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ABSTRACT
Significant progress has been made in learning image classification
neural networks under long-tail data distribution using robust train-
ing algorithms such as data re-sampling, re-weighting, and margin
adjustment. Those methods, however, ignore the impact of data
imbalance on feature normalization. The dominance of majority
classes (head classes) in estimating statistics and affine parameters
causes internal covariate shifts within less-frequent categories to
be overlooked. To alleviate this challenge, we propose a compound
batch normalization method based on a Gaussian mixture. It can
model the feature space more comprehensively and reduce the
dominance of head classes. In addition, a moving average-based ex-
pectation maximization (EM) algorithm is employed to estimate the
statistical parameters of multiple Gaussian distributions. However,
the EM algorithm is sensitive to initialization and can easily become
stuck in local minima where the multiple Gaussian components
continue to focus on majority classes. To tackle this issue, we de-
veloped a dual-path learning framework that employs class-aware
split feature normalization to diversify the estimated Gaussian dis-
tributions, allowing the Gaussian components to fit with training
samples of less-frequent classes more comprehensively. Extensive
experiments on commonly used datasets demonstrated that the pro-
posed method outperforms existing methods on long-tailed image
classification.
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Figure 1: For an imbalanced training dataset, the conven-
tional feature normalization (left), which leverages the
single-modal Gaussian probability function to fit the feature
space, is prone to overlook samples of tail classes. Adopting
multiple Gaussian distributions to fit the features (right) can
mitigate the above problem.
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1 INTRODUCTION
Real-world image classification data usually exhibits an imbalanced
distribution due to the natural scarcity of certain classes, industry
barriers, and large data collection costs. The severely imbalanced
data distribution causes substantial obstruction to the learning
process, considering it is difficult to balance the classification per-
formance of head and tail classes. The imbalanced learning problem
attracts extensive research interests [4, 12, 34]. However, existing
methods are incapable of deriving high accuracy on tail classes
without hindering the performance of head classes or maintain-
ing an efficient framework. This paper is targeted at learning with
long-tailed training data while alleviating the above issues.

When learning deep convolutional neural networks (CNNs) with
long-tailed samples, the optimization of network parameters is dom-
inated by samples of head classes, which leads to relatively low
performance for tail classes. Conventional solutions to the data
imbalance problem is biasing the optimization process towards
less frequent classes, such as class-balanced re-sampling [4, 14],
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re-weighting [20, 38], or classifier margin adjustment [18, 48]. How-
ever, these data rebalancing methods hamper the learning of head
classes by interfering the representation capacity of CNNs. A few
works attempt to address this problem through ensembling multiple
classifiers learned under diverse sampling strategies [49] or adopt-
ing auxiliary classifiers to highlight the learning of tail classes [40].
However, such methods require increased network parameters and
computation burden. Besides, the impact of data imbalance on fea-
ture representation learning can not be thoroughly alleviated since
they still depend on data resampling or reweighting algorithms to
manage multiple classifiers.

Batch normalization is a critical component for mitigating the
internal covariate shift in the feedforward calculation process of
CNNs [21]. It can accelerate the optimization rate of network pa-
rameters and improve the generalization ability. Under the scenario
of data imbalance, a single-modal Gaussian probability function
can not fully model the feature space and is prone to overlook
tail classes. Thus the conventional batch normalization can merely
eliminate the global covariate shift, but neglect the internal co-
variate shift of tail classes. This harms the learning efficiency and
generalization capacity on tail classes.

To address the above problem, we generalize the feature normal-
ization by modeling the feature space with compound Gaussian
distributions. As shown in Figure 1, the features of training samples
are composed of several scattered clusters. For the purpose of fitting
the features more comprehensively, we employ a compound set of
mean and variance parameters to implement the feature normaliza-
tion process. Every set of mean and variance parameters is applied
for whitening a group of features within a local subspace, and
independent affine parameters are utilized for reconstructing the
distribution statistics. Such a compound feature normalization helps
to eliminate the local covariate shift and alleviate the dominance of
head classes. Based on the compound feature normalization, we set
up the mainstream branch for the classification model and devise
a moving average based expectation maximization algorithm to
evaluate the statistical parameters.

The estimation of statistical parameters in themulti-modal Gauss-
ian probability function easily falls into local minima, where multi-
ple Gaussian distributions still concentrate on head classes while
ignoring tail classes. Hence, we devise a dual-path learning frame-
work to diversify those Gaussian distributions among all classes.
An auxiliary branch is set up with the split normalization, which
separates classes into different subsets and processes them with in-
dependent statistical and affine parameters. This benefits to disperse
statistical parameters of different Gaussian distributions. Addition-
ally, the mainstream and auxiliary branches interact with each
other via the stop-gradient based consistency constraint [7] for
enhancing the representation learning. The main contributions of
this paper are concluded as follows:

• We propose a novel compound batch normalization algo-
rithm based on a mixture of Gaussian distributions, which
can alleviate the local covariate shift and prevent the domi-
nance of head classes.
• A dual-path learning framework based on the compound and
split feature normalization techniques is devised to diversify
the statistical parameters of different Gaussian distributions.

• Exhaustive experiments on commonly used datasets demon-
strate significant improvement of our method compared to
existing state-of-the-art methods.

2 RELATEDWORK
2.1 Long-tailed Image Classification
Real world data usually has an unbalanced distribution. Image clas-
sification models are difficult to maintain high performance on tail
classes. A vast number of methods are targeted at overcoming the
issue of long-tailed data distribution, which can be mainly catego-
rized into five types including data re-sampling, data re-weighting,
classifier calibration, two-stage training, and model ensembling.

