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ABSTRACT

Compared with the well-explored cross-domain image recog-
nition, cross-domain action recognition is a more challeng-
ing task because not only spatial but also temporal domain
gaps exist across domains. Previous works attempt to bridge
the temporal domain gap by aligning the domain-related key
segments of videos from source and target domains. How-
ever, such practice overlooks the heterogeneous temporal do-
main gaps among different categories and presents temporal
alignment strategies in a class-irrelevant manner. To address
this issue, we propose to achieve class-wise temporal align-
ment for cross-domain action recognition via prototypical
graph alignment (PGA). Concretely, we generate segment-
level prototypes for the classes of both domains to capture
per-class temporal dynamics. Furthermore, intra-domain and
inter-domain prototypical graphs are established to mine the
temporal relationships between each input video and its cor-
responding intra-domain and inter-domain prototypes. In
this way, a discriminative and domain adaptive video repre-
sentation is obtained by holistically reasoning cross-domain
temporal dynamics. To class-wisely align the cross-domain
video representations, each action category is equipped with a
customized class-specific domain discriminator for temporal
alignment with adversarial learning. Extensive experiments
on three benchmarks show that PGA yeilds state-of-the-art
performance on the task of cross-domain action recognition.

Index Terms— Cross-domain action recognition, Proto-
typical graph alignment, Adversarial Learning

1. INTRODUCTION

Cross-domain learning [1, 2, 3, 4], also known as domain
adaptation, aims to mitigate the problem of domain shift by
learning domain-invariant features or aligning distributions
across domains. Thanks to the development of convolu-
tional neural networks and adversarial learning, cross-domain
image recognition [1, 2, 3, 4] has already witness appeal-
ing performance. By contrast, cross-domain action recog-
nition [5, 6, 7, 8] is a more challenging task because cross-
domain videos differ in both spatial appearance and temporal
dynamics. To be specific, besides the appearance and spa-
tial contexts, the start time and duration of an action may be
different in videos of source and target domains. Therefore,
temporal alignment is essential for diminishing the temporal
domain gap between source and target videos.
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Fig. 1. Illustration of class-wise temporal alignment for cross-
domain action recognition. Different classes of actions have
distinct key frames / segments, which are vital for recogni-
tion. Heterogeneous temporal domain gaps exist among these
classes. Thus, customized cross-domain alignment strategy
is essential for the temporal dynamics of each category. Key
segments are outlined with red boxes. Best viewed in color.

Prior works on cross-domain action recognition (video
domain adaptation) enable their models to attend to the
domain-related key segments that are crucial for recognizing
the actions in source and target videos via variants of tempo-
ral attention mechanisms. Moreover, adversarial learning is
used to bridge the spatial and temporal domain gaps based on
the attended important segments. These solutions implicitly
assume that different classes of videos in a domain have sim-
ilar temporal dynamics, simply following the spatial domain
consistency assumption in cross-domain image recognition:
all classes of images in a domain have similar spatial con-
texts and styles. Unfortunately, such temporal domain consis-
tency assumption does not hold for action recognition because
classes of videos in a domain may have distinct key frames /
segments although they perhaps share similar backgrounds.
As shown in Fig. 1, the key action stages of LongJump and
Diving are distinct and the temporal domain shifts of these
two actions are different. If a class-irrelevant temporal align-
ment strategy is employed, the heterogeneous temporal do-
main gaps among classes would be overlooked and the align-
ment of these key segments can not be well handled.

