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Abstract

Existing visual question reasoning methods usually fail
to explicitly discover the inherent causal mechanism and
ignore the complex event-level understanding that requires
jointly modeling cross-modal event temporality and causal-
ity. In this paper, we propose an event-level visual ques-
tion reasoning framework named Cross-Modal Question
Reasoning (CMQR), to explicitly discover temporal causal
structure and mitigate visual spurious correlation by causal
intervention. To explicitly discover visual causal struc-
ture, the Visual Causality Discovery (VCD) architecture
is proposed to find question-critical scene temporally and
disentangle the visual spurious correlations by attention-
based front-door causal intervention module named Local-
Global Causal Attention Module (LGCAM). To align the
fine-grained interactions between linguistic semantics and
spatial-temporal representations, we build an Interactive
Visual-Linguistic Transformer (IVLT) that builds the multi-
modal co-occurrence interactions between visual and lin-
guistic content. Extensive experiments on four datasets
demonstrate the superiority of CMQR for discovering visual
causal structures and achieving robust question reasoning.

1. Introduction
Event understanding [33, 37, 75] has become a promi-

nent research topic in video analysis because videos [44,
45, 46] have good potential to go beyond image-level un-
derstanding (scenes, people, objects, activities, etc.) to un-
derstand event temporality and causality. Accurate and ef-
ficient cognition and reasoning over complex events is ex-
tremely important in video-language understanding. Since
the expressivity of natural language can potentially describe
a richer event space [7] that facilitates the deeper event un-
derstanding, in this paper, we focus on complex (temporal,
causal) event-level visual question reasoning task, which
aims to fully understand richer multi-modal event space
and answer the given question in a causality-aware way.
To achieve event-level visual question reasoning [12, 3],
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Figure 1. An example of event-level counterfactual visual question
reasoning task and its structured causal model (SCM). The coun-
terfactual inference is to obtain the outcome of certain hypothesis
that do not occur. The SCM shows how the confounder induces
the spurious correlation. The green path is the unbiased visual
question reasoning. The red path is the biased one.

the model is required to achieve fine-grained understand-
ing of video and language content involving various com-
plex relations such as spatial-temporal visual relation, lin-
guistic semantic relation, and visual-linguistic causal de-
pendency. Most of the existing visual question reasoning
methods [38, 35, 55] use recurrent neural networks (RNNs)
[60], attention mechanisms [62] or Graph Convolutional
Networks [32] for relation reasoning between visual and
linguistic modalities. Although achieving promising re-
sults, the current visual question reasoning methods suffer
from the following two common limitations.

First, the existing visual question reasoning methods
usually focus on relatively simple events where temporal
understanding and causality discovery are simply not re-
quired to perform well, and ignore more complex and chal-
lenging events that require in-depth understanding of the
causality, spatial-temporal dynamics, and linguistic rela-
tions. As shown in Fig. 1 (a), the event-level counterfac-
tual visual question reasoning task requires the outcome of
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certain hypothesis that does not occur (e.g. “the driver let
the right vehicle pass the crossing first”) in the given video.
If we just simply correlate relevant visual contents, we can-
not to get the right inference result without discovering the
hidden spatial-temporal and causal dependencies. To ac-
curately reason about the imagined events under the coun-
terfactual condition, the model is required to not only con-
duct relational reasoning in a hierarchical way but also fully
explore the causality, logic, and spatial-temporal dynamic
structures of the visual and linguistic content. However, the
multi-level interaction and causal relations between the lan-
guage and spatial-temporal structure of the complex multi-
modal events is not fully explored in current methods.

Second, most of the visual question reasoning models
tend to capture the spurious visual correlations rather than
the true causal structure, which leads to an unreliable rea-
soning process [53, 67, 39, 47]. As shown in the SCM from
Fig. 1 (b), we can consider some frequently appearing vi-
sual concepts as the visual confounders. The “visual bias”
denotes the strong correlations between visual features and
answers. For example, the concepts “person” and “motor-
bike” are dominant in training set (Fig. 1 (c) and (d)) and
thus the predictor may learn the spurious correlation be-
tween the “person” with the “motorbike” without looking
at the collision region (causal scene C) to reason how actu-
ally the accident happens. As a result, it limits the reason-
ing ability of visual-linguistic question reasoning models if
they memorize the strong visual prior. Taking a causal look
at VideoQA, we partition the visual scenes into two parts:
1) causal scene C, which holds the question-critical infor-
mation, 2) non-causal scene N , which is irrelevant to the
answer. Thus, we scrutinize that the non-causal scene N is
also spuriously correlated with the answer A.

