowledge and high-quality semantic representations, which
may help solve MWPs, but they have not been explored in the
MWP-solving task. To harvest the equation logic and real-world
knowledge, we propose a template-based contrastive distillation
pretraining (TCDP) approach based on a PLM-based encoder
to incorporate mathematical logic knowledge by multiview con-
trastive learning while retaining rich real-world knowledge and
high-quality semantic representation via knowledge distillation.
We named the pretrained PLM-based encoder by our approach
as MathEncoder. Specifically, the mathematical logic is first
summarized by clustering the symbolic solution templates among
MWPs and then injected into the deployed PLM-based encoder
by conducting supervised contrastive learning based on the
symbolic solution templates, which can represent the underlying
solving logic in the problems. Meanwhile, the rich knowledge and
high-quality semantic representation are retained by distilling
them from a well-trained PLM-based teacher encoder into our
MathEncoder. To validate the effectiveness of our pretrained
MathEncoder, we construct a new solver named MathSolver by
replacing the GRU-based encoder with our pretrained Math-
Encoder in GTS, which is a state-of-the-art MWP solver. The
experimental results demonstrate that our method can carry a
solver’s understanding ability of MWPs to a new stage by outper-
forming existing state-of-the-art methods on two widely adopted
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I. INTRODUCTION

SOLVING math word problem (MWP) is a long-standing
challenging natural language processing (NLP) task and

has been gaining more attention in the research community
recently [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. A typical
MWP is a short narrative that describes a real-world situation
and inquires about one or more unknown facts in the situation.
To solve an MWP, an MWP solver not only needs to compre-
hend the real-world narrative described in the problem text but
also needs to possess mathematical reasoning skills to identify
the relationships among the quantifiers and variables implied
in the problem and map them into a reasonable solution
equation logic [11], as shown in Fig. 1.

Recently, large-scale pretrained language models (PLMs),
such as ELMo [12], GPT [13], BERT [14], and XLNet [15],
have archived great advances on various NLP tasks benefit-
ing from the powerful learned linguistic representation and
knowledge representation based on a large corpus. The success
of large-scale pretraining technology also drives the devel-
opment of pretrained models in other fields, such as Code-
BERT [16] for programming, BioBERT [17] for medicine,
VideoBERT [18] for multimodal video understanding, and
LayoutLM [19] for document image understanding.

Inspired by the above works, we believe that an MWP
solver’s ability of problem comprehension can be lifted by
encoding problem text with the PLMs due to their entailed
real-world knowledge and high-quality semantic represen-
tation. However, most existing PLMs are trained on the
large-scale unsupervised corpus to learn general representation
for general language understanding. They ignore task-specific
knowledge, such as the solution logic implied by MWP text
for solving an MWP, which makes them unable to fully under-
stand MWPs. Therefore, enforcing pretraining again based on
task-specific corpus is the key to giving full play to language
modeling ability for comprehending MWPs. Besides, we also
find that if different word problems with different natural
language descriptions can be solved with the same symbolic
solution expression, their solution logics are also the same. As
shown in Fig. 1, two different word problems can be solved
with the same logic, which is the product of the number of
the first entity (books versus chairs) and the number of the
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Fig. 1. Two different MWPs with the same solving logic. Although the two
problems describe different real-world scenes, they share the same solving
logic: the first number multiply by the second number.

second entity (bookshelves versus rows) if we strip out specific
language descriptions.

To harvest the equation logic and real-world knowledge
simultaneously, we propose a template-based contrastive dis-
tillation pretraining (TCDP) approach to further pretrain
PLM-based encoder to incorporate mathematical logic knowl-
edge by multiview contrastive learning while retaining rich
real-world knowledge and high-quality semantic representa-
tion via knowledge distillation. For convenience, we named
the pretrained PLM-based encoder with our approach as Math-
Encoder. Specifically, we first introduce symbolic formula
templates to summarize the underlying solving logic in MWPs.
Then, the mathematical logic is captured via supervised
contrastive learning based on expression templates, which
can represent the underlying solving logic in the problems.
However, injecting solving logic into problem representation
directly will damage the common linguistic representation
capability of the PLMs, which is also crucial for a solver
to understand MWPs comprehensively. To address this issue,
we further incorporate knowledge distillation at the token
level into our pretraining procedure to retain rich real-world
knowledge and well-trained semantic information by distilling
features from a well-trained PLM-based teacher encoder into
our MathEncoder.

To validate the effectiveness of our pretrained MathEn-
coder in the downstream MWP-solving task, we construct a
new solver named MathSolver by replacing the GRU-based
encoder with our pretrained MathEncoder in GTS [5], which
is a state-of-the-art MWP solver. The experimental results
demonstrate that our method can carry a solver’s understand-
ing ability of MWPs to a new stage by outperforming existing
state-of-the-art methods on two widely adopted benchmarks
Math23K and CM17K. Besides, to show the few-shot ability of
our MathSolver, we further conduct experiments on different
data usages, which show that our MathSolver can outperform
other methods in the few-shot learning setting.

In summary, the main contributions of this work are three-
fold as follows.

1) To the best of our knowledge, we are the first study to
introduce symbolic formula templates to summarize the
underlying solving logic in MWPs and adapt it into our
pretraining procedure.

2) We propose a novel TCDP approach on a PLM-based
encoder to incorporate mathematical logic knowledge
by multiview template-based contrastive pretraining

as well as applying knowledge distillation to retain
rich real-world knowledge and common linguistic
information.