To address the aforementioned issue, we propose to
achieve class-wise temporal alignment in a fine-grained man-



ner for cross-domain action recognition via prototypical
graph alignment (PGA). To be specific, we extract the seman-
tics of segments of each action category by learning their cor-
responding high-level prototypical representations. The pro-
totypes are learnable and updated as the moving average of
the segment-level features during the training stage. In this
way, the temporal dynamics of each class can be simply repre-
sented by such segment-level prototypes. Going one step fur-
ther, the intra-domain and inter-domain prototypical graphs
are established to exploit the class-aware temporal relation-
ships between the segment-level features of the input video
and intra-domain / inter-domain prototypes. Graph convolu-
tional networks are introduced to obtain discriminative and
domain adaptive video representations by message propaga-
tion among graph vertices. Besides, we equip a customized
class-specific domain discriminator for each action category
to realize class-wise temporal alignment in a manner of adver-
sarial learning. To this end, PGA is able to fully exploit the
cross-domain class-aware temporal relationships and perform
a better domain adaptive training for action recognition.

To summarize, the major contributions of our work can be
listed as follows:

• To the best of our knowledge, we make the first attempt
to achieve class-wise temporal alignment for cross-
domain action recognition via prototypical graph align-
ment (PGA).

• We propose a novel cross-domain temporal graph rea-
soning to explore the class-aware fine-grained tempo-
ral relationships among intra-domain and inter-domain
classes of videos.

• We propose a class-wise alignment via adversarial
training with customized domain discriminator for each
category.

• Comprehensive experiments demonstrate the effective-
ness of the proposed framework on three large-scale
cross-domain action recognition benchmarks.

2. RELATED WORK

2.1. Action Recognition
Thanks to the rise of deep learning, vast progress has been
made for action recognition over the last decades. Two-stream
networks [9] and TSN [10] fuse the prediction from appear-
ance and motion streams with RGB and optical flow fea-
tures. C3D [11] and I3D [12] explore the 3D convolutional
architectures for action recognition. TRN [13] learns multi-
scale temporal relations for discovering knowledge over time.
However, these works follow the standard supervised training
paradigm and heavily rely on annotations, which brings new
challenges of cross-domain action recognition.

2.2. Cross-domain Action Recognition
Cross-domain action recognition is a challenging problem be-
cause both spatial and temporal domain gaps should be elim-

inated. TA3N [5] proposes to align the temporal dynamics
of the videos with temporal relation and attention mecha-
nism. TCoN [6] leverages cross-domain co-attention mech-
anism to align key segments. SAVA [8] introduces a self-
supervision task to learn more robust features for foreground
objects and align important segments. STCDA [7] employs
spatial-temporal contrastive self-supervised learning to im-
prove the generalization of video representation. ABG [14]
jointly models source domain and target domain data as bi-
partite graphs and aligns features via conditional adversarial
learning. Such existing methods follow main spirit of aligning
the class-irrelevant domain-related key segments of source
and target videos by adversarial learning and temporal aggre-
gation. Nevertheless, the heterogeneous domain gaps among
different action categories are overlooked. In this work, we
explore to achieve class-wise temporal alignment for cross-
domain videos via prototypical graph alignment (PGA).

3. METHODOLOGY

3.1. Problem Setup
Given a set of Ns labeled source domain videos Ds =
{(vsi , ysi )}N

s

i=1 and another set of N t unlabeled target domain
videos Dt = {vti}N

t

i=1 which share the same label space
C = {1, 2, ..., C}, the goal of cross-domain action recogni-
tion is to adapt the action recognition model trained on the
source domain to the previously unseen target domain. Here,
we represent a video vsi as a collection of m segment-level
features, i.e., vsi = [vsi,1, v

s
i,2, ..., v

s
i,m], where vsi,j denotes the

feature of the jth segment in the ith source video.

3.2. Prototypical Graph Representation
Formally, we represent a graph as G = (V,A,X), where V ,
A and X denote the set of vertices, the adjacency matrix and
the features corresponding to the vertices in V , respectively.