Such biased dataset entails two causal effects: the visual
bias B and non-causal scene N lead to the confounder Z,
and then affects the visual feature V , causal scene C, ques-
tion feature Q, visual-linguistic feature X , and the answer
A. Here, we can draw two causal links to describe these
causal effects: Z → {V,Q} → C → X and Z → A. If we
want to learn the true causal effect {V,Q} → C → X → A
while employing the biased dataset to train this model (Fig.
1 (d)), this model may simply correlate the concepts “per-
son” and “motorbike”, i.e., through Z → {V,Q} → X ,
and then use this biased knowledge to infer the answer, i.e.,
through Z → A. In this way, this model learns the spuri-
ous correlation between {V,Q} andA through the backdoor
path A ← Z → {V,Q} → X induced by the confounder
Z, as shown in Fig. 2 (b). Due to the existence of unobserv-
able visual confounders and complex visual-linguistic in-
teraction, the model learns the spurious correlation without
exploiting the true question intention and dominant visual
evidence to achieve robust question reasoning.

To address the aforementioned limitations, we propose

an event-level visual question reasoning framework named
Cross-Modal Question Reasoning (CMQR). To explicitly
uncover the visual causal structure, we propose a Visual
Causality Discovery (VCD) architecture that learns to find
the temporal causal scenes for the given question seman-
tics and mitigates the unobservable visual spurious corre-
lations by an attention-based causal front-door interven-
tion module named Local-Global Causal Attention Module
(LGCAM). To align the multi-modal interaction between
the appearance-motion and language representations, we
build an Interactive Visual-Linguistic Transformer (IVLT).
Experiments on SUTD-TrafficQA, TGIF-QA, MSVD-QA,
and MSRVTT-QA datasets show the advantages of our
CMQR over the state-of-the-art methods. The main con-
tributions can be summarized as follows:

• We propose a causality-aware event-level visual ques-
tion reasoning framework named Cross-Modal Ques-
tion Reasoning (CMQR), to discover cross-modal
causal structures via causal interventions and achieve
robust visual question reasoning and answering.

• We introduce the Visual Causality Discovery (VCD)
architecture that learns to find the temporal causal
scenes for a given question and mitigates the unobserv-
able visual spurious correlations by an attention-based
causal front-door intervention module named Local-
Global Causal Attention Module (LGCAM).

• We construct an Interactive Visual-Linguistic Trans-
former (IVLT) to align and discover the multi-modal
co-occurrence interactions between linguistic seman-
tics and spatial-temporal visual concepts.

2. Related Works
2.1. Visual Question Reasoning

Compared with the image-based visual question rea-
soning [4, 74, 2], event-level visual question reasoning
(VideoQA) is much more challenging due to the existence
of temporal dimension. To accomplish this task, the model
needs to capture spatial-temporal and visual-linguistic re-
lations. To explore relational reasoning, Xu et al. [69]
proposed an attention mechanism to exploit the appearance
and motion knowledge with the question as a guidance.
Later on, some hierarchical attention and co-attention based
methods [38, 14, 28, 35, 27, 22, 36, 41] are proposed to
learn appearance-motion and question-related multi-modal
interactions. Le et al. [35] proposed hierarchical condi-
tional relation network (HCRN) to construct sophisticated
structures for representation and reasoning over videos. Lei
et al. [36] employed sparse sampling to build a transformer-
based model named CLIPBERT and achieve video-and-
language understanding. However, previous works tend



to implicitly capture the spurious visual-linguistic correla-
tions, while we build a Visual Causality Discovery (VCD)
architecture to explicitly uncover the visual causal structure.

2.2. Relational Reasoning for Event Understanding

Besides VideoQA, relational reasoning has been ex-
plored in other event understanding tasks [43, 42, 18, 23,
50]. For example, Pan et al. [54] designed a high-order
actor-context-actor relation network to realize indirect rela-
tion reasoning for spatial-temporal action localization. To
localize a moment from videos for a given query, Nan et
al. [51] introduced a dual contrastive learning approach
to align the text and video by maximizing the mutual in-
formation between semantics and video clips. Wang et al.
[68] learned the deconfounded object-relevant association
for robust video object grounding. However, these meth-
ods only perform relational reasoning over visual modal-
ity and neglects the potential causal structures from linguis-
tic semantic relation, resulting in incomplete understanding
of visual-linguistic content. Additionally, our CMQR con-
ducts causality-aware spatial-temporal relational reasoning
to uncover the causal structure for visual-linguistic modal-
ity, and utilizes hierarchical semantic knowledge.

2.3. Causal Inference in Visual Learning

Compared with conventional debiasing techniques [66],
causal inference [56, 58, 72, 47] shows its potential in mit-
igating the spurious correlations [5] and disentangling the
desired model effects [6] for better generalization. Counter-
factual and causal inference have attracted increasing atten-
tion in visual explanations [19, 21, 64], scene graph gen-
eration [9, 61], image recognition [65, 67], video anal-
ysis [15, 30, 51], and vision-language tasks [8, 34, 1,
53, 73, 39, 47, 10]. However, most of the existing vi-
sual tasks are relatively simple. Although some recent
works CVL [1], Counterfactual VQA [53], CATT [73], and
IGV [39] focused on visual question reasoning tasks, they
adopted structured causal model (SCM) to eliminate either
the linguistic or visual bias without considering explicit
cross-modal causality discovery. Differently, our CMQR
aims for event-level visual question reasoning that requires
fine-grained understanding of spatial-temporal and visual-
linguistic causal dependency. Moreover, our Visual Causal-
ity Discovery (VCD) explicitly finds question-critic visual
scene and applies front-door causal interventions to dis-
cover visual causal structure.