Data Re-sampling.Oversampling tail classes [4] and undersam-
pling head classes [14] are early methods for re-balancing the train-
ing data. [20] proposes to split samples into clusters and constructs
cluster-level and class-level quintuplets to achieve re-balanced rep-
resentation learning. Data augmentation by distorting images or
intermediate features [10, 24, 28, 37] can be utilized for expanding
the sample sizes of tail classes. However, these methods easily lead
to under-fitting of head classes or over-fitting of tail classes.

Data Re-weighting. The other type of commonly used methods
is increasing weighting coefficients when calculating training losses
for samples of tail classes. Simple data re-weighting can be imple-
mented with the inverse class frequencies [20, 38]. [13] devises a
more reasonable way to estimate the effective number of samples
and incorporate it into the cross entropy loss. Focal loss [26] is
capable of concentrating on ‘hard’ samples and can also benefit
the learning of tail classes. [30] re-weights individual samples with
influence factors estimated from gradients of network parameters.
[12] devises a novel contrastive loss based on center learning and
attempts to incorporate it with the balanced soft-max function for
addressing the data imbalance issue.

Classifier Calibration. Another type of data imbalance learn-
ing methods focus on calibrating the supervision signals, decision
margins, or parameters of classifiers . [48] smooths the one-hot
label vectors and relieves the over-confidence on head classes. [18]
leverages predictions of the teacher model to rectify the label dis-
tribution. [5] transfers the knowledge of head classes to tail classes
considering the invariant label-conditional features across different
labels. [3] shifts the decision boundary to head classes, thus improv-
ing the generalization error for tail classes without influencing the
performance of head classes. [34] devises a distributionally robust
loss by penalizing distances between samples and empirical cate-
gory centroids. [46] utilizes an adaptive module to directly adjust
the classification scores. [19] compensates the prediction logits for
alleviating the label distribution shift between source and target
data. [27] utilizes a set of classifier displacement vectors to transfer
the geometry of head classes to tail classes. [22] devises a vector-
scaling loss to unify the advantages of additive and multiplicative
logit adjustments. [41] resorts to the mixup algorithm to encour-
age the occurrence of sample pairs from head and tail classes, and
compensates the cross entropy with the Bayes bias.

Multi-Stage Training. Deferring the re-balancing procedure
helps to relieve the intrinsic artifacts of data re-balancing meth-
ods, such as over-fitting with minority classes caused by data
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re-sampling and optimization instability caused by loss reweight-
ing [3]. [49] constructs a two-branch framework to combine the
instance-balanced learning and class-balanced learning in the cumu-
lative manner. [25] employs three cascaded training stages, includ-
ing self-supervised feature learning, class-balanced learning, and
instance-balanced learning under the guidance of the knowledge
distilled from the second stage.

Model Ensembling. A few imbalance learning algorithms aim
at combining the advantages of multiple models separately trained
with different subsets of samples. [40] splits classes into a few sub-
sets, learns an expert model for each class subset, and integrates
different expert models to teach the student model. [2] further de-
vises a distribution-aware class splitting planner to increase the
exposure of tail classes among expert models. [36] trains multiple
diversified expert models simultaneously and sets up a routing
mechanism to prune the multi-expert system for reducing the com-
putation cost. [47] builds up multiple expert classifiers guided with
conventional or balanced loss functions. It also attempts to lever-
age the cross-augmentation prediction consistency to improve the
generalization of learned expert models on testing data with un-
known distributions. The main drawback of this kind of methods is
that learning multiple models inevitably increases the computation
burden during training or testing.

2.2 Feature Normalization
Feature normalization, such as batch normalization [21], layer nor-
malization [1], and group normalization [39], is commonly applied
for eliminating the covariate shift in various tasks [8, 9, 15, 43–
45]. Such kind of operations benefit to accelerate the optimiza-
tion process, prevent over-fitting, and relieve the gradient vanish-
ing/explosion phenomenon. However, these methods utilize sin-
gle Gaussian distribution, namely one set of mean and variance,
to model the input features. The practical feature points usually
exhibit a multi-modal Gaussian distribution. When the training
samples are severely imbalanced, fitting them with a single-modal
distribution leads to overlook of tail classes, which harms the effi-
cacy of the normalization in learning tail classes. To address this
issue, we design a novel feature normalization method based on
the multi-modal Gaussian distribution. The momentum-based ex-
pectation maximization algorithm is incorporated for estimating
multiple means and variances. Similar to our approach, SL-BN [48]
proposes to update the mean and variance variables of batch nor-
malization layers in the deferred training stage with class-balanced
resampling. Our proposed compound batch normalization (CBN)
differs from SL-BN in that, Gaussian mixtures are used to model
the feature space in CBN while SL-BN still relies on single Gauss-
ian distribution. Targeted at preventing pure noise images from
distorting the estimation of the feature distribution, DAR-BN [42]
splits the mean and variance variables for normal images and pure
noise images. Auxiliary BN [29] is used for alleviating the disparity
between training images processed with strong augmentation and
testing images by setting up an extra batch normalization branch
for strongly augmented images. The target of our devised CBN is
distinct to them. CBN aims at modeling training data with mul-
tiple Gaussian distributions and preventing overlooking samples
of tail classes during the batch normalization. Besides, the core

algorithmic principle of our CBN is different to that of DAR-BN
and Auxiliary BN. DAR-BN and Auxiliary BN essentially depends
on a main branch to implement the feature normalization for input
images. CBN accomplishes the normalization process by adaptively
accumulating the normalization results calculated with individual
Gaussian components.