3) We construct a new solver named MathSolver based
on our MathEncoder pretrained by our proposed TCDP
approach to show the effectiveness and superiority of
our approach on the downstream MWP-solving task.
The experimental results demonstrate that our method
can carry a solver’s understanding ability of MWPs to a
new stage on two widely adopted benchmarks Math23K
and CM17K.

II. RELATED WORKS

A. Word Problem Solving

In recent years, deep learning-based models [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [20], [21], [22], [23], [24],
[25], [26], [27] have shown impressive performance in solv-
ing MWPs by automatically learning to directly translate
a problem text into an expression without any handcrafted
feature design. All these methods follow the RNN-based
encoder–decoder paradigm with some different designs. Wang
et al. [1] made the first attempt to apply a vanilla sequence-
to-sequence (seq2seq) model to translate the language text to
a solution expression. Huang et al. [2] improved their work
by introducing a copy and attention mechanism. Xie and
Sun [5] proposed a tree-structured decoder to decode expres-
sions in prefix order. Furthermore, Zhang et al. [8] improved
problem text representation by fusing quantity-related graph
encoder. Hong et al. [28] proposed to train a solver in a
weakly supervised way by constructing pseudolabels during
training. Hong et al. [29] also proposed a situation model
for algebra story problems via attributed grammar. Qin et
al. [10] proposed multiple auxiliary tasks to improve problem
text representation and the ability to predict common-sense
constants. Wu et al. [21] enhanced MWP-solving performance
by explicitly incorporating numerical values into a sequence-
to-tree network and applying a numerical properties prediction
mechanism. Shen et al. [26] devised a new ranking task
for MWP and proposed the Generate and Rank, a multi-
task framework based on a generative PLM. Wu et al. [24]
proposed a novel edge-enhanced hierarchical graph-to-tree
model, in which the MWPs are represented as edge-labeled
graphs. Liang and Zhang [20] designed a teacher module to
make the MWP encoding vector match the correct solution
and discard the wrong solutions. Cao et al. [22] proposed
a novel Seq2DAG approach to extract equation set directly
as a DAG structure. Lin et al. [23] proposed a hierarchical
math solver to make deep understanding and exploitation
of problems by imitating human reading habits. Huang et
al. [25] proposed a novel human-like analogical learning
method in a recall and learn manner to improve performance.
Lee et al. [27] proposed template-based multitask generation
to improve the problem-solving accuracy of the mathematical
word problem-solving task by sufficiently utilizing numeric
information. Xiong et al. [30] proposed a solver based on
variational information bottleneck to extract essential features
of the expression syntax tree while filtering latent-specific
redundancy containing syntax-irrelevant features.
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In this work, we propose a novel TCDP approach on
a PLM-based encoder to incorporate mathematical logic
knowledge by multiview template-based contrastive pretrain-
ing as well as applying knowledge distillation to retain rich
real-world knowledge and common linguistic information.

B. Pretrained Language Models

Pretrained models, such as ELMo [12], GPT [13],
BERT [14], and XLNet [15], have attracted wide attention,
since they greatly improve the performance of various NLP
tasks, such as text classification [14], machine translation [31],
[32], and so on. However, these models were not trained on the
in-domain corpus, which makes them hard to handle specific
objects better. Thus, some specific pretrained models were
proposed for specific objects. For example, VideoBERT [18]
is a pretrained model for text-to-video generation and future
forecasting by jointly training on video and natural lan-
guages. CodeBERT [16] is trained in programming and natural
languages for code synthesis. BioBERT [17] is trained for
biomedical language representation and biomedical text min-
ing. LayoutLM [19] is trained for providing more informative
representations for document image understanding.

Different from the above works, which usually adopted
unsupervised pretraining, in this work, we pretrain an encoder
for MWP solver with an in-domain dataset in the supervision
way, so that we can capture solving logic for better MWP
understanding.

C. Contrastive Representation Learning

Contrastive learning is a method of representation learning,
which is first proposed in the article [33]. The core of
contrastive learning is providing more effective representa-
tions by pulling semantically similar embeddings together and
pushing semantic different ones apart. In recent, contrastive
learning has been explored in many fields and made great
progress in density estimation and representation learning,
especially in self-supervised setting [34]. Contrastive learn-
ing was deployed to reduce word omission errors in neural
machine translation [35]. A discriminative model was trained
on contrastive examples to obtain more effective language rep-
resentation [36]. Contrastive learning was used in supervised
and unsupervised settings to advance the performance of the
sentence embeddings [37]. Besides, it has been extended to
knowledge distillation for image classification tasks [38].

Different from prior works, we propose supervised con-
trastive objectives based on expression templates for MWP
understanding. With our objectives, we can pull solving
logic-consistent MWPs together and push inconsistent MWPs
apart, so that we can build more informative semantic repre-
sentations for MWPs.

D. Knowledge Distillation

Since Hinton et al. [39] proposed to distill the knowledge of
large models into smaller and faster models without losing too
much generalization performance, knowledge distillation has
become one of the standard ways for model compression [40],

[41], [42], [43] by effectively learning a small student model
from a large teacher model. The sequence-level knowledge
distillation was proposed to improve the inference speed and
performance of neural machine translation [44]. To transfer
knowledge from an ensemble model to a single model for
machine reading comprehension, knowledge distillation was
applied to answer span prediction [45]. The structured dis-
tillation scheme [41] was proposed to distill the structured
knowledge from large networks to small networks. Matching
guided distillation (MGD) [46] was proposed to mitigate the
gap in semantic feature structure between the intermediate
features of teacher and student. Semantic calibration [47] for
cross-layer knowledge distillation was proposed to automati-
cally assign proper target layers of the teacher model for each
student layer with attention. ICKD [48] was proposed to retain
interchannel correlation of features to capture the intrinsic dis-
tribution of the feature space and sufficient diversity properties
of features in the teacher network.

