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A B S T R A C T

Ultrasound segmentation of thyroid nodules is a challenging task, which plays an vital
role in the diagnosis of thyroid cancer. However, the following two factors limit the de-
velopment of automatic thyroid nodule segmentation algorithms: (1) existing automatic
nodule segmentation algorithms that directly apply semantic segmentation techniques
can easily mistake non-thyroid areas as nodules, because of the lack of the thyroid gland
region perception, the large number of similar areas in the ultrasonic images, and the
inherently low contrast images; (2) the currently available dataset (i.e., DDTI) is small
and collected from a single center, which violates the fact that thyroid ultrasound im-
ages are acquired from various devices in real-world situations. To overcome the lack of
thyroid gland region prior knowledge, we design a thyroid region prior guided feature
enhancement network (TRFE+) for accurate thyroid nodule segmentation. Specifically,
(1) a novel multi-task learning framework that simultaneously learns the nodule size,
gland position, and the nodule position is designed; (2) an adaptive gland region feature
enhancement module is proposed to make full use of the thyroid gland prior knowledge;
(3) a normalization approach with respect to the channel dimension is applied to allevi-
ate the domain gap during the training process. To facilitate the development of thyroid
nodule segmentation, we have contributed TN3K: an open-access dataset containing
3493 thyroid nodule images with high-quality nodule masks labeling from various de-
vices and views. We perform a thorough evaluation based on the TN3K test set and
DDTI to demonstrate the effectiveness of the proposed method. Code and data are avail-
able at https://github.com/haifangong/TRFE-Net-for-thyroid-nodule-segmentation.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

Thyroid nodule is one of the very common endocrine com-
plaints which grows in the thyroid gland. Due to its potential
of being malignant, there is an imperative need to examine the
thyroid regularly Durante et al. (2018). With the unique ad-
vantages (e.g., relatively inexpensive, easy-to-use, portable) of
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ultrasound imaging, the prevailing examination approach to the
thyroid is based on ultrasonic imaging equipment. Neverthe-
less, as the ultrasound examination progress is not standard-
ized comparing to other image modalities (e.g., CT, MRI, X-
ray), the diagnose of thyroid nodules is highly dependent on
the experience and skill of the clinicians according to Yuan
et al. (2022). Considering that inexperienced clinicians could
easily cause misdiagnosis, many computer-aided diagnosis sys-
tems proposed by Wang et al. (2020); Yang et al. (2021); Manh
et al.; Gong et al. (2022) have been developed for auxiliary
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diagnosis of thyroid diseases. The automatic segmentation of
thyroid nodules is a fundamental component for developing an
intelligent diagnosis system and is also valuable for ultrasound-
guided thyroid puncture biopsy or resection of nodules Chen
et al. (2020).

TRFE+UNetGround TruthOriginal Image

Fig. 1. Several visualization examples of our TRFE+ comparing to UNet
Ronneberger et al. (2015). We can see that the UNet mis-regard the non-
thyroid region as the thyroid nodule.

The previous thyroid nodule segmentation algorithms are
mainly based on conventional segmentation models Ron-
neberger et al. (2015); Ma et al. (2017); Ying et al. (2018);
Kumar et al. (2020) or attention mechanism Pan et al. (2021).
However, these methods usually do not explicitly constrain the
thyroid nodules to be located in the thyroid gland area, which
leads to the algorithms generating incorrect location of thy-
roid nodules outside the thyroid gland region. Furthermore,
these models can’t use a large amount of independently labeled
dataset (i.e., separate training data labeled with either thyroid
gland region or thyroid nodule), which is a very common sit-
uation in the medical domain since the clinical annotations are
expensive.

Another issue is that the current publicly available bench-
mark Pedraza et al. (2015) for thyroid nodules segmentation is
limited and monolithic. The developed algorithms are usually
based on ultrasonic data from a single center (i.e., the imaging
captured from single equipment with fixed setting), which de-
viates from the realistic application scenario. Therefore, there
is a need to construct a data set that contains ultrasound thyroid
imaging from different devices of different settings. Further-
more, the currently public available dataset only contains one
thyroid nodule per imaging, which is not consistent with the
incidence of thyroid nodules in the actual scenario. Thus, we
propose a new thyroid nodule segmentation dataset which con-
tains various images of different nodule size, views, intensity,
and from different ultrasonic devices as shown in Fig. 2.

