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ABSTRACT
Human activity recognition (HAR) based on multi-modal
approach has been recently shown to improve the accuracy
performance of HAR. However, restricted computational re-
sources associated with wearable devices, i.e., smartwatch,
failed to directly support such advanced methods. To tackle
this issue, this study introduces an end-to-end Vision-to-
Sensor Knowledge Distillation (VSKD) framework. In this
VSKD framework, only time-series data, i.e., accelerome-
ter data, is needed from wearable devices during the testing
phase. Therefore, this framework will not only reduce the
computational demands on wearable devices, but also pro-
duce a learning model that closely matches the performance
of the computational expensive multi-modal approach. In
order to retain the local temporal relationship and facilitate
visual deep learning models, we first convert time-series data
to two-dimensional images by applying the Gramian Angular
Field (GAF) based encoding method. We adopted multi-
scale TRN with BN-Inception and ResNet18 as the teacher
and student network in this study, respectively. A novel loss
function, named Distance and Angle-wised Semantic Knowl-
edge loss (DASK), is proposed to mitigate the modality
variations between the vision and the sensor domain. Ex-
tensive experimental results on UTD-MHAD, MMAct, and
Berkeley-MHAD datasets demonstrate the competitiveness
of the proposed VSKD model which can be deployed on
wearable devices.

Index Terms— Cross-modal knowledge distillation,
Vision-to-sensor, Human activity recognition.

1. INTRODUCTION

Human Activity Recognition (HAR), i.e., perceiving and rec-
ognizing human actions, is crucial for real-time applications,
such as healthcare and human-robot interaction [1]. Vision-
based methods have dominated the HAR community because
video data contains rich appearance information [2]. How-
ever, video-based HAR is intrinsically restricted in various
occlusion and illumination conditions similar to the human

vision limitations. Meanwhile, utilizing time-series data, i.e.,
accelerometer data, from wearable devices is another typical
way of identifying the HAR problem. But sensor-based HAR
approaches are difficult to achieve reliable performance com-
pared to video modality due to the constraint of single con-
text information [3, 4]. For instance, previous work indicated
that deep learning method using the accelerometer data from
a wrist-worn watch for fall detection only achieved 86% ac-
curacy due to the fact that it is difficult to differentiate various
wrist movements when someone falls [4]. Multi-modal HAR
systems can solve such problems by utilizing the complemen-
tary information acquired from different modalities. For ex-
ample, vision-based approaches could provide global motion
features while sensor-based methods can give 3D informa-
tion about local body movement [5]. Nevertheless, limited
resources associated with wearable devices, such as CPU and
memory storage, cannot support such powerful and advanced
multi-modal systems. In order to overcome such issues, the
technique of cross-modal transfer, i.e., knowledge distillation
(KD), that needs only one modality input during the testing
phase to reach the performance close to the combination of
multi-modal data during the training phase has been proposed
[6]. Using this approach, we can transfer the knowledge from
vision to sensor domain by reducing computation resource
demand, but also eventually boost the performance of HAR
using wearable devices.

In this paper, we propose an end-to-end Vision-to-Sensor
Knowledge Distillation (VSKD) for HAR problem. The
overview of the proposed method is shown in Figure 1. First,
we adopted the Gramian Angular Field (GAF) to encode the
accelerometer data to an image representation while preserv-
ing the temporal information from the data [7]. Next, we
trained the teacher networks with video stream inputs with
the standard cross-entropy loss function. The KD process of
accelerometer data was accomplished by using the new loss
function, named Distance and Angle-wised Semantic Knowl-
edge loss (DASK). Overall, the contributions of this paper
are summarized as follows: 1) To the best of our knowledge,
this is the first study conducting the knowledge distillation
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Fig. 1. Schematic overview of the proposed VSKD method.

(KD) model from the video-to-sensor domain. In this VSKD
model, a student network with input of wearable sensor data,
i.e., accelerometer data, learns the compensatory information
from the teacher network with input of video streams. 2)
We proposed a novel loss function (DASK), which is utilized
to alleviate the modality gap between the teacher and stu-
dent network. 3) We demonstrated the effectiveness of the
proposed VSKD method on three public datasets.