In order to exploit the underlying temporal relation-
ships among different classes of actions, we establish intra-
domain and inter-domain prototypical graphs and obtain
discriminative video representations by message propaga-
tion among vertices. Concretely, intra-domain and inter-
domain graphs are constructed for each source and target in-
put videos: Gsintra = {V s

intra, A
s
intra, X

s
intra}, Gtintra =

{V t
inra, A

t
intra, X

t
intra}, Gsinter = {V s

intra, A
s
inter, X

s
inter}

and Gtinter = {V t
inter, A

t
inter, X

t
inter}. For simplicity, we

take an input video of target domain vti as an example and
following elaborate the construction of its intra-domain and
inter-domain prototypical graphs, i.e., Gtintra and Gtinter. The
prototypical graphs Gsintra and Gsinter for the source video vsj
can be defined analogously.

We first extract the semantics of the segments of each ac-
tion category by learning their corresponding high-level pro-
totypical representations. To be specific, prototypes psc =
[psc,1, p

s
c,2, ..., p

s
c,m] and ptc = [ptc,1, p

t
c,2, ..., p

t
c,m] are used to
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Fig. 2. Overview of our proposed PGA. For each source video vsi and target video vtj , their corresponding prototypical graphs
Gsintra, Gsinter and Gtintra, Gtinter are established, respectively. Segment-level prototypes {psc, ptc|c = 1, 2, ..., C} are learned to
represent the temporal dynamics of action categories in source and target domains. Prototypical graphs capture the class-aware
temporal relationships among prototypes and segment-level video features. Spatial domain discriminator Gsd and multiple
class-specific temporal domain discriminators {Gc

td|c = 1, 2, ..., C} are introduced for spatial and class-wise temporal align-
ment via adversarial learning. Best viewed in color.

represent the semantics of action c in source and target do-
mains, respectively, where psc,k and ptc,k are the prototypes
of the kth segment. The prototype psc,k of source domain is
computed as the average segment-level feature vector of all
samples of the corresponding kth segment and class c:

psc,k =
1

Ns
c

Ns
c∑

i=1

Fs(v
s
i,k), (1)

where Fs is the feature extractor for segment-level features,
Ns

c is the numbers of samples of class c in source and target
domains. However, ptc,k can not directly computed in a same
way since the videos in target domain are unlabeled. Hence,
we use the pseudo-labels given by the label classifier Gy for
each video vti , i.e., {ŷti,1, ŷti,2, ..., ŷti,C} to generate the proto-
types ptc,k:

ptc,k =
1

N t

Nt∑
i=1

ŷti,cFs(v
t
i,k), (2)

where ŷti = [ŷti,1, ŷ
t
i,2, ..., ŷ

t
i,C ], ŷ

t
i,c is the pseudo-label (soft-

max probability) of class c (
∑C

c=1 ŷ
t
i,c = 1). To avoid the

computational-intensive update in the training stage, proto-
types psc,k and ptc,k evolve in the way of moving average:

psc,k ← (1− η)psc,k + η

 1

Ns
c

Ns
c∑

i=1

Fs(v
s
i,k)


ptc,k ← (1− η)ptc,k + η

 1

N t

Nt∑
i=1

ŷti,kFs(v
t
i,k)

 ,

(3)

where η is the momentum hyper-parameter.
Based on the segment-level prototypes {psc, ptc|c =

1, 2, ..., C}, intra-domain and inter-domain prototypical
graphs Gtintra and Gtinter are established for an input video
of target domain vti . Their vertex features are defined as:
Xt

intra = [Fs(v
t
i) ∥ pt1 ∥ pt2 ∥ ... ∥ ptC ] ∈ R(C+1)·m×d and

Xt
inter = [Fs(v

t
i) ∥ ps1 ∥ ps2 ∥ ... ∥ psC ] ∈ R(C+1)·m×d, where ∥

denotes the concatenation operation, d denotes the vertex fea-
ture dimension, Fs(v

t
i) = [Fs(v

t
i,1), Fs(v

t
i,2), ..., Fs(v

t
i,m)].