In this work, we present Thyroid Region prior guided
Feature Enhancement network (TRFE+), a thyroid nodule seg-
mentation framework that aims to improve the thyroid nodule
segmentation performance by making use of the independently

labeled dataset. However, there exist several intrinsic issues:
(1) In our Thyroid Nodule 3,493 (TN3K) data set, the size and
number of thyroid nodules in different images are very differ-
ent; while the size of the thyroid glands in the Thyroid Gland
3,585 (TG3K) data set is relatively fixed, which makes it diffi-
cult for the encoder to effectively identify the nodules area. (2)
Data from different sources will lead to unstable training. If we
directly form a batch of data from different sources, it will be
difficult to correct the deviations between samples during the
training process. To address the above-mentioned issues, the
TRFE+ contains a shared backbone encoder for feature repre-
sentation learning and three separate decoders for thyroid gland
region segmentation, thyroid nodule discovery, and nodule size
prediction, respectively. To take full advantage of the features
learned from the decoder of thyroid gland segmentation, we fur-
ther design a thyroid region feature enhancement module to si-
multaneously capture important feature channels and filter out
the part of the gland prior features that are not related to nod-
ules. Finally, we apply the group normalization operation to al-
leviate the domain shift between the two independently labeled
dataset. In summary, we make the following five contributions:

1. We introduce a novel multi-task learning-based network
to simultaneously segments the thyroid gland regions and nod-
ule regions, forcing the same backbone network to capture the
location of nodules within the gland region. A nodule size pre-
diction task is designed to constrain the encoder to be aware of
the nodule size, thus avoids the over-fitting of the thyroid gland
region prior information.

2. We redesign the thyroid region prior guided feature en-
hancement module by taking the relationship between both the
channels and position into account, enabling better feature fu-
sion between the gland prior feature map and the nodule feature
map.

3. We demonstrate that the normalization of features from the
channel dimension helps to alleviate the domain shift between
the independently labeled training data and the test data from
different sources.

4. We construct TN3K: an open-access dataset of thyroid
nodule images with high-quality nodule masks labeling, aiming
at facilitating the research of thyroid nodule segmentation.

5. We demonstrate the effectiveness of the proposed method
on two test sets with a full evaluation, both qualitatively and
quantitatively.

2. Related works

The approaches for thyroid nodule segmentation have been
reviewed in Chen et al. (2020), which can be roughly di-
vided into the conventional counter, shape, region-based meth-
ods, and the prevailing deep learning-based methods. Since
conventional approaches like ACWE Gui et al. (2017) or VRS
Alrubaidi et al. (2016) requires to manually preset the potential
nodule region, deep learning-based methods (e.g., FCN Long
et al. (2015), UNet Ronneberger et al. (2015), SegNet Badri-
narayanan et al. (2017), Deeplab Chen et al. (2018)) has shown
its advance not only by making the inference automatically, but
also significantly outperform the conventional methods. Thus,
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we initially review the deep learning-based semantic segmenta-
tion algorithms, then we introduce the approaches for thyroid
nodule segmentation.

2.1. Deep Learning for Image Segmentation

Deep convolutional neural networks have recently greatly fa-
cilitated the progress of visual semantic segmentation and have
shown remarkable progress. A large amount of advanced deep
neural network structures have been proposed in the research
area of semantic segmentation as well as medical image seg-
mentation. With the key idea that fully convolutional networks
could take input of the arbitrary size and produce spatially dense
prediction efficiently, Long et al. (2015) proposed FCN, which
is a new scheme for the semantic segmentation task. In the
meanwhile, Ronneberger et al. (2015) proposed the UNet and
its typical variants like UNet++ proposed by Zhou et al. (2019),
have shown its great advance in the medical image segmenta-
tion domain with its encoder-decoder structure. The encoder
progressively down-samples the image features and generates
coarse contextual features that focus on contextual patterns, and
the decoder progressively up-samples the contextual features
and fuses them with fine-grained local visual features.