3 APPROACH
3.1 Preliminary Knowledge on Batch

Normalization
First, we remind the calculation procedure of batch normalization.
Suppose the input feature map be X ∈ R𝐵×𝐷×𝐻×𝑊 , where 𝐵, 𝐷 , 𝐻 ,
and𝑊 denote the batch size, number of channels, height, and width,
respectively. We can flatten dimensions except for channels into a
single dimension, resulting in a two-dimensional tensor x ∈ R𝐷×𝑁
(𝑁 = 𝐵𝐻𝑊 ). Channel-wise statistical variables including mean
𝝁 ∈ R𝐷×1 and variance �̂�2 ∈ R𝐷×1 are estimated as,

𝝁 =
1
𝑁

𝑁∑︁
𝑖=1

x𝑖 , (1)

�̂�2 =
1
𝑁

𝑁∑︁
𝑖=1
(x𝑖 − 𝝁)2, (2)

where x𝑖 ∈ R𝐷×1 represents the feature of the 𝑖-th point. During the
network optimization, these statistical variables are accumulated
with the moving average operation:

𝝁 := 𝜆𝝁 + (1 − 𝜆)𝝁, (3)

𝝈2 := 𝜆𝝈2 + (1 − 𝜆)�̂�2 . (4)

𝜆 is the momentum factor, determining the updating rate of 𝝁 and
𝝈 . Afterwards, the input feature x is normalized as below:

x̂ = 𝚺
− 1

2 (x − 𝝁), (5)

where 𝜖 denotes a constant. 𝚺 = diag(𝝈2), where diag(·) transforms
the input vector into a diagonal matrix. Finally, the feature values
are scaled and shifted with affine parameters 𝛾 and 𝛽 ,

x′ = 𝛾 x̂ + 𝛽. (6)

The batch normalization operation can remove the internal covari-
ate shift during the feedforward propagation of neural networks,
which benefits to stabilizing and accelerating the training speed.
However, when the training samples are severely unbalanced, the
calculation of the statistical variables is dominated by head classes,
and the learning of affine parameters is also biased towards them.
This induces to overlook of tail classes in the normalization process,
which hinders the learning on less frequent classes.

3.2 Compound Batch Normalization
For modeling the feature space more comprehensively, we adopt a
mixture of statistical variables to fit the feature distribution. Sup-
pose the number of Gaussian distributions be𝑀 . The 𝑗-th Gaussian
distribution is represented with a triplet of variables, including prior
probability, mean, and variance variables, which are defined by 𝜏 𝑗 ,
𝝁 𝑗 , and 𝚺 𝑗 , respectively. 𝚺 𝑗 ∈ R𝐷×𝐷 is the diagonal variance ma-
trix. Then, the batch normalization can be extended to compound
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Figure 2: Compound batch normalization based on a mixture
of Gaussian distributions.
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Figure 3: Split batch normalization.

probability distributions. The input feature is normalized according
to𝑀 Gaussian distributions independently, deriving of𝑀 normal-
ization branches. Provided a feature vector x𝑖 , the normalization
with the 𝑗-th Gaussian distribution is formulated as follows,

x̂( 𝑗)
𝑖

= 𝚺

− 1
2

𝑗
(x𝑖 − 𝝁 𝑗 ). (7)

For the estimation of compound statistic variables, we apply
the moving average to implement the expectation-maximization
algorithm. First, we calculate the probability values of every feature
vector in𝑀 Gaussian distributions. Then, a temporary set of prior
probability, mean, and variance variables is estimated based on
input features and their probability values for the current batch of
samples. These temporary variables are accumulated in the moving
average manner. The algorithmic detail of the estimation process is
introduced below.
Expectation Step. Based on the previously estimated statistic
variables, we can calculate the probability values of all input feature
vectors with respect to𝑀 Gaussian distributions. The probability
of x𝑖 belonging to the 𝑗-th distribution is estimated as follows,

𝑤𝑖 𝑗 =
𝜏 𝑗 𝑓 (x𝑖 , 𝝁 𝑗 , 𝚺 𝑗 )∑𝑀
𝑘=1 𝜏𝑘 𝑓 (x𝑖 , 𝜇𝑘 , Σ𝑘 )

. (8)

𝑓 (·) is the Gaussian probability density function, which is formu-
lated as follows,

𝑓 (x𝑖 , 𝝁 𝑗 , 𝚺 𝑗 ) =
exp(− 1

2 (x𝑖 − 𝝁 𝑗 )
𝑇
𝚺
−1
𝑗 (x𝑖 − 𝝁 𝑗 ))√︃

(2𝜋)𝑀 |𝚺 𝑗 |
. (9)

Maximization Step. Temporary statistic parameters are estimated
according to the probability values for each training batch. Prac-
tically, the temporary prior probability 𝜏𝑐

𝑗
, mean 𝝁𝑐

𝑗
, and variance

�̂�𝑐
𝑗
of the 𝑗-th Gaussian distribution are calculated as below,

𝜏𝑐𝑗 =
1
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖 𝑗 , (10)

𝝁𝑐𝑗 =

∑𝑁
𝑖=1𝑤𝑖 𝑗x𝑖∑𝑁
𝑖=1𝑤𝑖 𝑗

, (11)