2. RELATED WORK

HAR has been an active research field due to its wide appli-
cation in various areas [1, 2, 8]. Despite the fact that video
modality contains rich RGB information, video modality
is subject to various viewpoints or illumination conditions
which affects its effectiveness. HAR studies with time-series
data, i.e., accelerometer data, from wearable devices are
growing rapidly [4, 9, 10]. Although those works demon-
strated the feasibility of sensor-based HAR approaches, they
cannot achieve reliable performance due to the noisy data or
sensor variations [3]. By aggregating the advantages of var-
ious data modalities, a multi-modal approach can ultimately
provide a robust and accurate HAR method. However, the
limited computation capabilities of a low-cost wearable de-
vices prevent the complexity of multi-modal methods that
can be deployed on the device directly. In order to build
lightweight and accurate HAR models, the knowledge distil-
lation approach has emerged to build a student model with
less computational overhead and yet can retain similar ac-
curacy performance as the teacher model [6]. Kong et al.
[11] proposed a multi-modal attention distillation method to
model video-based HAR with the instructive side information
from inertial sensor modality. Similarly, Liu et al. [5] intro-
duced a multi-modal KD method where the knowledge from
multiple sensor data were adaptively transferred to video do-
main. Even though those works provide promising results
on HAR with the multi-modal approach, no multi-modal KD
work has yet been proposed where the time-series data is
used as the student model. Using the reversed approach will
improve the accuracy performance of a sensor-based HAR,
but also reduce the computational resource demand making it
viable to run the model on the wearable devices directly.

Fig. 2. Selected sensor (top) and their corresponding GAF
images (bottom) in UTD-MHAD [12] : (1) basketball shoot-
ing; (2) bowling; (3) knock on door and (4) walking.

3. METHODOLOGY

3.1. Virtual Image Generation

Inspired by [7], we encodes the accelerometer data to image
representation first. In short, we denote one of the three ax-
ial accelerometer data (for example, x coordinate) as X =
{x1, x2, ..., xn} and normalize it into X̂ among interval [-1,
1]. The normalized X̂ was then encoded into the polar co-
ordinate (θ, γ) from the normalised amplitude and the radius
from the time t, as represented in Eq.1:

g (x̂i, ti) = [θi, ri] where

{
θi = arccos(x̂i), xi ∈ X̂

ri = ti
(1)

After this transformation, the correlation coefficient between
vectors can be easily calculated using the trigonometric
sum between points [7]. The tri-axial sensor data with
the size of n can be assembled as an image representation
P = (Gx,Gy,Gz) of size n× n× 3. Selected examples of
sensor and their corresponding GAF images in UTD-MHAD
[12] are shown in Figure 2.

3.2. DASK Loss

Hinton et al. [6] proposed a KD method which compress
knowledge from larger model (i,e. teacher) into a smaller
model (i,e. student), while retaining decent accuracy perfor-
mance. Given a teacher model Tk and a student model Sk, the
soft-target ỹT produced by the teacher model is considered as
high-level knowledge. The loss of KD when training student
model can be defined as:

LKD = LC(y, y
S) + αLK(ỹT , ỹS) (2)

LK =
1

m

m∑
k=0

KL(
PTk

T
,
PSk

T
) (3)

where y and yS refer to the predicted labels and class prob-
ability for the student network in this study, respectively. ỹS

is the soft target generated by the student model. Here LC is
the typical cross-entropy loss and LK is the Kullback-Leibler
(KL) divergence, while PTk is the class probability for the
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teacher network and PSk is the class probability for the stu-
dent network. T represents the temperature controlling the
distribution of the provability and we use T = 4 in this study
according to [6].

KD methods [6, 13] assume the knowledge as a learned
mapping from inputs to outputs, which means the outputs
themselves contain some relative information from inputs.
Therefore, in order to minimize the modality gap between the
vision and the sensor domain, we focus on information trans-
fer. More specifically, not only do we to conduct the VSKD
based on individual predicted outputs, we also need to con-
sider the structural relation, such as the distance and the angle
information, as well as the semantic information among those
two modalities that share the same action activity. Therefore,
given a pair of training examples, the distance-wise function
ψD tries to minimize the Euclidean distance between teacher
and student examples. µ is a normalization factor for dis-
tance and lδ is Huber loss. The distance-wise distillation loss
LD, which tries to penalize the distance differences between
teacher and student outputs is defined as:

ψD(ti, tj) =
1

µ
‖(ti − tj)‖2 (4)

LD =
∑

(xi,xj)∈X2

lδ(ψD(ti, tj), ψD(si, sj)) (5)

Similarly, given three training examples, the angle-wise func-
tion ψA tries to minimize the angle between teacher and stu-
dent examples. The angle-wise distillation loss LA which
tries to transfer the angle-relation information among teacher
and students outputs is defined as:

ψA(ti, tj , tk) = cos∠tjtjtk = 〈eij , ekj〉

where eij =
ti − tj

‖(ti − tj)‖2
, ekj =

tk − tj
‖(tk − tj)‖2

(6)

LA =
∑

(xi,xj ,xk)∈X2

lδ(ψA(ti, tj , tk), ψA(si, sj , sk)) (7)

In addition, since multi-modal data have the same semantic
content, semantic loss is defined as:

LS =
1

m

m∑
k=1

(‖HS −HT ‖)22 (8)

where HS and HT represents the feature of fc0 layer from
both student and teacher models. To keep HS and HT spatial
dimensions same, we add one more fc layer (fc0) before its
original fc layer (fc1) in the ResNet18 shown in Figure 1.