3. Methodology

The CMQR is an event-level visual question reasoning
architecture, as shown in Fig. 2. In this section, we present
the detailed implementations of CMQR.

3.1. Visual Representation Learning

The goal of event-level visual question reasoning is to
deduce an answer ã from a video V with a given question q.
The video V of L frames is divided intoN equal clips. Each
clip of Ci of length T = bL/Nc is presented by two types
of visual features: frame-wise appearance feature vectors
F a
i = {fai,j |fai,j , j = 1, . . . , T} and motion feature vector

at clip level fmi . In our experiments, the vision-language
transformer with frozen parameters XCLIP [52] (other vi-
sual backbones are evaluated in Table 7) is used to extract
the frame-level appearance features F a and the clip-level
motion features Fm. Then, we use a linear layer to map F a

and Fm into the same d-dimensional feature space.

3.2. Linguistic Representation Learning

Each word of the question is respectively embedded
into a vector of 300 dimension by Glove [57] word em-
bedding, which is further mapped into a d-dimensional
space using linear transformation. Then, we represent
the corresponding question and answer semantics as Q =
{q1, q2, · · · , qL}, A = {a1, a2, · · · , aLa}, where L, La

indicate the length of Q and A, respectively. To ob-
tain contextual linguistic representations that aggregates
dynamic long-range temporal dependencies from multiple
time-steps, a Bert [13] model is employed to encode Q and
the answer A, respectively. Finally, the updated representa-
tions for the question and answer candidates can be written
as:

Q = {qi|qi ∈ Rd}Li=1

A = {ai|ai ∈ Rd}La
i=1

(1)

3.3. Visual Causality Discovery

For visual-linguistic question reasoning, we employ
Pearl’s structural causal model (SCM) [56] to model the
causal effect between video-question pairs (V,Q), causal
scene C, non-causal scene N , and the answer A, as shown
in Fig. 2 (a). We hope to train a video question answering
model to the learn the true causal effect {V,Q} → C →
X → A: the model should reason the answer A from video
feature V , causal-scene C and question feature Q instead
of exploiting the non-causal scene N and spurious correla-
tions induced by the confounders Z (i.e., the existence of
non-causal scene and overexploiting the co-occurrence be-
tween visual concepts and answer). In our SCM, the non-
interventional prediction can be expressed by Bayes rule:

P (A|V,Q) =
∑
z

P (A|V,Q, z)P (z|V,Q) (2)

However, the above objective learns not only the main di-
rect correlation from {V,Q} → X → A but also the spu-
rious one from the back-door path {V,Q} ← Z → A.
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An intervention on {V,Q} is denoted as do(V,Q), which
cuts off the link {V,Q} ← Z to block the back-door path
{V,Q} ← Z → A and eliminate the spurious correlation.
In this way, {V,Q} and A are deconfounded and the model
can learn the true causal effect {V,Q} → C → X → A.

3.3.1 Explicit Causal Scene Learning

Inspired by the fact that only part of the visual scenes are
critical to answering the question, we split the video V
into causal scene C and non-causal scene N (see the black
path in Fig. 2 (a)). Specifically, given the causal scene
C and question Q, we assume that the answer A is deter-
mined, regardless the variations of the non-causal scene N:
A ⊥ N |C,Q, where ⊥ denotes the probabilistic indepen-
dence. Therefore, we build an explicit causal scene learning
(ECSL) module to estimate the value of C.

For a video-question pair (v, q), we encode video in-
stance v as a sequence ofK visual clips. The ECSL module
aims to estimate the causal scene ĉ according to the ques-
tion q. Concretely, we first construct a cross-modal atten-
tion module to indicate the probability of each visual clip
belongs to causal scene (pĉ ∈ RK):

pĉ = softmax(G1
v(v) ·G1

q(q)
>) (3)

where G1
v and G1

q are fully connected layers to align cross-
modal representations. However, the soft mask makes ĉ
overlap. To achieve a differentiable selection on attentive
probabilities and compute the selector vector S ∈ RK on
the attention score over each clip (i.e., pĉ,i, i ∈ K), we em-
ploy Gumbel-Softmax [24] and estimate ĉ as:

ĉ = Gumbel-Softmax(pĉ,i) · v (4)

For a video-question pair (v, q), we obtain the original
video v and causal scene ĉ. According to Eq. (2), we pair
original video v and causal scene ĉ with q to synthesizes
two instances: (v, q) and (ĉ, q). Then, we feed these two
instances into visual front-door causal intervention (VFCI)
module to deconfound {V,Q} and A.