�̂�𝑐𝑗 =

∑𝑁
𝑖=1𝑤𝑖 𝑗 (x𝑖 − 𝝁 𝑗 )2∑𝑁

𝑖=1𝑤𝑖 𝑗
. (12)

Temporal Accumulation. Similar to the conventional batch nor-
malization, the moving average is applied to accumulate the above
temporary variables, namely,

𝜏 𝑗 := 𝜆𝑐𝜏 𝑗 + (1 − 𝜆𝑐 )𝜏𝑐𝑗 , (13)

𝝁 𝑗 := 𝜆𝑐𝝁 𝑗 + (1 − 𝜆𝑐 )𝝁𝑐𝑗 , (14)

𝚺 𝑗 := 𝜆𝑐𝚺 𝑗 + (1 − 𝜆𝑐 )diag(�̂� 𝑗 ). (15)

Here, diag(·) transforms the input vector into a diagonal matrix,
and 𝜆𝑐 is a constant.

Finally, separate scaling and bias coefficients are learned to re-
distribute the values of different normalization branches. Those
redistributed values are combined by the following weighted sum-
mation operation,

x′𝑖 =
𝑀∑︁
𝑗=1

𝑤𝑖 𝑗 (𝛾 𝑗 x̂( 𝑗)𝑖 + 𝛽 𝑗 ) . (16)

𝛾 𝑗 and 𝛽 𝑗 represent the scaling and bias coefficient of the 𝑗-th nor-
malization branch respectively. The calculation process of the above
normalization algorithm is illustrated in Figure 2. More details can
be found in Appendix A.

3.3 Split Batch Normalization
The generalized batch normalization can be easily incorporated into
existing convolutional neural networks by replacing their original
normalization layers. However, learning compound distributions
with the expectation-maximization algorithm may easily fall into
local optima and suffer from model collapse. To overcome this
problem, we set up a split normalization strategy to diversify the
Gaussian distributions with different sets of training samples.

First, we uniformly split all class labels into 𝑀 independent
groups according to their serial numbers, resulting in {C𝑗 }𝑀

𝑗=1,
where C𝑗 represents the 𝑗-th set of class labels. For 𝑗 ≠ 𝑘 , C𝑗 ∩C𝑘 =

∅. The union of all class sets (∪𝑀
𝑗=1C

𝑗 ) is equal to the sequence of
integers from 1 to the number of classes (𝐾). According to these
class sets, the input features in x can be separated into𝑀 groups
as well, namely {x𝑗 ∈ R𝐷×𝑁 𝑗 }𝑀

𝑗=1, where the features in x𝑗 come
from images with class labels in C𝑗 , and 𝑁 𝑗 represents the number
of features in the 𝑗-th group. Then, a split normalization strategy
illustrated in Figure 3 is devised to process𝑀 sets of features with𝑀
Gaussian distributions, respectively. Meanwhile, each set of features
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Figure 4: The proposed dual-path learning framework.

is utilized for calculating the other temporary mean and variance,

𝝁𝑠𝑗 =
1
𝑛 𝑗

𝑛 𝑗∑︁
𝑖=1

x𝑗
𝑖
, (17)

�̂�𝑠𝑗 =
1
𝑛 𝑗

𝑛 𝑗∑︁
𝑖=1
(x𝑗
𝑖
− 𝝁𝑠𝑗 )

2 . (18)

The above variables are also leveraged to update 𝝁 𝑗 and 𝚺 𝑗 : 𝝁 𝑗 :=
𝜆𝑠𝝁 𝑗 + (1 − 𝜆𝑠 )𝝁𝑠𝑗 , and 𝚺 𝑗 := 𝜆𝑠𝚺 𝑗 + (1 − 𝜆𝑠 )diag(�̂�𝑠𝑗 ). This pro-
cess is beneficial for diversifying multiple Gaussian distributions
and preventing the distribution collapse issue. The calculation pro-
cess of the split batch normalization is illustrated in Algorithm 3
(Appendix A).

3.4 Dual-Path Learning
As shown in Figure 4, we build up the classification model with
ResNet [17], which is learned with two branches. In the top branch,
the compound normalization is applied for implementing the net-
work feedforward process, while the split normalization is adopted
for standardizing intermediate features in the bottom branch. Given
an input image I ∈ R3×𝐻×𝑊 , we utilize a series of weak augmenta-
tion operations to transform it into I𝑤𝑒𝑎𝑘 , and the other series of
strong augmentation operations is leveraged to produce the other
variant of the input image denoted by I𝑠𝑡𝑟𝑔 . Feeding I𝑤𝑒𝑎𝑘 and I𝑠𝑡𝑟𝑔
into the branch based on the compound normalization, we can
obtain predicted class-wise logits o𝑐

𝑤𝑒𝑎𝑘
∈ R𝐾×1 and o𝑐𝑠𝑡𝑟𝑔 ∈ R𝐾×1,

respectively. 𝐾 denotes the number of classes. The split normal-
ization branch also derives class-wise logits o𝑠

𝑤𝑒𝑎𝑘
and o𝑠𝑠𝑡𝑟𝑔 from

I𝑤𝑒𝑎𝑘 and I𝑠𝑡𝑟𝑔 , respectively. The maximization of the similarity
between predictions of two branches is employed for optimizing
network parameters,

𝐿𝑠𝑖𝑚 = −S(o𝑐𝑠𝑡𝑟𝑔, detach(o𝑠𝑤𝑒𝑎𝑘 )) − S(o
𝑠
𝑠𝑡𝑟𝑔, detach(o𝑐𝑤𝑒𝑎𝑘 )).