In summary, we use the original KD loss LKD
and aug-

ment it to include the distance and the angle-wised distillation
loss LD, LA as well as the semantic loss LS , to train the stu-
dent network and the final DASK loss for the student model
is defined as follow:

LST = LKD + β(LD + LA) + γLS (9)

where α, β, γ are the tunable hyperparameters to balance the
loss terms for the student network.

Method Testing Modality Accuracy (%)
Singh et al. [15] Acc. + Gyro. 91.40

Ahmad and Khan [9] Acc. + Gyro. 95.80
Wei et al. [16] Acc. + Gyro. 90.30

Chen et al. [17] Acc. + Gyro. 96.70
Garcia-Ceja et al. [18] Acc. 90.20

Student baseline Acc. 94.87
VSKD model Acc. 96.97 (2.1 ↑)

Table 1. Comparison result on accuracy performance of
UTD-MHAD. The number in parenthesis means increased ac-
curacy over the student baseline. Acc. denotes accelerometer
and Gyro. denotes gyroscope.

Method Testing Modality Accuracy (%) F1 score (%)
Das et al. [19] Acc.(Six locations) 88.90 88.80

Student Baseline Acc. (Left Wrist) 89.09 89.27
VSKD model Acc. (Left Wrist) 90.18 ( 1.09 ↑ ) 91.58

Student Baseline Acc. (Right Wrist) 86.54 88.33
VSKD model Acc. (Right Wrist) 87.64 (1.10 ↑ ) 89.90

Student Baseline Acc. (Left Hip) 83.27 84.45
VSKD model Acc. (Left Hip) 83.82 ( 0.55 ↑ ) 83.91

Student Baseline Acc. (Right Hip) 81.09 81.45
VSKD model Acc. (Right Hip) 82.55 (1.46 ↑ ) 82.99

Student Baseline Acc. (Left Ankle) 65.09 64.73
VSKD model Acc. (Left Ankle) 65.82 ( 0.73 ↑ ) 66.90

Student Baseline Acc. (Right Ankle) 62.91 62.73
VSKD model Acc. (Right Ankle) 64.36 ( 1.45 ↑ ) 63.60

Table 2. Comparison result on accuracy and F1 performance
of Berkeley-MHAD. The number in parenthesis means in-
creased accuracy and F1 score over the student baseline.

4. EXPERIMENTS

4.1. Dataset

In this study, three benchmark datasets were selected due to
their multi-modal data forms: MMAct [11], UTD-MHAD [12]
and Berkeley-MHAD [14]. Specially, we use video streams
as the teacher modality input and accelerometer data as the
student modality input.

4.2. Experimental Settings

For the teacher network, we used multi-scale TRN [20] with
BN-Inception pre-trained on ImageNet due to its balance be-
tween the number of parameters and efficiency. In the teacher
network, we set the dropout ratio as 0.5 to reduce the effect of
over-fitting. The number of segments is set as 8 for Berkeley-
MHAD and UTD-MHAD, while 3 for the MMAct. For the
student model, we used ResNet18 as the backbone. All the
experiments were performed on four Nvidia GeForce GTX
1080 Ti GPUs using PyTorch. We employed the classification
accuracy and F-measure as the evaluation metric to compare
the performance of the VSKD model with: 1) a student base-
line model (ResNet18); 2) other work in which time-series
data were applied.
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4.3. Experimental Results