3.3.2 Visual Front-door Causal Intervention

In visual domains, it is hard to explicitly represent con-
founders due to complex data biases. Fortunately, the
front-door adjustment give a feasible way to calculate
P (A|do(V ), Q). In Fig. 2 (a), an additional mediator M
can be inserted betweenX andA to construct the front-door
path {V,Q} → X →M → A for transmitting knowledge.
For visual question reasoning, an attention-based model
P (A|V,Q) =

∑
m P (M = m|V,Q)P (A|M = m) will

select a few regions from the original video V and causal
scene C based on the question Q to predict the answer A,
where m denotes the selected knowledge from M . Thus,
the answer predictor can be represented by two parts: two
feature extractors V → X → M , C → X → M , and an
answer predictor M → A. In the following, we take the
visual interventional probability P (A|do(V ), Q) for origi-
nal video V as an example (the P (A|do(C), Q) for causal
scene C is implemented in the same way):

P (A|do(V ), Q) =

=
∑
m

P (M = m|do(V ), Q)P (A|do(M = m))

=
∑
m

P (M = m|V,Q)
∑
v

P (V = v)P (A|V = v,M = m)

(5)
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Figure 3. The Local-Global Causal Attention Module (LGCAM).

To implement visual front-door causal intervention Eq.
(5) in a deep learning framework, we parameterize the
P (A|V,M) as a network g(·) followed by a softmax layer
since most of visual-linguistic tasks are classification for-
mulations, and then apply Normalized Weighted Geometric
Mean (NWGM) [70] to reduce computational cost:

P (A|do(V ), Q) ≈ Softmax[g(M̂, V̂ )]

= Softmax
[
g(
∑
m

P (M = m|f(V ))m,
∑
v

P (V = v|h(V ))v)
]

(6)
where M̂ and V̂ denote the estimations of M and V , h(·)
and f(·) denote the network mappings. The derivation de-
tails from Eq. (5)-(6) is given in the Appendix B.

Actually, M̂ is essentially an in-sample sampling process
where m denotes the selected knowledge from the current
input sample V , V̂ is essentially a cross-sample sampling
process since it comes from the other samples. Therefore,
both M̂ and V̂ can be calculated by attention networks [73].

Therefore, we propose a Local-Global Causal Attention
Module (LGCAM) that jointly estimates M̂ and V̂ to in-
crease the representation ability of the causality-aware vi-
sual features. M̂ can be learned by local-local visual fea-
ture FLL, V̂ can be learned by local-global visual feature
FLG. Here, we take the computation of FLG as the exam-
ple to clarify our LGCAM, as shown in the upper part of
Fig. 3. Specifically, we firstly calculate FL = f(V ) and
FG = h(V ) and use them as the input, where f(·) denotes
the visual feature extractor (frame-wise appearance feature
or motion feature) followed by a query embedding function,
and h(·) denotes the K-means based visual feature selector
from the whole training samples followed by a query em-
bedding function. Thus, FL represents the visual feature
of the current input sample (local visual feature) and FG

represents the global visual feature. The FG is obtained by
randomly sampling from the whole clustering dictionaries
with the same size as FL. The LGCAM takes FL and FG
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as the inputs and computes local-global visual feature FLG

by conditioning global visual feature FG to the local visual
feature FL. The output of the LGCAM is denoted as FLG:

Input : Q = FL,K = FG, V = FG

Local-Global : H = [WV V,WQQ�WKK]

Activation Mapping : H ′ = GELU(WHH + bH)

Attention Weights : α = Softmax(WH′H ′ + bH′)

Output : FLG = α� FG

(7)

where [., .] denotes concatenation operation, � is the
Hadamard product, WQ, WK , WV , WH′ denote the
weights of linear layers, bH and bH′ denote the biases of
linear layers. From Fig. 2 (b), the visual front-door causal
intervention module has two branches for appearance and
motion features. Therefore, the FLG has two variants, one
for appearance branch F a

LG, and the other for motion branch
Fm
LG. The FLL can be computed similarly as FLG when

setting Q = K = V = FL. Finally, the FLG and
FLL are concatenated FC = [FLG, FLL] for estimating
P (A|do(V ), Q).

3.4. Interactive Visual-Linguistic Transformer

To align the fine-grained interactions between linguis-
tic semantics and spatial-temporal representations, we build
an Interactive Visual-Linguistic Transformer (IVLT) that
contains four sub-modules, namely Question-Appearance
(QA), Question-Motion (QM), Appearance-Semantics (AS)
and Motion-Semantics (MS), as shown in Fig. 4 (a).
The QA (QM) module consists of an R-layer Multi-modal
Transformer Block (MTB) (Fig. 4 (b)) for multi-modal in-
teraction between the question and the appearance (motion)
features. Similarly, the AS (MS) uses the MTB to infer the
appearance (motion) information given the questions.