Different from prior works, we adopt knowledge distillation
to retain semantic information maximally while conducting
template-based contrastive pretraining for injecting solving
logic into problem representations.

III. PRELIMINARIES

A. MWP and Preprocessing

An MWP usually consists of a problem text P and a solution
expression tree S, where the following hold.

1) Problem Text P: The problem text P consists of a
sequence of word tokens and numeric values, which
is often a short narrative that describes the changes of
the world state and poses a question about an unknown
quantity or multiple questions about multiple unknown
quantities. Since the numeric values are varied and hard
to include all different numeric values in the vocabulary,
all the numeric values are treated as a special word token
[NUM], so that we can represent various numeric values
with a special token uniformly, and an MWP solver can
focus on understanding or capturing the mathematical
relationships among numeric values without considering
their exact values. The special word token [NUM] is
also added to the PLM-based encoders’ vocabulary. The
PLM-based encoder may be BERT [14] or Roberta [49].
To track the exact numeric values, we also map each
numeric value in a problem P to a symbolic token list
{n1, n2, n3, . . . } in the order that they appear in the prob-
lem text, so that we can recover the symbolic number
tokens into the exact numeric values for obtaining a
calculable solution expression.

2) Expression Tree S: The solution expression tree S is a
mathematical expression tree transformed from the solu-
tion expression by using a recursive traversal algorithm.
In general, the solution expression tree S consists of
constant quantities, mathematical operators, and numeric
values from the problem text P . In our definition, the
solution expression only involves binary math opera-
tors {+, -,∗, /,∧, =}; thus, the expression tree S is a
binary tree. For those problems with multiple solution
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Fig. 2. Overview of our TCDP approach. (a) Structure of MathSolver in which our MathEncoder extracts high-quality semantic representation, and the tree
decoder adapted from GTS [5] generates an expression tree according to the preorder traversal method. (b) Overview of our TCDP procedure. We pretrain our
MathEncoder with three objectives for injecting solving logic and keeping original semantic information simultaneously. Lscl and Ltcl are used for solving
logic injection, while the values of Lsr are adopted for semantic information retention. (The circle indicates student hidden vector, while the square indicates
teacher hidden. The hidden vectors in the yellow dotted circle belong to the same expression template.)

TABLE I
STATISTICS OF EXPRESSION TEMPLATES IN DIFFERENT

SUBSETS ON MATH23K AND CM17K

expressions, we also construct a universal expression
tree with the universal expression tree representation [9].
Constant quantities consist of some specific values that
may not appear in the problem text, such as {2, 3.14}.
To decrease the diversity of expression trees, accelerate
learning procedure, and generalize better, the numeric
values will be mapped to {n1, n2, n3, . . . } in the order
they appear in the problem text P . As shown in Fig. 2(a),
all the leaf nodes in an expression tree are constant
quantities and numeric values, and nonleaf nodes are
binary math operators.

B. Template Generation
As logic knowledge for pretraining, the expression template

T is generated automatically by mapping all the numbers in
solution expression, which is transformed from the expression
tree S in infix traversal to {n1, n2, n3, . . . } in the order they
appear in the problem text P in preprocessing procedure. As a
result, there are 3790 expression templates in Math23K [1],
while there are 9918 expression templates in CM17K [10].
The statistics of expression templates in different subsets on
Math23K and CM17K are shown in Table I. We also show
the statistics of the commonly used templates in Math23K [1]
dataset in Table II.

C. MWP Solving
To solve an MWP, an MWP solver needs to transfer a

problem text P to a solution expression tree S, as shown in

TABLE II
COMMONLY USED TEMPLATES IN MATH23K

Fig. 2(a). Therefore, the task of MWP solving can be defined
formally as follows.

Given an MWP training dataset D = {(Pi , Si )}
N
i=1, where

N is the size of the training set, we aim to learn a neural
solver f (Si |Pi ) that takes an MWP Pi as input and outputs the
targeted symbolic expression Si , where (Pi , Si ) is the labeled
data pair. For mining effective information and achieving good
performance, the main learning objective of a neural solver is
to minimize the negative log-likelihood (NLL) loss function
as follows:

LNLL =
1
N

N∑
i=1

− log f (Si |Pi ) (1)

where f (Si |Pi ) is the output distribution over sequences.

IV. TCDP

In this section, we first provide an overview of MathEncoder
and MathSolver and then describe the details of our proposed
TCDP method.

A. MathEncoder and MathSolver

An MWP solver should possess rich real-world knowledge
and mathematical reasoning skills [11], the encoder–decoder
architecture can better meet this condition in which
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PLM-based encoder can be considered as a language
comprehension module with rich real-world knowledge, and
the tree decoder can be considered as an algebraic reasoning
module.