Other prevailing encoder-decoder based structure also in-
cludes Deeplab Chen et al. (2018), SegNet Badrinarayanan
et al. (2017), etc. To resolve the performance degradation
caused by insufficient context information extraction, Feng
et al. (2020) proposed CPFNet which efficiently fuse the pyra-
mid context information. To deal with diversity of size, color,
and the textual of lesions, Fan et al. (2020) proposed the PraNet
which aggregates the features in high-level layers using a paral-
lel partial decoder to guide the learning of the lesions. Recently,
Transformer Vaswani et al. (2017) based visual models have
attracted great attention with their superiority in discovering the
long-range relationship between the samples. Chen et al. (2021)
proposed the TransUnet to segment the image. The transformer
encodes markup image blocks from convolutional neural net-
work (CNN) feature maps as input sequences to extract global
context. Wu et al. (2022) used the transformer to segment the
lesions. While the decoder up-samples the encoded features and
then combines them with high-resolution CNN feature maps to
achieve accurate positioning. By combining UNet with Trans-
formers to recover local spatial information, it becomes a pow-
erful framework for medical image segmentation tasks.

2.2. Thyroid Nodule Segmentation

For thyroid nodule segmentation, Abbasian Ardakani et al.
(2019) use the hybrid filtering approach for thyroid nodule seg-
mentation. Ma et al. (2017) first leveraged the convolutional
neural network to segment the thyroid nodule. Ying et al.
(2018) proposed a cascaded framework that first eliminates the
influence of irrelevant regions with a UNet Ronneberger et al.
(2015), and then applies the VGG Simonyan and Zisserman
(2015) network to segment the thyroid nodules. Kumar et al.
(2020) proposed a neural network to simultaneously segment
the gland, the solid nodule, and the cystic nodule of the thy-
roid. Pan et al. (2021) proposed a thyroid nodule segmenta-
tion approach called SGUNet which is based on the guidance of

Different Views Different Intensity Different Size/Nodule Count

Fig. 2. Illustration of ultrasonic thyroid images from the proposed TN3K
dataset and their pixel-wise annotations. From left to right: different
views, intensities and sizes.

the semantic feature. SGUNet abstracts a single channel pixel-
wise semantic feature map from the high-dimensional features
in each decoding layer, which is treated as high-level semantic
guidance to low-level features in order to obtain a more accu-
rate nodule position. Song et al. (2022) proposed a dual-branch
pseudo-label-based method to localize thyroid nodules in ultra-
sound images. Sun et al. (2022) proposed TNSNet to achieve
accurate segmentation of thyroid nodules by constraining the
edges of thyroid nodules with soft labels. Chen et al. (2022)
proposed that thyroid nodules are classified into different types
according to their cystic and solid characteristics, and designed
an encoder network that can sense the type of thyroid nodules
to achieve more accurate segmentation of thyroid nodules. Yu
Yu et al. (2022) proposed to segment the thyroid under weak su-
pervision with self-attention mechanism. However, none of the
existing thyroid nodule segmentation methods explicitly con-
strain the thyroid nodules to be located in the thyroid gland re-
gion, which we believe is an important reason for the relatively
poor performance considering the inherently low contrast of ul-
trasound images.

3. Dataset

To advance the research towards a computer-aided-diagnosis
system for automatic thyroid nodule diagnosis, we contribute
TN3K: a challenging thyroid nodule segmentation dataset in-
cluding 3,493 ultrasound images with pixel-wise labels. The
TN3K dataset was collected at Zhujiang Hospital, South Medi-
cal University, and has received the appropriate approvals from
the institutional ethics committees.

3.1. Motivation

To the best of our knowledge, the only publicly available thy-
roid nodule dataset without any usage restriction is provided
by Pedraza et al. (2015), which we call DDTI. However, this
dataset only contains 637 images with pixel-wise lesion masks,
which is limited for the deep learning-based model training and
evaluation. Furthermore, in clinical applications, the composi-
tion of thyroid ultrasound image dataset is complex. As shown
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Table 1. Summary of the ultrasonic thyroid image used in this study.

Dataset Train Test Ultrasounic Imaging Device

DDTI Pedraza et al. (2015) - 637 TOSHIBA Nemio 30, TOSHIBA Nemio MX
TG3K Wunderling et al. (2017) 3585 - GE Logiq E9

TN3K 2879 614 GE Logiq E9, ARIETTA 850, RESONA 70B

The center bias of the nodule

91%

Statistic of the nodule count 

91%

Statistic of the nodule count 

One nodule Two nodules
Three or more 

nodules

Fig. 3. Center bias and the thyroid nodule statistics information of TN3K
dataset.

in Fig. 2, the imaging of thyroid could be captured from differ-
ent views (e.g., front view, side view, vertical view) or differ-
ent intensities (e.g., high brightness, low brightness). Besides,
the multi-nodules situation is not considered in DDTI, which is
a very common phenomenon during the ultrasonic thyroid ex-
amination. Thus, we build the TN3K dataset, which contains
abundant ultrasound thyroid images from real-world scenarios.