For QA and QM modules, the input of MTB is question
representation Q obtained from section 3.2 and causality-
aware visual representations F a

C , Fm
C obtained from sec-

tion 3.3.2, respectively. To maintain the positional infor-
mation of the video sequence, the appearance feature F a

C

and motion feature Fm
C are firstly added with the learned

positional embeddings P a and Pm, respectively. Thus,
for r = 1, 2, . . . , R layers of the MTB, with the input
F a
C = [F a

C , P
a], Fm

C = [Fm
C , P

m], Qa, and Qm, the multi-
modal output for QA and QM are computed as:

Q̂a
r = Ua

r + σa(LN(Ua
r ))

Q̂m
r = Um

r + σm(LN(Um
r ))

Ua
r = LN(Q̂a

r−1) + MMAa(Q̂a
r−1, F

a
C)

Um
r = LN(Q̂m

r−1) + MMAm(Q̂m
r−1, F

m
C )

(8)

where Q̂a
0 = Qh, Q̂m

0 = Qh, Ua
r and Um

r are the inter-
mediate feature at r-th layer of the MTB. LN(·) denotes
the layer normalization operation and σa(·) and σm(·) de-
note the two-layer linear projections with GELU activa-
tion. MMA(·) is the Multi-head Multi-modal Attention
layer. We denote the output semantics-aware appearance
and motion features of QA and MA as La = Q̂a = Q̂a

R and
Lm = Q̂m = Q̂m

R , respectively.
Similar to Eq. (8), given the visual appearance and mo-

tion feature F a
LG, Fm

LG and question semantics La, Lm, the
multi-modal output for AS and MS are computed as:

L̂a
r = Ua

r + σa(LN(Ua
r ))

L̂m
r = Um

r + σm(LN(Um
r ))

Ua
r = LN(F a

C,r−1) + MMAa(F a
C,r−1, L

a)

Um
r = LN(Fm

C,r−1) + MMAm(Fm
C,r−1, L

m)

(9)

where F a
C,0 = F a

C , Fm
C,0 = Fm

C . The output visual clues of
QA and MA are denoted as F a

s = L̂a
R and Fm

s = L̂m
R , re-

spectively. Then, the output of the AS and MS are concate-
nated to make the final visual output F = [F a

s , F
m
s ] ∈ R2d.

The output of the QA and QM are concatenated to make the
final question semantics output L = [La, Lm] ∈ R2d.

3.5. Cross-modal Feature Fusion and Training

For (v, q) and (ĉ, q), their visual and linguistic outputs
of the IVLT model are denoted as F, Fc and L,Lc, respec-
tively. Inspired by the adaptive feature fusion [46] (refer to
Appendix A), we obtain the refined linguistic feature vec-
tors {L̃, L̃c}, which are then concatenated to form the final
semantic-ware linguistic feature L̃ = [L̃, L̃c] ∈ R2d.

To obtain the semantic-aware visual feature, we compute
the visual feature F̃k by individually conditioning each in-
stance from visual features {F1, F2} = {F, Fc} to each in-
stance from refined linguistic features {L̃1, L̃2} = {L̃, L̃c}

using the same operation as [35]. Then, these semantic-
aware visual features F̃k (k = 1, 2) are concatenated to
form the final semantic-aware visual feature F̃ ∈ R2d.

Finally, we apply different answer decoders [35] (i.e.,
open-ended, multi-choice, and counting) to (v, q) and (ĉ, q)
and obtain original prediction and causal prediction losses:

Lo = XE(CMQR(v, q), a)
Lc = XE(CMQR(ĉ, q), a)

(10)

where XE denotes the cross-entropy loss, a is the ground-
truth answer, CMQR denotes our proposed framework. Fur-
thermore, to make the predictions of original and causal
scene consistent, we apply KL-divergence between the pre-
dictions of (v, q) and (ĉ, q):

La = KL(CMQR(v, q),CMQR(ĉ, q)) (11)

Finally, the learning objective of our CMQR is:

LCMQR = Lo + λcLc + λaLa (12)

4. Experiments
4.1. Datasets

In this paper, we evaluate our CMQR on four VideoQA
datasets. SUTD-TrafficQA [71] consists of 62,535 QA
pairs and 10,090 traffic videos. There are six challenging
reasoning tasks including basic understanding, event fore-
casting, reverse reasoning, counterfactual inference, intro-
spection and attribution analysis. TGIF-QA [25] has 165K
QA pairs collected from 72K animated GIFs. It has four
tasks: repetition count, repeating action, state transition,
and frame QA. MSVD-QA [69] contains 50,505 algorithm-
generated question-answer pairs and 1,970 trimmed video
clips. MSRVTT-QA [69] contains 10,000 trimmed video
clips and 243,680 question-answer pairs. More details of
these datasets are given in Appendix D.

4.2. Implementation Details

For fair comparisons, we follow [35] to divide the videos
into 8 clips for all datasets. The XCLIP [49] with ViT-L/14
pretrained on Kinetics-600 dataset is used to extract the ap-
pearance and motion features. For the question, we adopt
the pre-trained 300-dimensional Glove [57] word embed-
dings to initialize the word features in the sentence. For
parameter settings, we set the dimension d of hidden layer
to 512. For the Multi-modal Transformer Block (MTB), the
number of layers r is set to 3 for SUTD-TrafficQA, 8 for
TGIF-QA, 5 for MSVD-QA, and 6 for MSRVTT-QA. The
number of attentional heads H is set to 8. The dictionary is
initialized by applying K-means over the whole visual fea-
tures from the whole training set to get 512 clusters and is
updated during end-to-end training. We train the model us-
ing the Adam optimizer with an initial learning rate 2e-4,



Method Basic Attri. Intro. Counter. Fore. Rev. All
VQAC† [31] 34.02 49.43 34.44 39.74 38.55 49.73 36.00
MASN† [59] 33.83 50.86 34.23 41.06 41.57 50.80 36.03
DualVGR† [63] 33.91 50.57 33.40 41.39 41.57 50.62 36.07
HCRN [35] - - - - - - 36.49
HCRN† [35] 34.17 50.29 33.40 40.73 44.58 50.09 36.26
Eclipse [71] - - - - - - 37.05
IGV† [39] - - - - - - 37.71
CMQR (ours) 36.10 52.59 38.38 46.03 48.80 58.05 38.63

Table 1. Results on SUTD-TrafficQA dataset. ‘†’ indicates the
result re-implemented by the officially code.