Therefore, to construct a suitable backbone for MWP solv-
ing, we first deploy a PLM as an encoder due to its rich real-
world knowledge, such as BERT [14], [50] and Roberta [49].
Then, we deploy a tree decoder adapted from GTS [5] as
a decoder to generate expression tree nodes step by step in
prefix order. As illustrated in Fig. 2(a), the left child node is
generated according to its parent node. When it comes to the
right child node, the construction of its left sibling subtree has
been completed; thus, the generation of the right child node
will make full use of available information of its left sibling
subtree along with its parent node.

For convenience, we define the encoder in the backbone
as MathEncoder while calling the backbone as MathSolver if
they have been pretrained by our proposed TCDP, which will
be introduced in Section IV-B.

B. Template-Based Contrastive Distillation Pretraining

As shown in Fig. 1, although the two MWPs describe
different real-world scenes, they share the same solving logic:
the first number multiply by the second number. It means
that if two problems have the same template, they should
share the same solving logic even if they have different real-
world scenes. Intuitively, the representations of them should
be closer in the feature space if they share the same template,
so that a solver can solve them with the same reasoning
pattern. To achieve this goal, injecting solving logic to cluster
the representations of the problems with the same template
closer and push apart the representations of the problems with
different templates is essential.

However, there are rich real-world knowledge and good
linguistic representation capability in a well-trained PLM.
Injecting solving logic directly will damage the linguistic
representation capability of PLMs, which is also crucial for
a solver to understand MWPs comprehensively. To protect the
linguistic representation capability of PLMs, we also distill
knowledge from well-trained PLM-based teacher encoder to
retain the linguistic representation capability for comprehen-
sive problem understanding.

Therefore, we propose TCDP to inject logic solving while
retaining rich semantics, so that the representations of MWPs
can be more discriminated, which can improve the solving
ability of an MWP solver.

To pretrain our MathEncoder for solving logic injection
and semantic retention, we first embed a PLM-based encoder
into GTS [5] by replacing its GRU-based encoder and train
it as a baseline. Meanwhile, we extract the fine-tuned PLM-
based encoder as the teacher encoder, denoted as f t , for
linguistic semantic information retention via distilling its own
knowledge into the student encoder f s , which is initialized by
the corresponding original PLM model. Here, the PLM model
can be BERT [14] or Roberta [49]. Besides, we also deploy a
momentum encoder f m for contrastive template-based solv-
ing logic injection. After our proposed TCDP procedure,

the student encoder f s will be used as MathEncoder to be
fine-tuned for MWP solving.

As illustrated in Fig. 2(b), for each problem Pi , our TCDP
objective consists of three main components: 1) Li

scl, the
template-based supervised contrastive loss for injecting solv-
ing logic by contrasting problem semantics based on student
features; 2) Li

tcl, another template-based supervised contrastive
loss for injecting solving logic by contrasting problem seman-
tics anchored on teacher feature space, so that we can adjust
problem semantics better according to the well-trained teacher
features; and 3) Li

sr, the semantic distillation loss to distill
the knowledge from f t to f s at token level. In these three
objectives, the first two objectives aim to inject solving logic
into problem representations by template-based contrastive
learning, while the latter objective is adopted for linguistic
semantic information retention via knowledge distillation. The
final pretraining objective can be written as follows:

Li
tcd = α1Li

scl + α2Li
tcl + α3Li

sr (2)

where Li
scl, Li

tcl, and Li
sr are corresponding to the

template-based contrastive loss, problem-level contrastive dis-
tillation loss, and token-level knowledge distillation loss,
respectively. α1, α2, and α3 are three loss weights for Li

scl,
Li

tcl, and Li
sr, respectively.

1) Solving Logic Injection: In MWPs, the same
problem-solving logic can be described by various natural
language-based short narratives. So, solving an MWP
automatically requires a solver not only to understand
the literal meaning of the MWP but also to mine the
grounded solving logic. Therefore, how to mine the grounded
solving logics and construct more discriminative solving
logic-aware problem representations is important for an MWP
solver to understand the MWPs and reason out the solutions.
To achieve this goal, we propose a novel multiview supervised
template-based contrastive pretraining method that consists of
two subtasks, template-based supervised contrastive learning
based on student feature space and template-based supervised
contrastive learning anchored on fixed teacher feature space,
as illustrated in Fig. 3. We enforce solving logic injection and
construct more discriminative solving logic-aware problem
representations by pulling the problem semantics with the
same solving template both on student (MathEncoder) space
and teacher feature space and pushing away the problem
semantics with different templates.

Consider an encoded query si , which is outputted from
the student encoder f s , and a set of encoded samples
{m0, m1, m2, . . .} that are the keys of a dictionary Qm , which
also is a queue for storing these keys. Each key in the dictio-
nary has its corresponding template index. Assuming that there
are some positive keys m+ in the dictionary that have the same
template index with si and all other keys m− are negative keys
that have different template indexes with si , the template-based
contrastive loss is a function that its value is low when si has
the same template with its positive keys m+ and is large among
si and all other negative keys m−. To generate harder positive
samples and harder negative samples for better contrastive
learning, we apply a dropout function with 0.2 probability
as an augmentation function on the output of the momentum
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Fig. 3. Illustration of solving logic injection by contrasting problem semantics
both based on student (MathEncoder) features and anchored on teacher feature
space. We pull the problem semantics with the same solving template both
on student (MathEncoder) space and teacher feature space and push away the
problem semantics with different templates.

encoder f m . With similarity measured by dot product, a form
of our template-based contrastive loss function Li

scl, which is
an extension to InfoNCE [51], can be considered as follows:

Li
scl = −

1
|m+|

∑
p∈m+

{
log

exp
(
si · m p/τ

)∑
a∈Qm exp(si · ma/τ)

}
(3)

where τ is a temperature hyperparameter.
Similarly, consider a set of encoded frozen samples

{t0, t1, t2, . . .} outputted from the teacher encoder f t . The
{t0, t1, t2, . . .} are the keys of a dictionary Qt for the sup-
ply of positive samples and negative samples during the
template-based supervised contrastive learning anchored on
fixed teacher feature space. Each key in the dictionary has
its corresponding template index. We also assume that there
are some positive keys t+ in the dictionary that have the same
template index with si , while all other keys t− are negative
keys having different template indexes with si . Then, Li

tcl can
be considered as follows:

Li
tcl = −

1
|t+|

∑
p∈t+

{
log

exp
(
si · tp/τ

)∑
a∈Qt exp(si · ta/τ)

}
(4)

where τ is a temperature hyperparameter.
2) Semantics Retention: However, injecting solving logic

for problem understanding directly will drastically change
learned real-world knowledge and linguistic semantics in the
general pretraining phase with open-domain corpus. There-
fore, we propose another pretrained task based on knowledge
distillation for keeping the learned real-world knowledge and
linguistic semantics. To distill semantic information from the
teacher encoder f t into the student encoder f s for maintaining

Algorithm 1 Procedure of TCDP
Input: Teacher encoder f t ; Student encoder f s ; Momen-

tum encoder f m ; Data size N ; Training dataset D; Problem
text P;Expression template T ; Weights of pretraining tasks
α1, α2, α3; Momentum update paramater β; Contrastive queues
Qm and Qt ;
Output: the student encoder f s ;
1: initialize student encoder f s with pre-trained language

model
2: for all (Pi , Ti ) ∈ D do
3: ti = f t (Pi )

4: detach ti
5: Push ti to queue Qt

6: end for
7: for all (Pi , Ti ) ∈ D do
8: si = f s(Pi )

9: mi = aug( f m(Pi ))

10: compute Li
scl according to Equation (3)

11: compute Li
tcl according to Equation (4)

12: compute Li
sr according to Equation (5)

13: Li
tcd = α1Li

scl + α2Li
tcl + α3Li

sr
14: update the model parameters of f s by minimizing

loss Li
tcd

15: update momentum encoder f m :
f m

= β ∗ f m
+ (1 − β) ∗ f s

16: Push mi to queue Qm

17: Pop the queue Qm

18: end for
19: return the student model f̂ s

fine-grained semantic information, we let the student encoder
f s mimic each token’s hidden representation of the teacher
encoder f t via MSE loss

Li
sr =

1
|Pi |

|Pi |∑
j=1

∥∥ht
i j − hs

i j

∥∥2 (5)

where |Pi | is the token length of a problem Pi , ht
i is the

contextual representation of the i th token of Pi from teacher
encoder f t , and hs

i is the contextual representation of the
i th token of Pi from student encoder f s .

To summarize our TCDP procedure, we provide the algo-
rithm pseudocode in Algorithm 1. In Algorithm 1, aug is
the dropout function with 0.2 probability. We maintain a
contrastive queue [34] and compute three losses: Li

scl, Li
tcl,

and Li
sr. Finally, the pretrained student model f̂ s named

MathEncoder is used for the downstream MWP task.

C. Fine-Tuning MathEncoder

Since equation label supervision is available at fine-tuning
stage for MWP solving, applying MathEncoder to fine-tuning
is relatively straightforward. We replace the GRU-based
encoder in GTS [5] with our MathEncoder and rename it as
MathSolver for distinguishing it from GTS in the experiment
section. At the fine-tuning stage, our MathSolver is trained
with the same hyperparameters as GTS [5] except a smaller
learning rate for fine-tuning MathEncoder.
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Formally, given the training dataset D = {(Pi , Si )}
N
i=1, the

main learning objective for fine-tuning MathEncoder is to
minimize the NLL loss function, so that it can mine the effec-
tive information and achieve good performance. Therefore, the
learning objective for fine-tuning MathEncoder can be defined
as follows:

LNLL =
1
N

N∑
i=1

− log f s(Si |Pi ) (6)

where f s(Si |Pi ) is the output distribution over sequences.

V. EXPERIMENTS

In this section, we conduct experiments to evaluate our
MathSolver with several state-of-the-art methods on two large
Chinese datasets Math23K [1] and CM17K [10].

A. Datasets

In our experiments, we mainly experiment on two com-
monly used MWP datasets that are used in our experiments:
Math23K [1] and CM17K [10]. Math23K [1] is the most
frequently used large-scale dataset for MWP solving. It con-
tains 23 162 elementary-school-level MWPs along with their
well-annotated equation solution. In Math23K, the solution
equation to each MWP is linear and contains only one
unknown variable. CM17K [10] is another well-annotated
large-scale dataset for MWP solving. It contains 17 035 MWPs
with various types of expressions, including 6215 arithmetic
problems, 5193 one-unknown linear problems, 3129 one-
unknown nonlinear problems, and 2498 equation set problems.
In all experiments, we report the results on the test sets of
Math23K and CM17K.

B. Baselines

We compare our MathSolver with 12 state-of-the-art models
as follows.

1) DNS [1]: A vanilla seq2seq model for expression
generation.

2) Math-EN [52]: A seq2seq model with equation normal-
ization for reducing target space.