(19)
The similarity metric S(o1, o2) is implemented with the cosine
function, S(o1, o2) = o𝑇1 o2/(| |o1 | |2 | |o2 | |2). ‘detach(o)’ represents
the stop gradient operation, which means o𝑠𝑤 and o𝑐𝑤 are regarded
as constants.

Algorithm 1: Algorithm for one training epoch of the dual
learning framework.

Input: Training images: {I𝑙 }𝐿𝑙=1, and their labels: {y𝑙 }𝐿𝑙=1;𝑀
sets of class labels: {C𝑗 }𝑀

𝑗=1;𝑀 sets of Gaussian
statistic variables: {𝜏 𝑗 }𝑀𝑗=1, {𝝁 𝑗 }

𝑀
𝑗=1, and {𝚺 𝑗 }

𝑀
𝑗=1.

Output: Optimized network parameters.
1: Shuffle training images and separate into minibatches with

size of 𝐵;
2: for 𝑖 = 1 to 𝐿

𝐵
do

3: Fetch a batch of training images B ∈ R𝐵×3×𝐻×𝑊 ;
4: Distort images in B with weak augmentation operations,

resulting in B𝑤𝑒𝑎𝑘 ;
5: Feed B𝑤𝑒𝑎𝑘 through the compound and split network paths,

resulting in O𝑐
𝑤𝑒𝑎𝑘

and O𝑠
𝑤𝑒𝑎𝑘

, respectively;
6: Distort B with strong augmentation operations, deriving of

B𝑠𝑡𝑟𝑔 ;
7: Feed B𝑠𝑡𝑟𝑔 through the compound and split network paths,

resulting in O𝑐𝑠𝑡𝑟𝑔 and O𝑠𝑠𝑡𝑟𝑔 , respectively;
8: Calculate training losses according to Eq. (19) and (20);
9: Update network parameters by stochastic gradient descent;
10: end for

Finally, the balanced softmax function is employed for calculat-
ing the training loss on the network prediction of strongly aug-
mented image I𝑠𝑡𝑟𝑔 ,

𝐿𝑐𝑙𝑠 = − log(
𝑛𝑦 exp(𝑜𝑐𝑠𝑡𝑟𝑔 [𝑦])∑𝐾
𝑖=1 𝑛𝑖 exp(𝑜𝑐𝑠𝑡𝑟𝑔 [𝑖])

) . (20)

𝑛𝑖 denotes the number of samples in the 𝑖-th class, and 𝑜𝑐𝑠𝑡𝑟𝑔 [𝑖] is
the 𝑖-th element in o𝑐𝑠𝑡𝑟𝑔 . 𝑦 represents the ground-truth label of the
input image I. The practical training procedure is implemented with
the minibatch size of 𝐵. One training epoch of the dual learning
framework is summarized in Algorithm 1.

In training stage, the running variables(mean,variance and prior
probability) of each Gaussian distribution are updated with tempo-
ral variables. During testing, the running variables are fixed, and
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only the calculation path of compound batch normalization is pre-
served while the path of split batch normalization is no longer used
in the inference process of the model.

4 EXPERIMENTS
We test the effectiveness of the proposed strategy on representative
synthetic data as well as real-world datasets in this section. Table 1
describes the details of long-tailed data used in this work. The
evaluation metric for image classification is top-1 accuracy (%).

4.1 Datasets
• CIFAR10-LT/100-LT. CIFAR10-LT/100-LT is formed by re-
sampling images from the original CIFAR10-LT/100 [23]
dataset. The class-wise sample sizes obey an exponential dis-
tribution. We denote the imbalance ratio as 𝜌 = 𝑁𝑚𝑎𝑥/𝑁𝑚𝑖𝑛 ,
where 𝑁𝑚𝑎𝑥 and 𝑁𝑚𝑖𝑛 is the sample size of the most fre-
quent class and the least frequent class, respectively. We
validate the performance of all models under three settings
for 𝜌 (∈ {100, 50, 10}).
• ImageNet-LT. ImageNet-LT is a subset of the ImageNet1K [33]
dataset that contains images from 1000 categories, with a
maximum of 1280 images per class and a minimum of 5 im-
ages per class. The dataset consists of 115.8k training images,
20k validation images, and 50k test images.
• Places-LT. Places-LT features an unbalanced training set
from Places-2 [50], with 62,500 images for 365 classes. The
class frequencies are distributed according to a natural power
law with a maximum of 4,980 images per class and a min-
imum of 5. The validation and testing sets are evenly dis-
tributed, with 20 and 100 images per class in each.
• iNaturalist2018There are 437K images in iNaturalist-2018 [35],
with 6 degrees of label granularity. This dataset is challeng-
ing since the labels are long-tailed and fine-grained. We only
evaluate the most granular descriptors (species), resulting in
8142 distinct classes with a naturally imbalanced distribution.

Table 1: Introduction of long-tailed datasets used in the ex-
periments. Noted that ∗means original data size in CIFAR10
and CIFAR100

Dataset Classs 𝜌 Train Val. Test

CIFAR10-LT 10 10-100 50k∗ - 10k
CIFAR100-LT 100 10-100 50k∗ - 10k
ImageNet-LT 1000 256 ∼115.8k 20k 50k
Places-LT 365 996 62.5k 7.3k 36.5k
iNaturalist2018 8142 500 ∼437.5k ∼24.4k ∼149.4k

4.2 Implementation Detail
Our method is implemented with PyTorch [31]. The weak aug-
mentation is composed of random cropping and flipping, whereas
AutoAugment [11] is used to generate strongly augmented images.
We use SGD as the optimizer, with a learning rate of 0.05 that decays
concerning the cosine annealing schedule. The number of training
epochs is set to 400, and the mini-batch size is set to 128. 𝜆, 𝜆𝑐 and

𝜆𝑠 are all set to 0.1. Without specification, the backbone is ResNet32,
and all models are trained from scratch by default.