Method Action↑ Transition↑ FrameQA↑ Count↓
ST-VQA [25] 62.9 69.4 49.5 4.32
Co-Mem [16] 68.2 74.3 51.5 4.10
PSAC [38] 70.4 76.9 55.7 4.27
HME [14] 73.9 77.8 53.8 4.02
GMIN [20] 73.0 81.7 57.5 4.16
L-GCN [22] 74.3 81.1 56.3 3.95
HCRN [35] 75.0 81.4 55.9 3.82
HGA [27] 75.4 81.0 55.1 4.09
QueST [26] 75.9 81.0 59.7 4.19
Bridge [55] 75.9 82.6 57.5 3.71
QESAL[40] 76.1 82.0 57.8 3.95
ASTG [29] 76.3 82.1 61.2 3.78
CASSG [48] 77.6 83.7 58.7 3.83
HAIR [41] 77.8 82.3 60.2 3.88
CMQR (ours) 78.1 82.4 62.3 3.83

Table 2. Comparison with state-of-the-art methods on TGIF-QA.

a momentum 0.9, and a weight decay 0. The learning rate
reduces by half when the loss stops decreasing after every
5 epochs. The batch size is set to 64. All experiments are
terminated after 50 epochs. λc and λa are all set to 0.1.

4.3. Comparison with State-of-the-art Methods

Since the splits of six reasoning tasks are not pro-
vided by the original SUTD-TrafficQA dataset [71], we di-
vide the SUTD-TrafficQA dataset into six reasoning tasks
according to the question types. The results in Table
1 demonstrate that our CMQR achieves the best perfor-
mance for six reasoning tasks including basic understand-
ing, event forecasting, reverse reasoning, counterfactual in-
ference, introspection and attribution analysis. Specifically,
the CMQR improves the state-of-the-art methods Eclipse
[71] and IGV [39] by 1.58% and 0.92%. Compared with
the re-implemented methods VQAC†, MASN†, DualVGR†,
HCRN† and IGV†, our CMQR outperforms these methods
for introspection and counterfactual inference tasks that re-
quire causal relational reasoning among the causal, logic,
and spatial-temporal structures of the visual and linguistic
content. These results show that our CMQR has strong abil-
ity in modeling multi-level interaction and causal relations
between the language and spatial-temporal structure.

To evaluate the generalization ability of CMQR on other
event-level datasets, we conduct experiments on TGIF-QA,

Method What Who How When Where All
HGA [27] 23.5 50.4 83.0 72.4 46.4 34.7
GMIN [20] 24.8 49.9 84.1 75.9 53.6 35.4
QueST [26] 24.5 52.9 79.1 72.4 50.0 36.1
HCRN [35] - - - - - 36.1
CASSG [48] 24.9 52.7 84.4 74.1 53.6 36.5
QESAL[40] 25.8 51.7 83.0 72.4 50.0 36.6
Bridge [55] - - - - - 37.2
HAIR [41] - - - - - 37.5
VQAC [31] 26.9 53.6 - - - 37.8
MASN [59] - - - - - 38.0
HRNAT [17] - - - - - 38.2
ASTG [29] 26.3 55.3 82.4 72.4 50.0 38.2
DualVGR [63] 28.6 53.8 80.0 70.6 46.4 39.0
IGV [39] - - - - - 40.8
CMQR (Ours) 37.0 59.9 81.0 75.8 46.4 46.4

Table 3. Comparison with state-of-the-art methods on MSVD-QA.

MSVD-QA, and MSRVTT-QA datasets, as shown in Table
2-4. From Table 2, we can see that our CMQR achieves the
best performance for Action and FrameQA tasks. Addition-
ally, our CMQR also achieves relatively high performance
for Transition and Count tasks. For the Transition task,
the CMQR also outperforms nearly all comparison meth-
ods. For the Count task, we also achieve a competitive MSE
value. From Table 3, our CMQR outperforms all the com-
parison methods by a significant margin. For What, Who,
and When types, the CMQR outperforms all the comparison
methods. It can be observed in Table 4 that our CMQR per-
forms better than the best performing method IGV [39]. For
What, Who, and When question types, the CMQR performs
the best. In Table 3-4, we achieve lower performance than
previous method for How and Where questions. Actually,
the number of How and Where samples are much smaller
than that of the other question types. Due to the existence of
data bias, the model tends to learn spurious correlation from
other question types, which leads to the performance degra-
dation. Nonetheless, we can still obtain promising perfor-
mance for When, which also has limited samples. This val-
idates that our CMQR indeed mitigate the spurious correla-
tions for most of the question types. Moreover, our CMQR
can generalize well across different datasets and has good
potential to model multi-level interaction and causal rela-
tions between the language and spatial-temporal structure.
The main reasons for good generalization is that our CMQR
can mitigate the visual bias by explicit causal scene learning
and front-door causal intervention.