Then, we perform graph convolution over the vertex fea-
tures Xt

intra and Xt
inter for message propagation and class-

aware temporal reasoning:

Zt
intra = σ(At

intraX
t
intraW

t
intra)

Zt
inter = σ(At

interX
t
interW

t
inter),

(4)

where σ is ReLU activation function, At
intra and At

inter are
adjacency matrices for intra-domain and inter-domain graphs,
W t

intra and W t
inter are learnable weight matrices.

For better reasoning the temporal relationships between
the input video and prototypes of different classes, we intro-
duce graph attention mechanism to dynamically capture their
segment-paired relations and induce the adjacency matrices
At

intra and At
inter. For clear formulation, given any two

segment-level vertex representations xi and xj in Xt (X ∈
{Xt

intra,Xt
inter}), the affinity edge αi,j is defined as:

αi,j =
exp(σ(Watt[xi||xj ]))∑|Xt|

k=1 exp(σ(Watt[xi||xk]))
, (5)



where Watt is a learnable weight matrix for graph attention,
|Xt| = (C + 1) ·m is the number of vertices.

Thanks to the aforementioned temporal graph reasoning,
a discriminative representation of the video vti can derive from
the updated vertex features Zt

intra and Zt
inter given in Equa-

tion 4. Formally, we first rewrite Zt
intra and Zt

inter in the
form of concatenated features:
Zt

intra =
[
ztintra;v ∥ ztintra;p1 ∥ ztintra;p2 ∥ ... ∥ ztintra;pC

]
Zt

inter =
[
ztinter;v ∥ ztinter;p1 ∥ ztinter;p2 ∥ ... ∥ ztinter;pC

]
,

(6)

where ∥ denotes the concatenation operation, ztintra;v and
ztintra;pc

are the updated vertex features corresponding to
F (vti) and ptc, other notations are similarly defined. Then we
generate the video representation f t

vi as the concatenation of
these refined intra-domain and inter-domain features:

f t
vi

=
[
ztintra;v ∥ ztinter;v

]
. (7)

As for a given input video of source domain vsj , we
also establish its intra-domain and inter-domain prototypical
graphs, i.e., Gsintra and Gsinter and generate its semantic rep-
resentation fs

vj in a similar way:

fs
vj

=
[
zsintra;v ∥ zsinter;v

]
. (8)

3.3. Cross-domain Alignment
Besides using our proposed prototypical graphs to explore the
class-aware cross-domain temporal relationships, we aim to
further equip each action category with a customized adap-
tation strategy to handle the heterogeneous temporal domain
gaps among different classes. To achieve this, we adopt ad-
versarial learning to align the video representations across
domains and design multiple class-specific temporal domain
discriminators {Gc

td|c = 1, 2, ..., C}, each is used for miti-
gating the temporal domain discrepancy related to the action
category c.

For a source video vsi of class ysi , the temporal domain
discriminator Gc

td is applied to its visual feature fs
vi :

Ls
td = −E(vs

i ,y
s
i )∼Ds log

[
G

ys
i

td (FG(v
s
i ))

]
, (9)

where fs
vi = FG(v

s
i ), FG which has been elaborated in

Sec. 3.2 is the feature extractor for graph representations fs
vi

and f t
vj . However, for an unlabeled target video vtj , we can

not exactly determine which adaptation strategy is applica-
ble to it. Thus, we resort to the pseudo-labels {ŷtj,c|c =
1, 2, ..., C} provided by the label classifier Gy and assigning
multiple domain discriminators to vtj in a relaxation way:

Lt
td = −Evj∼Dt

C∑
c=1

ŷti,c log
[
1−Gc

td(FG(v
t
j))

]
, (10)

where f t
vj = FG(v

t
j), ŷ

t
j = [ŷtj,1, ŷ

t
j,2, ..., ŷ

t
j,C ] = Gy(f

t
vj ).