4.3 Ablation Studies
This section examines the efficacy of each component of the pro-
posed approach and provides a detailed experimental study.

Components Analysis We conduct comprehensive ablation re-
search to validate the essential components of our framework. Ta-
ble 2 shows the results of the experiments. The loss criteria for
evaluating the consistency between predictions and provided la-
bels is the Balanced Softmax Cross-Entropy [32]. As can be seen
in Table 2, using CBN (compound batch normalization) improves
performance significantly. For example, on the CIFAR10-LT dataset
with 𝜌 = 100, the CBN results in a 2.25% increase in accuracy. The
SBN (split batch normalization) assists in diversifying the statistical
variables of multiple Gaussian distributions. The DPL (dual-path
learning) approach, which was devised for feature learning, results
in considerable performance gains. When 𝜌 is set to 100, 50, and 10,
the accuracy of CIFAR100-LT is raised by 0.67%, 1.49%, and 1.38%,
respectively.
Single-Modal Gaussian vs. Multi-Modal Gaussian. We first
highlight the significance of compound normalization mentioned
in section 3.2. We follow [32] to evaluate the classification accu-
racy on three disjoint sets of classes: many-shot (classes with more
than 100 training samples), medium-shot (classes with 20–100 train-
ing samples), and few-shot (classes with fewer than 20 training
samples). Figure 5 shows the top-1 accuracy against the number
of mixtures on CIFAR100-LT. Here, balanced loss and dual-path
learning are employed in this comparison. The plot demonstrates
that estimating multiple Gaussian distributions favors all three sub-
groups. As can be seen that, multiple Gaussians (M>1) are superior
to single Gaussian (M=1) while too large M (larger than 4) cannot
bring continuous performance gain since the difficulty of parameter
estimation increases as M grows up. Apart from this, our proposed
method causes subtle increase of computational burden compared
to the baseline method. For example, when ResNet32 is used as the
backbone, our model (M=4) occupies the space of 0.464M compared
to original 0.461M in memory. Besides, the training process of the
baseline and our approach consumes 3 hours and 4 hours respec-
tively on CAFIR10-LT under imbalance factor of 100. The inference
time difference between our method and the baseline can be very
small.
Different Backbones. To test whether our method can generalize
to other network architectures, we try to apply it to various vari-
ants of ResNet. The experimental results are presented in Figure 6.
Unlike conventional residual networks, ResNet-20/32/44/56/110 is
built upon three hyper-blocks. As can be observed, the proposed
compound batch normalization consistently outperforms the con-
ventional batch normalization across network architectures.
Combination with Re-sampling and Re-weightingWe study
the impact of CBN on data re-sampling/re-weighting algorithms
in this subsection, by training our devised model with those al-
gorithms. We accomplish decoupling training by decoupling the
learning procedure into representation learning (80% epochs) and
classification learning (20% epochs). The re-sampling/re-weighting
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Table 2: Analysis of different components. The experiments are conducted on CIFAR10-LT and CIFAR100-LT, and we train the
model from scratch for all cases. The ‘Baseline’ models are trained with AutoAugment [11] transforms and balanced loss [32].
‘SBN’ and ‘CBN’ indicate split batch normalization and compound batch normalization respectively. ‘DPL’ means dual path
learning mentioned in Section 3.4. The number of mixtures M is empirically set to 4 for CBN.

Method CIFAR10-LT CIFAR100-LT

𝜌=100 𝜌=50 𝜌=10 𝜌=100 𝜌=50 𝜌=10

Baseline 81.87 84.65 88.34 49.66 52.18 62.49
Baseline + SBN 82.03(+0.16) 84.73(+0.08) 88.89(+0.55) 49.86(+0.20) 52.44(+0.26) 62.55(+0.06)
Baseline + CBN 84.12(+2.25) 86.75(+2.10) 89.89(+1.55) 52.16(+2.50) 57.26(+5.08) 64.37(+1.88)
Baseline + CBN + SBN 84.31(+2.44) 87.21(+2.56) 90.44(+2.10) 52.76(+3.10) 58.04(+5.86) 64.97(+2.48)
Baseline + CBN + SBN + DPL 84.98(+3.11) 88.70(+4.05) 91.82(+3.48) 53.31(+3.65) 58.13(+5.95) 65.35(+2.86)

Figure 5: Performance of models trained with various num-
bers of Gaussian distributions on three disjoint subgroups.
CIFAR100-LT with 𝜌 = 100 is used for training and testing.

Figure 6: We test our technique on CIFAR10-LT with an im-
balance factor of 100 and the number of mixtures is set to 4.

method is only applied for fine-tuning parameters of classifiers
during the classification learning stage while the parameters of
the feature extractor are fixed. The backbone used in Table 3 is
ResNet32, and we evaluate the top-1 accuracy on three disjoint
subgroups on CIFAR100 with an imbalance factor of 100. We set (I)

Table 3: Performance of our compound batch normaliza-
tion (CBN) incorporated with data re-sampling (RS), data
re-weighting (RW), and decoupling training (DT).