4.4. Ablation Studies

We further conduct ablation experiments to verify the
contributions of five essential components: 1) Explicit
Causal Scene Learning (ECSL), 2) Visual Front-door
Causal Intervention (VFCI), 3) Visual Causality Discov-
ery (VCD), 4) Visual Causality Discovery (VCD), and In-
teractive Visual-Linguistic Transformer (IVLT). From Ta-



What types of vehicles were involved in 

the accident?

 (√) Motorcycle / Scooter

How did the vehicle(s) crash?

(√) Side-collision

How fast did the vehicles involved in the 

accident move before they crash, based 

on the speed of the fastest one?

(√) Slower than other vehicles

 Which event will happen next?

(√) The driver stop the car and call the ambulance

 AttributionBasic Understanding

 Reverse Reasoning  Event Forecasting Time

(a) True example (b) Failure Example

What's the condition of the road?

(×) Rainy
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Would the accident still happen if there were no snow?

(×) No, a good day would have provided enough visible distance to safely avoid the accident

(√) Yes, the car is at high speed and the driver does not notice the warning plate

What might happened before?

(×) The black sedan lost its control

(√) The black sedan broke down

Basic Understanding  Reverse Reasoning

Time
Counterfactual Inference

Figure 5. Visualization of visual-linguistic causal reasoning example on SUTD-TrafficQA dataset. The color windows denotes the concen-
trated causal scenes for the corresponding question types.

Method What Who How When Where All
QueST [26] 27.9 45.6 83.0 75.7 31.6 34.6
HRA [11] - - - - - 35.0
MASN [59] - - - - - 35.2
HRNAT [17] - - - - - 35.3
HGA [27] 29.2 45.7 83.5 75.2 34.0 35.5
DualVGR [63] 29.4 45.5 79.7 76.6 36.4 35.5
HCRN [35] - - - - - 35.6
VQAC [31] 29.1 46.5 - - - 35.7
CASSG [48] 29.8 46.3 84.9 75.2 35.6 36.1
GMIN [20] 30.2 45.4 84.1 74.9 43.2 36.1
QESAL[40] 30.7 46.0 82.4 76.1 41.6 36.7
Bridge [55] - - - - - 36.9
HAIR [41] - - - - - 36.9
ClipBert [36] - - - - - 37.4
ASTG [29] 31.1 48.5 83.1 77.7 38.0 37.6
IGV [39] - - - - - 38.3
CMQR (ours) 32.2 50.2 82.3 78.4 38.0 38.9

Table 4. Comparison with state-of-the-art methods on MSRVTT.

Datasets CMQR w/o CMQR w/o CMQR w/o CMQR w/o CMQRECSL VFCI VCD IVLT
SUTD 37.68 37.42 37.28 37.75 38.63
MSVD 44.9 44.7 43.6 44.8 46.4
MSRVTT 38.1 38.0 37.5 37.7 38.9

Table 5. Ablation study on three datasets.

Models SUTD-TrafficQA MSVD-QA MSRVTT-QA
Co-Mem [16] 35.10 34.6 35.3
Co-Mem [16]+ VCD 37.12 (+2.02) 40.7 (+6.1) 38.0 (+2.7)
HGA [27] 35.81 35.4 36.1
HGA [27]+ VCD 37.23 (+1.42) 41.9 (+6.5) 38.2 (+2.1)
HCRN [35] 36.49 36.1 35.6
HCRN [35]+ VCD 37.54 (+1.05) 42.2 (+6.1) 37.8 (+2.2)
Our Backbone 37.42 44.7 38.0
Our Backbone + VCD 38.63 (+1.21) 46.4 (+1.9) 38.9 (+0.9)

Table 6. The VCD module is applied to non-causal models.

ble 5, our CMQR achieves the best performance across all
datasets and tasks. Without ECSL, the performance drops
significantly due to the lack of the causal scene. This shows

that the ECSL indeed find the causal scene that facilitate
question reasoning. The performance of CMQR w/o ECSL,
CMQR w/o VFCI are all lower than that of the CMQR. This
validates that both the causal scene and visual front-door
causal intervention are indispensable and contribute to dis-
cover the causal structures, and thus improve the model per-
formance. The performance of CMQR w/o IVLT is higher
than that of CMQR w/o VCD shows that visual and lin-
guistic causal intervention modules contribute more than
the IVLT due to the existence of cross-modal bias. With
all components, our CMQR performs the best because all
components contribute to our CMQR.