3.2. Sample Collection and Annotation

The TN3K dataset is collected from various ultrasonic imag-
ing systems including the GE Logiq E9, ARIETTA 850, and
RESONA 70B. We select the samples with the following cri-
teria: (1) At least one thyroid nodule is in the image; (2) The
image doesn’t contain the blood signal; (3) Only one represen-
tative image (i.e., the nodule closer to the center) is retained
among the images from the same perspective or the same area
of a patient. After selecting the samples with the above crite-
ria, we obtain 3,493 images from 2,421 patients. Then we pre-
process these images by ensuring that each image is converted
to gray-scale and the non-ultrasound image area is cropped. We
first ask volunteers to label the nodules under the guidance of
an experienced radiologist. Then a radiologist is asked to check
the annotation he confirmed and further invite a senior clinician
to perform verification on the confusing thyroid nodule images.
It is worth noting that if there are multi-nodules in the image,
we label each nodule with no connecting mask. The statistics
information about this dataset is shown in Fig. 3. The degree
of the center bias is obtained by computing the average nodule
mask over all samples in the TN3K dataset, which indicates the
potential position of the nodule in image. Furthermore, there
are about 9% ultrasonic images with two or above thyroid nod-
ules.

3.3. Dataset Summary

Table. 1 summarizes the three ultrasound datasets used in our
experiments. TG3K is the dataset with pixel-wise thyroid gland
masks. TN3K and DDTI denote the data set with the thyroid
nodule label. All the non-ultrasonic regions have been removed.

DDTI: This dataset is provided by the Pedraza et al. (2015),
which contains 637 ultrasonic thyroid imaging with pixel-wise
labels from a single device. As the dataset is limited, we treat
this dataset as the external testset to evaluate the performance
and the generalization ability of the algorithms.

TG3K: This dataset is acquired from 16 ultrasonic videos
proposed by Wunderling et al. (2017). It is originally designed
to segment the thyroid gland region from the videos. In this
work, we first extract the frames from the videos. Based on
the concern that the gland image is useless if it only contains a
small part of the gland, we construct the thyroid gland imaging
segmentation dataset with the rule that the proportion of the
thyroid gland area to the image should be greater than 0.06.
After that, we get 3,585 images for training.

TN3K: The proposed dataset is split into the training set and
the test set with the criteria that the images from the same pa-
tient only appear in a certain subset. Thus, the training set con-
tains 2,879 images while the test set contains 614 images.

4. Methodology

In this section, we introduce our proposed thyroid region
prior guided feature enhance network named TRFE+, for thy-
roid nodule segmentation in ultrasonic images, which is shown
in Fig. 4. The TRFE+ is mainly composed of three parts: a
shared encoder, three separate decoders, and an adaptive thy-
roid region prior guidance module. The encoder is designed
to extract the high-dimensional feature representation for the
image. The decoders are designed for thyroid gland region seg-
mentation, thyroid nodule discovery, and nodule size predic-
tion, respectively. The adaptive region prior guidance module
is designed to use the thyroid gland region prior information to
improve the segmentation performance of nodules.

4.1. Multi-task Learning Framework

The pipeline of the TRFE+ is displayed in Fig. 4, which is
consisted of a shared encoder backbone to learn the feature rep-
resentation and three separate decoders for thyroid gland seg-
mentation, nodule size prediction, and nodule segmentation,
respectively. During the training process, we select one image
from each of the TN3K and TG3K dataset to form a mini-batch,
the nodule image and gland image are denoted in blue block
and green block, respectively. The gland images are fed into
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Image with 
nodule label

Nodule 
Segmentation

Image with 
gland label

Gland 
Segmentation

Input Image Batch

Sum

Skip Concatenation

ARPG ARPG ARPG

Nodule Size

ARPG
Adaptive Region 
Prior Guidence

SPT

Size Prediction TaskSPT

Fig. 4. The pipeline of the thyroid region prior guided feature enhancement network (TRFE+). The upper branch in green learns to segment the thyroid
gland. The middle SPT block refers to the nodule size prediction task. The lower branch in blue aims to segment the thyroid nodule region. ARPG refers
to the adaptive region prior guidance module.