The comparison results of three datasets are shown in Table
1, 2, and 3, respectively. In Table 1, the proposed VSKD
model performs better than all the previous comparable mod-
els. We make an improvement in the testing accuracy of
6.77% compared to the accelerometer view method which
extracted 16 features from accelerometer signals for classi-
fication [18]. The VSKD model achieved 2.1% higher in
accuracy performance, compared to just the student model
alone. This result sheds light on incorporating video modal-
ity for improving sensor-based HAR. It is worth noting that
the proposed VSKD model even performs better as com-
pared to the methods where the accelerometer and gyroscope
data were used for testing [15, 9, 16, 17]. These results
demonstrated that accelerometer data in the VSKD model
can significantly learn knowledge from video streams, thus
make an improvement in testing accuracy by 0.37%-6.77%.
In Table 2, the proposed VSKD model trained with vision
and sensor modality can outperform all the student base-
line models. Even though gray-scale video streams on the
Berkeley-MHAD dataset lack color information which may
degrade the knowledge transfer process, the improvements
ranged from 0.55% to 1.46% can still be obtained by the ad-
ditional support of multi-modal modalities. Also, the VSKD
model tested with the left wrist accelerometer data performs
better compared to the previous study where accelerometer
data from six locations were used [19]. This might be due
to the fact that Berkeley-MHAD dataset includes activities
more related to hand activity, such as waving hands, clapping,
and throwing. In Table 3, while accelerometer data from the
phone is the only modality in the testing phase, the method
achieves better F-score performance compared to [11, 21] in
which either video streams or accelerometer data from phone
and watch was used in the testing phase. We also note that
the VSKD method trained with accelerometer data from the
watch performs worse than the one with accelerometer data
from phone. This result was consistent with previous works
which showed arm movements introduce additional variabil-
ity giving rise to a degradation in HAR [22]. Another reason
is because MMAct dataset includes activities more related to
leg activity, such as sitting, kicking, and jumping.

4.4. Ablation Study

To evaluate the contribution of the proposed DASK loss func-
tion, we compare the DASK function with previous KD meth-
ods [6, 23, 24]. For those methods, we use the shared codes,
and the parameters are selected according to the default set-
ting. As shown in Table 4, the proposed DASK loss func-
tion performs better than all of the previous comparable KD
loss functions, proving that both structural relation and se-
mantic information are critical for time-series data in a KD
process. Also, angle-wised loss LA contributes more (0.22%)
to accuracy improvement as compared to distance-wised loss

Method Testing Modality Cross Subject (%) Cross Session (%)
Kong et al. [11] Acc.(Watch+Phone) 62.67 70.53
Kong et al. [21] RGB video 65.10 62.80
Student baseline Acc. (Phone) 55.44 61.38
VSKD model Acc. (Phone) 65.83 ( 10.39 ↑ ) 73.64 ( 12.26 ↑ )

Student baseline Acc. (Watch) 46.83 20.63
VSKD model Acc. (Watch) 60.14 ( 13.31 ↑ ) 40.82 ( 20.19 ↑ )

Table 3. Comparison result on F-measurement performance
of MMAct. The number in parenthesis means increased F1
score over the student baseline.

Method Testing Modality Accuracy (%) F1 score (%)
ST [6] Acc. 96.04 96.15

AT [23] Acc. 96.03 95.80
SP [24] Acc. 95.80 95.57

DASK-VGG16 Acc. 95.34 95.69
DASK-ResNet18 Acc. 96.97 96.38

ASK (W/O D)-ResNet18 Acc. 96.73 96.27
DSK (W/O A)-ResNet18 Acc. 96.51 95.80

SK (W/O D and A)-ResNet18 Acc. 96.50 96.06
DAK (W/O S)-ResNet18 Acc. 95.80 96.04

Table 4. Ablation study of accuracy and F1 score perfor-
mance on UTD-MHAD dataset. W/O denotes Without. D
denotes the distance-wise loss LD. A denotes the angle-wise
loss LA. S denotes the semantic distillation loss LS .

LD, indicating time-series data are more valuable in giving
3D information about local body movement. Furthermore,
compared to structural relation information, semantic loss LS
contributes more to accuracy improvement (0.70%), which
highlights the critical role of semantic information on sensor-
based HAR. The proposed VSKD model with ResNet18 as
the student baseline performed better (an accuracy of 96.97%
) as compared to the VSKD model where VGG16 was used
as the student baseline (95.34%). This happens because dif-
ferent convolutional layers in ResNet tend to learn different
types of features regarding the input [25], therefore, ResNet18
model is more effective in capturing these features compared
to VGG16 model.

5. CONCLUSION

In this paper, we propose an end-to-end Vision-to-Sensor
Knowledge Distillation (VSKD) model, which not only im-
proves the sensor-based HAR performance, but also reduces
the computational resource demand during the testing phase.
We also propose a novel loss function (DASK), which high-
lights the importance of structural relation and semantic
information for bridging the modality gap between vision
and sensor domain. Extensive experimental results on UTD-
MHAD, MMAct, and Berkeley-MHAD datasets demonstrate
the competitiveness of the proposed VSKD model.
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