To validate the effectiveness of our causal module VCD
in non-causal models, we apply the VCD to three state-of-
the-art models Co-Mem [16], HGA [27] and HCRN [35].
As shown in Table 6, our VCD brings each backbone model
a sharp gain across all benchmark datasets (+0.9%∼6.5%),
which evidences its model-agnostic property. To be no-
ticed, for the causal and temporal questions (i.e., SUTD-
TrafficQA), our VCD shows equivalent improvements on
all four backbones (+1.05%∼2.02%). These results vali-
date that our VCD is effective in capturing the causality and
reducing the spurious correlations across different models.

To validate whether our CMQR could generalize to dif-
ferent visual appearance and motion features, we evaluate
the performance of the CMQR using different visual back-
bones, as shown in Table 7. These results validates that our
CMQR generalizes well across both vision-language trans-
formers and CNN backbones due to the learned causality-
ware visual-linguistic representations. More importantly,
the performance improvement of our CMQR is mainly at-
tributed to our visual causality discovery model.

4.5. Parameter and Visualization Analysis

From Table 8, we can see that 8 MMA heads performs
the best because more heads can facilitate the MMA mod-
ule employ more perspectives between different modalities.



Method Appearance Motion Accuracy

SUTD-QA
Eclipse [71] ResNet-101 MobileNetV2 37.05

Ours XCLIP XCLIP 38.63 (+1.59)
Ours Swin-L Video Swin-B 38.58 (+1.54)
Ours ResNet-101 ResNetXt-101 38.10 (+1.05)

MSVD-QA
DualVGR [63] ResNet-101 ResNetXt-101 39.0

Ours XCLIP XCLIP 46.4 (+7.40)
Ours Swin-L Video Swin-B 43.7 (+4.70)
Ours ResNet-101 ResNetXt-101 40.3 (+1.30)

MSRVTT-QA
HCRN [35] ResNet-101 ResNeXt-101 35.6

Ours XCLIP XCLIP 38.9(+3.30)
Ours Swin-L Video Swin-B 38.6 (+3.00)
Ours ResNet-101 ResNeXt-101 37.0 (+1.40)

Table 7. Performance with different visual appearance and motion
features on SUTD-TrafficQA, MSVD, and MSRVTT datasets.

SUTD TGIF TGIF TGIF TGIF MSVD MSRVTT(A) (T) (F) (C)

MMA Heads

1 37.83 75.8 80.7 61.2 3.92 45.0 38.5
2 38.17 75.7 79.7 60.6 3.96 44.7 38.5
4 37.51 75.8 79.2 61.1 3.93 44.9 38.3
8 38.63 78.1 82.4 62.3 3.83 46.4 38.9

MTB Layers

3 38.63 75.1 80.1 61.0 4.03 45.7 38.4
4 37.84 76.6 80.2 61.6 3.96 45.3 38.7
5 37.63 75.5 80.6 61.0 3.94 46.4 38.7
6 37.73 76.2 80.8 61.4 4.12 45.9 38.9
7 37.73 75.4 80.3 61.2 3.98 45.8 38.3
8 37.58 78.1 82.4 62.3 3.83 45.5 38.6

Dimension
256 37.60 73.9 79.9 61.0 3.96 45.5 38.8
512 38.63 78.1 82.4 62.3 3.83 46.4 38.9
768 37.74 75.0 80.0 62.2 3.90 45.5 38.0

Table 8. Performance of CMQR with different MMA heads, MTB
layers, and hidden state dimension on four datasets.

For MTB layers, the optimal layer numbers are different for
different datasets. For the dimension of hidden states, 512
is the best dimensionality of hidden states of the CMQR
model due to its good compromise between the feature rep-
resentation ability and model complexity.

To verify the ability of the CMQR in robust spatial-
temporal relational reasoning, we inspect some correct and
failure examples in Fig. 5. The example in Fig. 5 (a) ex-
hibits a strong correlation between the dominant spatial-
temporal scenes and the question semantics, which vali-
dates that the CMQR is question-sensitive to effectively
capture the dominant spatial-temporal content. In Fig. 5
(b), it is hard to discriminate “rainy” and “snowy” due to
the similar visual appearance in the video. And the “reflec-
tive stripes” along the road are mistakenly considered as the
dominant visual concepts. Since our CMQR model contains
no explicit object detection pipeline, some ambiguity visual
concepts are challenging to be determined. More visualiza-
tion results and analysis are given in Appendix E.

5. Conclusion
In this paper, we propose an event-level visual question

reasoning framework named Cross-Modal Question Rea-

soning (CMQR), to explicitly discover cross-modal causal
structures. To explicitly discover visual causal structure,
we propose a Visual Causality Discovery (VCD) architec-
ture that learns to discover temporal question-critical scenes
and mitigate the visual spurious correlations by front-door
causal intervention. To align the fine-grained interactions
between linguistic semantics and spatial-temporal visual
concepts, we build an Interactive Visual-Linguistic Trans-
former (IVLT). Extensive experiments on four datasets well
demonstrate the effectiveness of our CMQR for discovering
visual causal structure and achieving robust event-level vi-
sual question reasoning. We believe our work could inspire
more causal reasoning methods in vision-language tasks.
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