the upper branch while the nodule images are sent to the infe-
rior branch for loss back-propagation. It is worth noting that
the nodule images are also fed to the upper branch for gland re-
gion discovery, and the obtained features are further fed to the
region prior guidance module to improve the accuracy of the
nodule region segmentation. We take the vanilla encoder and
the decoder of UNet Ronneberger et al. (2015) in the thyroid
gland segmentation branch of TRFE+. We add a refinement
layer after the decoder of the nodule segmentation branch be-
cause our task focuses on the nodule segmentation. The details
of the network architecture are shown in Table 1 of the supple-
mental materials.

0.630.75

LLog-cosh

Encoder
GAP

 

1024

512

Predict Nodule SizeGT Nodule Size

Fig. 5. The pipeline of the size prediction task. GAP refers to the global
average pooling processing.

To better make use of the thyroid region prior, we dig deeper
into the relationship between the gland region prior and the nod-

ule segmentation task. We discover that not all nodules need
the supervision of the thyroid gland. As we can see in Fig.
5, due to the inconsistent size between the thyroid gland and
the thyroid nodule, the gland detection branch may regard the
region in the nodule as the region out of the gland for large
nodules. In this situation, the thyroid gland’s prior information
could be harmful. Thus, for the large nodules the thyroid gland
prior information could be harmful. Thus, we proposed a Size
Prediction Task (SPT) to force the encoder to be aware of the
nodule size. Specifically, we add a size prediction module after
the fifth layer of the encoder. Let MLP be the Multiple-Layers
Perceptron network, the predicted size spred is obtained by:

spred = sigmoid(MLP( f5)) (1)

where sigmoid indicates the sigmoid function, f5 denotes the
feature map of the fifth layer. To avoid the over-fitting of the
model, we adopts a smooth version of the MSE loss (i.e., Log-
cosh loss) Natekin and Knoll (2013) to calculate the loss of
the size prediction task Lsize:

Lsize =
1

Nnodule

Nnodule∑
i=1

log(cosh(spred
i − sgt

i )) (2)

where Nnodule denotes the number of the thyroid nodule images
in a mini-batch, sgt represents the ground-truth area ratio that
the nodule occupied in the images. log and cosh indicates the
log function and the hyperbolic cosine function, respectively.

4.2. Adaptive Region Prior Guidance Module
To take full use of the gland position prior knowledge, we

have designed a region prior guidance (RPG) module in our
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Fig. 6. The adaptive region prior guidance (ARPG) module. The gland
segmentation feature map, the nodule segmentation feature map, and the
fusion features are represented by blocks in green, blue, and orange, re-
spectively. C, H, and W denotes channel dimension, height, and width of
the feature map, respectively.

previous work Gong et al. (2021). However, the RPG module
does not significantly improve the performance of the multi-
task learning diagram due to the following facts: The explicit
feature enhancement module was not able to select the useful
semantic information, while the implicit feature enhancement
module ignores the relationship between the different chan-
nels. Inspired by Hu et al. (2018); Woo et al. (2018); Hou
et al. (2021) and the idea of matrix decomposition Geng et al.
(2021), we re-design the RPG module by taking both the chan-
nel relationship and the position information into account. The
new tailor-designed Adaptive Region Prior Guidance (ARPG)
module is shown in Fig. 6.

To give a formulaic definition, we denote g(·) as the 1 × 1
convolution operation, σ(·) as the sigmoid function, [·, ·] as the
concatenation operation, xtg as the feature map of thyroid gland
segmentation branch shaped C × H ×W. Analogously, xtn de-
notes the feature map shaped C × H × W of thyroid nodule
segmentation branch. We first concatenate them into one unit
xconcat:

xconcat = [xtg, xtn] (3)

After that, a direction-aware pooling strategy is applied to
capture the long-range spatial information in one direction.
Given the input xconcat feature map shaped 2C × H × W, we
generate the feature vector with the following operation:

vh =
1
W

∑
0≤i<W

xconcat(h, i) (4)

Analogously, the vertical feature vector is obtained by:

vw =
1
H

∑
0≤ j<H

xconcat( j,w) (5)