3) T-RNN [4]: A recursive neural network over predicted
tree-structured templates.

4) StackDecoder [6]: A semantically aligned MWPs solver.
5) GROUPATT [53]: An MWP solver borrowing the idea

of multihead attention from Transformer [54].
6) AST-Dec [55]: An MWP solver creating an expression

tree with a tree LSTM decoder.
7) GTS [5]: A tree-structured neural network in a

goal-driven manner to generate expression trees.
8) TSN-MD [7]: An enhanced GTS with teacher–student

distillation and multidecoder ensemble.
9) Graph2Tree [8]: An enhanced GTS with quantity graph.

10) NS Solver [10]: A neural-symbolic solver to explicitly
and seamlessly incorporate different levels of symbolic
constraints by auxiliary tasks.

11) TM Generation [27]: A template-based multitask gen-
eration model that can improve the problem-solving
accuracy of mathematical word problem-solving task.

12) Generate and Rank [26]: A multitask framework based
on a generative PLM. This model learns from its own
mistakes and is able to distinguish between correct and
incorrect expressions by joint training with generation
and ranking.

13) ESIB [30]: A solver based on variational informa-
tion bottleneck, which extracts essential features of
the expression syntax tree while filtering latent-specific
redundancy containing syntax-irrelevant features.

14) BERT2Tree: We deploy enhanced GTS with the
BERT [14] encoder as one of our baselines whose
well-trained BERT encoder is used as our teacher
encoder when the PLM-based encoder in MathSolver
is BERT.

15) Roberta2Tree: Similar to BERT2Tree, we also deploy
enhanced GTS with the Roberta [49] encoder as one
of our baselines whose well-trained Roberta encoder
is used as our teacher encoder when the PLM-based
encoder in MathSolver is Roberta.

C. Evaluation Metric
Following most of the prior works [1], [5], [8], [10], we use

answer accuracy as the evaluation metric: if the calculated
value of the predicted expression tree equals the true answer,
it is thought as correct, since the predicted expression is
equivalent to the target expression.

D. Implementation Details
We use PyTorch [56] to implement our model on Linux

with an NVIDIA RTX2080Ti GPU card. All those words with
fewer than five occurrences are converted into a special token
[UNK]. In MathEncoder, the size of word embeddings and
all hidden states for other layers are all set as 768, following
the configuration of BERT-base [14] and Roberta-base [49].
In the decoder, the size of word embeddings and all hidden
states for other layers are set as 128 and 768, respectively.
In each epoch, all training data are shuffled randomly and
then cut into mini-batches.

At the pretraining stage, we pretrained two MathEncoders,
which are initialized separately by pretrained BERT-wwm [50]
and pretrained Roberta-ext-wwm [50], so that we can val-
idate the universality of our approach on different PLMs.
The MathEncoder grounding by pretrained BERT-wwm is
represented as MathEncoder-BERT, while the MathEncoder
grounded by pretrained Roberta-ext-wwm is represented as
MathEncoder-Roberta. Similarly, the MathSolver driven by
MathEncoder-BERT is denoted as MathSolver-BERT, while
the MathSolver driven by MathEncoder-Roberta is denoted as
MathSolver-Roberta. All two MathEncoders are optimized
by ADAM optimizor [57] with β1 = 0.9, β2 = 0.999, and
ϵ = 1e−8. The mini-batch size is set as 8 for both Math23K
and CM17K, respectively. The initial learning rate is set as
1e−4, and we pretrain them ten epochs. The loss weights α1,
α2, and α3 of our TCDP loss obtained by grid search are set
as 1.0, 1.0, and 1.0 for both Math23K and CM17K. The τ

is set as 0.07 in both Lscl and Ltcl. The momentum update
parameter β is set as 0.999, and the size of contrastive queue
Q equals the size of the training set.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on June 20,2023 at 20:50:21 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III
ANSWER ACCURACY OF MATHSOLVER AND BASELINES ON MATH23K.

NOTE THAT MATH23K DENOTES RESULTS ON THE PUBLIC TEST SET

TABLE IV
ANSWER ACCURACY OF MATHSOLVER AND BASELINES ON CM17K

At fine-tuning stage, we use pretrained MathEncoder(*) as
the initial encoder, and a randomly initialized tree-decoder is
adopted as decoder for our MathSolver(*). Our MathSolver(*)
is optimized by ADAM optimizer [57] with β1 = 0.9,
β2 = 0.999, and ϵ = 1e−8. The mini-batch size is set as 8.
The initial fine-tuning learning rate is set as 1e−5 and 1e−4

for MathEncoder(*) and tree decoder in both Math23K and
CM17K and then decreases to half every 25 epochs. To prevent
overfitting, we set the dropout rate as 0.5 and weight decay
as 1e−5. Finally, we set the beam size as 5 for expression tree
generation.

E. Results on Math23K

Following prior work [8], we evaluate the performance on
the test set of Math23K. As shown in Table III, we can
observe that adopting a PLM-based encoder as a problem
encoder can significantly improve the performance of an
MWP solver on Math23K compared with those RNN-based
baselines. Besides, with our TCDP for solving logic injec-
tion, our MathSolver-Roberta equipped with our MathEncoder
can outperform all baselines and achieve new state-of-the-
art performance on Math23K, while our MathSolver-BERT
achieves competitive performance. Furthermore, comparing to
the baselines with the same architecture of our MathSolvers,
our MathSolver-BERT outperforms BERT2Tree over 1.9%,
while our MathSolver-Roberta outperforms Roberta2Tree up
to 2.0%. These experimental results on answer accuracy show
the effectiveness of our pretraining approach for MWP solving.