Additionally, we also introduce a spatial domain discrim-
inator Gsd to align the segment-level features following [5]:

Lsd =− E(vs
i ,y

s
i )∼Ds

m∑
k=1

log
[
Gsd(Fs(v

s
i,k))

]
− Evt

j∼Dt

m∑
k=1

log
[
(1−Gsd(Fs(v

t
j,k)))

]
,

(11)

where Fs is the feature extractor for segment-level features,
m is the number of segments, vsi,k and vtj,k are the segments
of the source and target videos vsi and vtj , respectively.

To learn discriminative features, the label classifier Gy is
trained using the label information from source domain:

Ly = −E(vs
i ,y

s
i )∼DsLce(Gy(FG(v

s
i )), y

s
i ), (12)

where Lce is the cross-entropy loss.
Integrating all these components together, the overall opti-

mization of PGA is performed in adversarial learning manner:
min

FG,Fs,Gy

Ly − λd(Lsd + Ls
td + Lt

td)

min
Gsd,G1

td,G
2
td,...,G

C
td

Lsd + Ls
td + Lt

td,
(13)

where λd is the trade-off hyper-parameter for adversarial
learning.

4. EXPERIMENTS

4.1. Experimental Setup
Datasets We conduct our experiments on three publicly
available datasets for cross-domain action recognition: UCF-
HMDB [5], Jester (S)→Jeseter (T) [6] and Kinetics→NEC-
Drone [8]. For fairness, we follow standard train/test split
strategries provided by the authors. UCF-HMDB contains
12 classes of videos from UCF [15] and HMDB [16].
Jester (S)→Jeseter (T) is a large scale cross-domain gesture
recognition dataset and contains 7 classes of videos collected
from Jester [17]. Kinetics→NEC-Drone is a more challeng-
ing dataset containing 7 classes of action because its domain
gap is much more significant compared to other datasets.
Implementation Details We use I3D [12] and TRN [13] as
the backbone feature extractors Fs for extracting segment-
level features. In our experiments, we set the number of seg-
ments m = 5 and each segment is comprised of 16 frames.
We only extract RGB features for video representations and
do not use optical flow. The momentum hyper-parameter η,
vertex feature dimension d and trade-off hyper-parameter for
adversarial learning λd are set to 0.1, 128 and 0.3, respec-
tively. SGD with momentum of 0.9 and weight decay of 10−4

is used to train the network. The network is trained for 100
epochs with batch size of 64 and learning rate of 3× 10−2.

4.2. Comparison with Existing Methods
We mainly compare our method with other approaches us-
ing the same backbone feature extractors for fairness on
three benchmarks: UCF-HMDB, Jester (S)→Jester (T) and
Kinetics→NEC-Drone. To be specific, we use I3D backbone
on UCF-HMDB and Kinetics→NEC-Drone, and use TRN
backbone on Jester (S)→Jester (T), following the settings of
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Fig. 3. The comparison of t-SNE visualization on HMDB→UCF. The blue and red dots represent source and target data,
respectively. Best viewed in color.

Method Backbone U→ H H→ U Average

TA3N [5] ResNet-101 78.3 81.8 80.1
ABG [14] 79.1 85.1 82.1

TCoN [6] TRN 87.2 89.1 88.1

Source Only

I3D

80.3 88.8 84.5
TA3N [5] 81.4 90.5 85.9
SAVA [8] 82.2 91.2 86.7
STCDA [7] 81.9 91.9 86.9

PGA (Ours) I3D 86.7 94.1 90.4

Target Only I3D 95.0 96.8 95.9

Table 1. Accuracy (%) on UCF-HMDB.

previous works. The results of the “Source Only” and su-
pervised “Target Only” baselines with the same backbone are
also provided for comparison.

Table 1 exhibits the results of different methods on
UCF→HMDB and HMDB→UCF. We can observe that our
PGA performs best in both directions, compared with other
methods using I3D backbone. Especially, PGA achieves re-
markable 3.5% performance improvement over STCDA [7],
in terms of the average accuracy.