EXP CBN DT RW RS Total Many Medium Few

(I) % % % % 49.66 66.93 51.20 28.24
(II) % " % " 49.62 67.17 50.61 28.54
(III) % " " % 50.56 62.49 52.08 35.21
(IV) % " " " 50.66 60.73 52.47 37.07

(V) " % % % 52.16 69.26 54.18 30.34
(VI) " " % " 52.76 70.32 55.17 29.97
(VII) " " " % 52.83 69.34 55.58 30.82
(VIII) " " " " 52.86 68.65 55.61 31.67

as the baseline that the model is trained with AutoAugment [11]
transforms and balanced loss [32]. Experiment (II) demonstrates
that merely using re-sampling and decoupling training is ineffective
in improving the accuracy. On the other hand, experiments (III)
and (V) boost the baseline performance by promoting the accuracy
on tail classes, but degrade the peformance on head classes. For
our compound normalization, it delivers significant increases for
most classes (except for ’Many’ in (VIII) and ’Few’ in (VI)) when
combining re-weighting or re-sampling with decoupling training.

4.4 Comparison with State-of-the-art Methods
We compare our method against existing algorithms, including MiS-
LAS [48], LADE [19], ACE [2], DRO-LT [34], PaCo [12], DiVE [18],
IB+Focal [30], VS [22], TCM [41], DisAlign [46], and GistNet [27]
on datasets mentioned in Table 1.
Results on CIFAR10-LT/100-LT. Table 4 summarizes the de-
tails, showing that all existing cutting-edge long-tailed approaches
produce promising results. In comparison to previous approaches,
our compound batch normalization properly accommodates the
distribution shift between training and testing, resulting in a signif-
icant improvement. In particular, we attain an average precision of
85.0%/53.3%, whereas the available best of the rest is 82.8%/52.0% un-
der imbalance condition 𝜌 = 100 for CIFAR10-LT and CIFAR100-LT,
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Table 4: Comparison against other methods on CIFAR10-LT
and CIFAR100-LT. ResNet32 is used as the backbone model.

Methods CIFAR10-LT CIFAR100-LT

𝜌 = 100 𝜌 = 50 𝜌 = 10 𝜌 = 100 𝜌 = 50 𝜌 = 10

MiSLAS [48] 82.1 85.7 90.0 47.0 52.3 63.2
LADE [19] - - - 45.4 50.5 61.7
ACE [2] 81.4 84.9 - 49.6 51.9 -
DRO-LT [34] - - - 47.3 57.6 63.4
PaCo [12] - - - 52.0 56.0 64.2
DiVE [18] - - - 45.4 51.1 62.0
SSD [25] - - - 46.0 50.5 62.3
IB+Focal [30] 78.0 82.4 87.9 45.0 48.9 59.5
VS [22] 80.8 - - 43.5 - -
TCM [41] 82.8 84.3 89.7 45.5 51.1 61.3
Ours 85.0 88.7 91.8 53.3 60.0 65.4

Table 5: Comparison against other methods on ImageNet-LT.
ResNet50 is used as the backbone model.

Methods Top-1 Accuracy

MiSLAS [48] 52.7
DisAlign [46] 52.9
LADE [19] 52.0
ACE [2] 54.7
DRO-LT [34] 53.5
PaCo [12] 57.0
TCM [41] 48.4
Ours 57.4

respectively. The compound normalization method can be consid-
ered of as a novel genre which is orthogonal to existing re-sampling,
re-weighting strategies. More analysis can be noticed in Table 3.
Results on ImageNet-LT. On ImageNet-LT, Table 5 presents de-
tailed experimental results for comparisons with contemporary
state-of-the-art algorithms using the ResNet50. We observe that
PaCo [12] achieves comparable results (57.0%) that are slightly
inferior to ours (57.4%). However, PaCo extends the contrastive
framework MoCo [6, 16] by introducing a new momentum encoder,
which is much more demanding than our approach, to alleviate the
long-tail problem. In addition to PaCo, our approach outperforms
the remaining methods with an remarkable margin.
Results onPlaces-LT. Places-LT is a long-tail variation of Places2 [48].
The studies are carried out using the backbone ResNet152 which
is initialized with network parameters pre-trained on ImageNet.
Table 6 demonstrates that our method consistently surpasses the
state-of-the-art results with notable gains.
Results on iNaturalist2018. We examine our approach on the
real-world long-tailed dataset iNaturalist 2018. Table 7 shows the
experimental results. Our method outperforms contemporary state-
of-the-art approaches such as PaCo [12], and ACE [2]. The results
indicate that our approach can handle extremely unbalanced fine-
grained data in real-world scenarios despite the enormous number
of classes.

Table 6: Comparison against other methods on Places-LT.
ResNet152 is used as the backbone model.

Methods Top-1 Accuracy

MiSLAS [48] 40.4
DisAlign [46] 39.3
LADE [19] 38.8
PaCo [12] 41.2
GistNet [27] 39.6
Ours 42.7

Table 7: Comparison against other methods on iNaturalist
2018. ResNet50 is used as the backbone model.