F. Results on CM17K

To further validate the universality of our method,
we also conduct experiments on another large-scale MWP

TABLE V
ABLATION OF DIFFERENT PRETRAINING TASKS ON MATH23K

dataset CM17K, which contains multiple types of MWPs
and is more challenging than Math23K. The experimen-
tal results are shown in Table IV. From the experimental
results, we can observe that benefiting from our TCDP,
MathSolver-BERT outperforms BERT2Tree over 0.4%, while
MathSolver-Roberta outperforms Roberta2Tree up to 0.6%.
This shows the universality and effectiveness of our approach.

G. Ablation of Pretraining Tasks

We run an ablation study over the proposed training objec-
tives to investigate the necessity for each of them. The
MathSolver-Roberta is deployed in this ablation study. For
each of these combinations, each model was trained for
100 epochs on Math23K. The experimental results are shown
in Table V. We can observe that all the proposed pretraining
tasks can achieve improvements individually with the help
of the other two pretraining tasks. Besides, as our claim,
only injecting solving logic without semantic retention will
destroy the semantics entailed in the PLM-based encoder,
leading to performance degradation or similar performance
at the fine-tuning stage. With the help of semantic retention
loss Lsr by distilling knowledge from the teacher encoder,
we can outperform Robert2Tree on Math23K, especially when
all three pretraining tasks are deployed simultaneously, our
MathSolver-Roberta can outperform Roberta2Tree up to 2.1%.
Overall, our three pretraining tasks can make the MathEn-
coder learn a more powerful problem representation that those
encoders only used two of three pretraining tasks or without
our pretraining approach, thus improving the performance of
the downstream MWP solvers.

H. Analysis of Expression Tree Size

Intuitively, the larger the size of an expression tree is,
the more complex the mathematical relationship of the
problem is, and the more difficult it is to solve the problem.
Here, we compare our fine-tuned MathSolver-Roberta and
MathSolver-BERT with Roberta2Tree and BERT2Tree for
investigating which kind of expression trees our pre-
trained MathEncoder can help MathSolver solve better. From
Table VI, we can see that our MathSolver-BERT outper-
forms BERT2Tree on various expression tree sizes except the
tree size 9. Similarly, our MathSolver-Roberta outperforms
Roberta2Tree on various expression tree sizes except the tree
size 9. We conjecture the data ratio of expression tree size 9 is
too small, so it is hard to be improved by our TCDP. Even
so, our MathSolvers still can achieve competitive performance.
Although our MathSolver achieves better performance, there
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TABLE VI
ANSWER ACCURACY FOR DIFFERENT EXPRESSION

TREE SIZES ON MATH23K

TABLE VII
ACCURACIES OF DIFFERENT PROBABILITIES OF AUG ON MATH23K

still is improvement room for semantic understanding and
expression reasoning, especially on those problems with long
expression trees.

I. Ablation of aug With Different Probabilities

To qualitatively measure how the dropout function aug
works for the momentum encoder, we conduct some ablation
experiments with MathSolver-Roberta on different dropout
rates. The experimental results on different dropout rates
are shown in Table VII. From the results, we can see
that all MathSolver-Roberta models with any dropout rate
of more than 0 can outperform the baseline Roberta2Tree
(84.1%). This show that our aug is effective. Besides,
our MathSolver-Roberta achieves the best performance on
Math23K, so we choose the dropout probability 0.2 as the
default value of the aug operation in our pretraining.

J. Analysis of the Accuracy on Seen Templates and Unseen
Templates

To further check the generalization ability of our approach,
we also analyze the answer accuracy of the seen templates and
the unseen templates on Math23K test set. The seen templates
mean that the templates of MWPs are overlapped with the
templates in the training set, while the unseen templates
mean the templates of MWPs are not in the template set
of the training set. The results are shown in Table VIII.
We can observe that our method can improve both the answer
accuracy of the seen templates and the unseen templates when
comparing with the baselines. This shows that our method is
not only effective for the test samples that their templates are
seen in the templates of training set, but also effective for the
test samples that their templates are unseen in the templates
of training set. Therefore, our method can generalize well
on unseen templates due to its more discriminative problem
representation ability.

Besides, although the performance of BERT-based methods
is lower than the Roberta-based methods, we can observe

TABLE VIII
ANSWER ACCURACY OF MATHSOLVER AND BASELINES ON THE SEEN

TEMPLATES AND THE UNSEEN TEMPLATES IN MATH23K TEST SET

TABLE IX
ANSWER ACCURACY FOR DIFFERENT TEMPLATES

ON MATH23K TEST SET

BERT-based methods can achieve better performance than
Roberta-based methods on unseen templates. We speculate this
difference is due to the difference of the original pretraining
ways of BERT and Roberta.

K. Analysis of the Accuracy of Different Templates

We also analyze the accuracy of different templates.
We select the accuracy of the top-10 templates for comparison.
The accuracy of all left templates is aggregated together and
labeled as others. The results are shown in Table IX. From
Table IX, we can see that our MathEncoder-Roberta can
outperform Roberta2Tree on top-3 templates and others while
keeping the same performance on the left templates. This
shows the effectiveness of our TCDP.