Method Backbone Jester (S)→Jester (T)

DAAA [1]
TSN

56.5
CDAN [2] 58.3
TCoN [6] 61.8

Source Only
TRN

51.2
TA3N [5] 60.1
TCoN [6] 62.5

PGA (Ours) TRN 65.7

Target Only TRN 94.4

Table 2. Accuracy (%) on Jester (S)→Jester (T).

Table 2 shows the comparison on Jester (S)→Jester (T),
which is a more challenging benchmark because the domain
gap arises from action dynamics rather than spatial appear-
ance [6]. It can be noticed that PGA greatly outperforms other
approaches and achieves the best adaptation performance of
65.7% on Jester (T), which demonstrates the effectiveness of

our temporal alignment strategy.

Method Backbone Kinetics→NEC-Drone

Source Only

I3D

17.2
DANN [3] 22.3
ADDA [4] 23.7
SAVA [8] 31.6

PGA (Ours) I3D 35.0

Target Only I3D 81.7

Table 3. Accuracy (%) on Kinetics→NEC-Drone.

In Table 3, we observe a large domain discrepancy on
Kinetics→NEC-Drone, i.e., 64.5% performance gap between
“Source Only” and “Target Only” baselines. The experiment
results show that PGA also achieve new state-of-the-art per-
formance (35.0%) on this challenging cross-domain action
recognition task.

Method U→ H H→ U Average

PGA 86.7 94.1 90.4

PGA w/o Intra-Graph 84.8 93.3 89.0
PGA w/o Inter-Graph 82.2 91.4 86.8
PGA w/o Graphs 80.7 89.4 85.1
PGA w/o Ltd 83.5 92.1 87.8
PGA w/o Lsd 85.9 93.5 89.7

Table 4. Ablation study on UCF-HMDB.

4.3. Ablation Study
To evaluate the effectiveness of each component of our pro-
posed PGA, we conduct ablation experiments on the UCF-
HMDB dataset. To analyze the effectiveness of intra-domain
/ inter-domain prototypical graph representations and spa-
tial / class-wise temporal domain discriminators, we study
five variants of PGA in Table 4: (1) PGA w/o Intra-Graph:
the variant without intra-domain graph reasoning Gsintra and
Gtintra; (2) PGA w/o Inter-Graph: the variant without inter-
domain graph reasoning Gsinter and Gtinter; (3) PGA w/o
Graphs: the variant without prototypical graph representa-
tions; (4) PGA w/o Lsd: the variant without spatial domain
discriminator Gsd for aligning segment-level features; (5)



PGA w/o Ltd: the variant without class-wise temporal do-
main discriminator {Gc

td|c = 1, 2, ..., C}.
From Table 4, we can conclude that: (1) both intra-

domain and inter-domain prototypical graphs contribute to
the temporal segment-level relational reasoning within each
domain and across different domains, which benefits exploit-
ing class-aware relationships for temporal domain adaptation;
(2) class-wisely temporal alignment is beneficial for adapting
cross-domain temporal dynamics; (3) spatial domain discrim-
inator helps capturing the spatial domain gap and further im-
prove the capacity of spatial alignment.

Moreover, we plot the t-SNE visualization of the features
learned on HMDB→UCF by the “Source Only” model and
variants of PGA. As shown in Fig. 3, we can observe that
prototypical graphs provide more discriminative video rep-
resentations and class-wise temporal domain alignment en-
hance the cross-domain clustering in each class.

5. CONCLUSION

In this paper, we propose prototypical graph alignment (PGA)
to achieve class-wise temporal alignment for cross-domain
action recognition. We establish intra-domain and inter-
domain prototypical graphs based on segment-level proto-
types of different classes and exploit the class-aware fine-
grained temporal relationships via graph convolutional net-
works. Furthermore, we propose to class-wisely align the
video representations via class-specific domain discrimina-
tors. Experiments on three benchmarks validate the effective-
ness of our proposed PGA, which achieves new state-of-the-
art performance.
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