Methods Top-1 Accuracy

MiSLAS [48] 71.6
DisAlign [46] 70.6
LADE [19] 70.0
ACE [2] 72.9
DRO-LT [34] 69.7
PaCo [12] 73.2
DiVE [18] 71.7
SSD [25] 71.5
IB+Focal [30] 65.4
GistNet [27] 70.8
TCM [41] 69.2
Ours 74.8

5 CONCLUSION
This paper presents a compound batch normalization approach
based on a mixture of Gaussian distributions that can comprehen-
sively describe the feature space while avoiding the dominance of
head classes. A moving average based expectation maximization
(EM) method is introduced to capture the statistical variables for
compound Gaussian distributions. The EM algorithm is sensitive
to initialization and may easily get trapped in local minima. To
tackle these issues, we build a dual-path learning approach that
incorporates split feature normalization to diversify the Gaussian
distributions. Extensive results on frequently used datasets show
that the proposed method surpasses existing methods in long-tailed
image classification by a considerable margin. To conclude, we
present a novel perspective to address the imbalance issue at the
feature level, which is inspiring to future work on this topic.
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A APPENDIX

Algorithm 2: Algorithm for the calculation process of the
generalized batch normalization.

Input: Features: x ∈ R𝐷×𝑁 ;𝑀 sets of Gaussian statistic
variables: {𝜏 𝑗 }𝑀𝑗=1, {𝝁 𝑗 }

𝑀
𝑗=1, and {𝚺 𝑗 }

𝑀
𝑗=1.

Output: Normalized features; updated Gaussian statistic
variables.

1: Standardize x with Gaussian distributions: x̂𝑗
𝑖
= 𝚺

− 1
2

𝑗
(x𝑖 − 𝝁 𝑗 ),

for 𝑖 ∈ [1, 𝑁 ] and 𝑗 ∈ [1, 𝑀];
2: Calculate probabilities of input features in Gaussian

distributions:𝑤𝑖 𝑗 =
𝜏 𝑗 𝑓 (x𝑖 ,𝝁 𝑗 ,𝚺𝑗 )∑𝑀

𝑘=1 𝜏𝑘 𝑓 (x𝑖 ,𝜇𝑘 ,Σ𝑘 )
;

3: Aggregate results of normalization branches:
x′
𝑖
=
∑𝑀
𝑗=1𝑤𝑖 𝑗 (𝛾 𝑗 x̂

( 𝑗)
𝑖
+ 𝛽 𝑗 );

4: if training then
5: Calculate temporary Gaussian statistic variables:

𝜏𝑐
𝑗
= 1
𝑁

∑𝑁
𝑖=1𝑤𝑖 𝑗 , 𝝁

𝑐
𝑗
=

∑𝑁
𝑖=1 𝑤𝑖 𝑗x𝑖∑𝑁
𝑖=1 𝑤𝑖 𝑗

, and

�̂�𝑐
𝑗
=

∑𝑁
𝑖=1 𝑤𝑖 𝑗 (x𝑖−�̂�𝑐𝑗 )2∑𝑁

𝑖=1 𝑤𝑖 𝑗

;
6: Update permanent Gaussian statistic variables:

𝜏 𝑗 ← 𝜆𝑐𝜏 𝑗 + (1 − 𝜆𝑐 )𝜏𝑐𝑗 , 𝝁 𝑗 ← 𝜆𝑐𝝁 𝑗 + (1 − 𝜆𝑐 )𝝁𝑐𝑗 , and
𝚺 𝑗 ← 𝜆𝑐𝚺 𝑗 + (1 − 𝜆𝑐 )diag(�̂�𝑐𝑗 ).

7: end if

Algorithm 3: Algorithm for the calculation process of the
split batch normalization.

Input: Features: x ∈ R𝐷×𝑁 , and their labels: y ∈ R𝑁 ;𝑀
sets of class labels: {C𝑗 }𝑀

𝑗=1;𝑀 sets of Gaussian
statistic variables: {𝜏 𝑗 }𝑀𝑗=1, {𝝁 𝑗 }

𝑀
𝑗=1, and {𝚺 𝑗 }

𝑀
𝑗=1.

Output: Normalized features; updated Gaussian statistic
variables.

1: Initialize feature groups: x𝑗 = [], for 𝑗 ∈ [1, 𝑀];
2: for 𝑖 = 1 to 𝑁 do
3: Retrieve the index of label class set 𝑠𝑖 which x𝑖 ’s label

belongs to;
4: Append x𝑖 into x𝑠𝑖 ;
5: end for
6: for 𝑗 = 1 to𝑀 do
7: Normalize x𝑗 with the 𝑗-th Gaussian distribution:

x̂𝑗 = 𝚺

− 1
2

𝑗
(x𝑗 − 𝝁 𝑗 );

8: Redistribute x̂𝑗 with the affine parameters of the 𝑗-th
normalization branch: x𝑗 ′ = 𝛾 𝑗 x̂𝑗 + 𝛽 𝑗 ;

9: if training then
10: Calculate temporary Gaussian statistic variables:

𝝁𝑠
𝑗
=
∑𝑁 𝑗

𝑖=1 x
𝑗
𝑖
/𝑁 𝑗 , and �̂�𝑠

𝑗
=
∑𝑁 𝑗

𝑖=1 (x
𝑗
𝑖
− 𝝁𝑠

𝑗
)2/𝑁 𝑗 , where

𝑁 𝑗 denotes the number of features in x𝑗 ;
11: Update permanent Gaussian statistic variables:

𝝁 𝑗 ← 𝜆𝑠𝝁 𝑗 + (1 − 𝜆𝑠 )𝝁𝑠𝑗 , and
𝚺 𝑗 ← 𝜆𝑠𝚺 𝑗 + (1 − 𝜆𝑠 )diag(�̂�𝑠𝑗 ).

12: end if
13: end for
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