L. Analysis of MathEncoder’s Sentence Embedding

To qualitatively measure the effort of our in-domain pre-
training, we also visualize the features of the problems of
top-10 templates with t-SNE [58]. The input of the t-SNE
algorithm is the mean of the hidden states at the output of the
last layer of the model. As shown in Fig. 4, we can observe that
with our template contrastive distillation pretraining, problem
representation with different templates after our pretraining is
more discriminated than those from general PLM in feature
space by comparing Fig. 4(a) with (c) and comparing Fig. 4(d)
with (f). Besides, we can also observe that the problem repre-
sentation from our MathEncoder-Roberta and MathEncoder-
BERT is more discriminated than those from Roberta2Tree
and BERT2Tree, which have been fine-tuned on Math23K.
These observations also show the effectiveness of our proposed
template contrastive distillation pretraining.

M. Ablation of Different Encoder Architectures

Although our TCDP is proposed for the PLM-based encoder
initially, to show the good generalization of our TCDP, we also
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Fig. 4. Visualization on the problems of the top-10 templates in feature space before versus after template contrastive distillation pretraining (Roberta-wwm-ext
versus MathEncoder-Roberta). We consider the test split in the Math23K dataset. (a) BERT-wwm-ext. (b) BERT2Tree. (c) MathEncoder-BERT (Ours).
(d) Roberta-wwm-ext. (e) Roberta2Tree. (f) MathEncoder-Roberta (Ours).

TABLE X
ABLATION OF DIFFERENT PRETRAINING TASKS ON MATH23K

conduct ablation experiments on Math23K with different
encoder architectures, including GRU-based encoder [59],
BERT-based encoder [14], and Roberta-based encoder [49].
The experimental results on different encoder architectures
are shown in Table X. From the results in Table X, we can
see that our TCDP can improve the model performance
regardless of the encoder architecture. Specifically, our TCDP
can improve GRU-based solver up to 0.7% while improving
BERT-based solver and Roberta-based solver up to 1.9%
and 2.1%, respectively. This shows that our TCDP has good
generalization on different encoder architectures.

N. Case Study
Finally, we conduct a case analysis and provide three

cases in Fig. 5. Benefiting from our proposed template
contrastive distillation pretraining, our MathSolver-Roberta

and MathSolver-BERT can generate correct equations with
better problem representations, while Roberta2Tree and
BERT2Tree are more prone to choose error math operations
and error number words. Besides, our MathSolver-Roberta
and MathSolver-BERT can be more consistent equations with
ground-truth equations, while Roberta2Tree and BERT2Tree
are prone to generate inconsistent equations. Overall, with the
help of TCDP, our MathSolvers can solve MWP better than
Roberta2Tree and BERT2Tree, which are fine-tuned on the
MWP dataset directly without further in-domain pretraining.

O. Analysis of Different Data Usages
To show the strong universality of our TCDP with

different data scales, we conduct some experiments with
MathSolver-Roberta and Roberta2Tree on different data
usages. The experimental results on different data usages
are shown in Fig. 6. From the results, we can observe that
our MathSolver-Roberta can outperform the corresponding
baseline Roberta2Tree under various data usage settings. Espe-
cially, our MathSolver can outperform Roberta2Tree over
1.8% on answer accuracy with only 20% data are used and
outperform Roberta2Tree up to 2.1% when full data are
adopted. Overall, with the help of our TCDP, MathSolver can
solve MWPs better under various data usage settings, showing
the strong universality of our approach.
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Fig. 5. Typical cases. Note that the results are represented as infix traversal of expression trees, which is more readable than prefix traversal.

Fig. 6. Analysis of different data usages.

VI. CONCLUSION

In this article, we propose a TCDP approach based on a
PLM-based encoder to incorporate mathematical logic knowl-
edge by multiview contrastive learning while retaining rich
real-world knowledge and high-quality semantic representa-
tion via knowledge distillation. We named the pretrained
PLM-based encoder by our approach as MathEncoder. Specif-
ically, the mathematical logic is first summarized by cluster-
ing the symbolic solution templates among MWPs and then
injected into the deployed PLM-based encoder by conducting

supervised contrastive learning based on the symbolic solu-
tion templates, which can represent the underlying solving
logic in the problems. Meanwhile, the rich knowledge and
high-quality semantic representation are retained by distilling
them from a well-trained PLM-based teacher encoder into our
MathEncoder. To validate the effectiveness of our pretrained
MathEncoder, we construct a new solver named MathSolver
by replacing the GRU-based encoder with our pretrained
MathEncoder in GTS, which is a state-of-the-art MWP solver.
The experimental results demonstrate that our method can
carry a solver’s understanding ability of MWPs to a new
stage by outperforming existing state-of-the-art methods on
two widely adopted benchmarks Math23K and CM17K.

Automatically solving MWPs still is a challenging AI
problem, and our work opens up many thoughts for future
work. First, while the results are encouraging, our work still
has limitations in predicting long equations, which often match
with more complex and difficult problems. For long equation
prediction, we need to design a more effective pretraining
method to further improve the semantic understanding ability
of an MWP solver. Besides, we also need to design a more
effective reasoning module to reason out long equations more
efficiently. Second, our study only focuses on textual MWPs,
while there are lots of MWPs, including complementary
textual and graphical descriptions in real-world MWPs. In the
future, we should develop new multimodal MWP datasets to
extend the research boundary of MWPs and develop novel
multimodal models for MWP solving.
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