After that, we first transpose the vw shaped C × 1×W into vT
w

the shape C ×W × 1, then we concatenate the feature vector vh

and vT
w into one vector shaped 2C× (H+W)×1, and use the 1×

1 convolution operator to discover the channel relationship by
squeezing the channel dimension into C/r, where r is a squeeze
factor set to 16 in our experiments. This progress is defined as:

vsqueeze = g([vh, vT
w]) (6)

After that, we normalize and activate the feature vector with
group normalization Wu and He (2018) and leaky ReLU
Maas et al. (2013) function. We split the squeezed vector vsqueeze

into the vertical feature vector zh and horizontal feature vector
zw. We transposed the zw shaped C/r×W ×1 into the zT

w shaped
C/r × 1 × W Then zh and zw are expanded with the 1 ∗ 1 con-
volution to the feature channels of C followed by the sigmoid
function, as follows:

xh = σ(g(zh)) (7)

xw = σ(g(zT
w)) (8)

where xh denotes the horizontal feature vector shaped C×H×1
and xw denotes the vertical feature vector shaped C × 1 × W.
Finally, the fused feature map x f use is obtained by:

x f use = xh × xw (9)

The ARPG module is added to the first three layers of the
decoder. The feature fusion process is formulated as:

yi = x f use i + xtn i (10)

where i denotes the feature map index of the decoder.

N

C

H, W

BatchNorm GroupNorm

C

N

H, W

Fig. 7. BatchNorm and GroupNorm. The blue cubes denote the thyroid
nodule image, and the green cubes indicate the thyroid gland image. The
orange cubes are normalized by the same mean and variance by computing
their values.

4.3. Group Normalization

One inherent issue caused by our designed multi-task learn-
ing framework is the distribution gap between the TN3K and
the TG3K. Since the view and the scale of the images in mixed
mini-batch could be different, conventional BatchNorm Ioffe
and Szegedy (2015) could be helpless due to the domain shift.
Thus, we propose a simple yet effective solution that replaces
the BatchNorm operation with the GroupNorm Wu and He
(2018) operation. The intuitive visualization result is shown
in Fig. 7. The left cube shows how BatchNorm works while
the right cube shows how GroupNorm works. As can be ob-
served, the BatchNorm normalizes the features by the mean and
variance computed within a mini-batch, i.e., the N dimension,
which helps to reduce the difficulty of optimization and makes
deeper neural networks easier to converge. However, when the
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samples of a batch come from a different domain or the number
of samples in a batch are small, the neural networks could be
under-performed. The GroupNorm normalizes the batch from
the perspective of channel C, which avoids the influence of the
different domain samples in the mini-batch. With the Group-
Norm operation, our framework achieves lower loss and faster
convergence.

4.4. Loss Function
We design a multi-task loss Ltotal to optimize our TRFE+

with the supervision of a thyroid nodule region mask, thyroid
gland mask, and thyroid nodule size. The formula is defined as:

Ltotal =

Nnodule∑
i=1

Lnodule i + λ ∗

Ngland∑
j=1

Lgland j + Lsize (11)

where Ngland and Nnodule are set to half of the number of sam-
ples in a mini-batch, respectively. Lnodule and Lgland represent
the Dice loss function LDice of the nodule segmentation and the
gland segmentation, respectively. λ is a trade-off parameter be-
tween the nodule segmentation branch and gland segmentation
branch, which is set to 0.5. Lsize denotes the loss of the nodule
size prediction task.

5. Experiments

5.1. Implementation Details
All the models are trained with the NVIDIA Tesla A100

GPU with 40 GB memory. The framework is implemented
in PyTorch 1.8.1 with the CUDA 11.1. If the ImageNet pre-
trained encoder is available, we use the ImageNet pre-trained
weight to initialize the model. For other situations, the weight
of the model is initialized by Kaiming-initialization He et al.
(2015). Stochastic gradient descent (SGD) is used to optimize
the model for 50 epochs. ’Poly’ learning rate policy is applied,
where lr = baselr×

(
1 − epoch

epochtotal

)power
. The baselr is set to 0.01

while power is set to 0.9. The batch size is set to 16. During
the training phases, all the images are resized to 224× 224 with
a random horizontal flip at the probability of 0.5. All images
are simply resized to 224 × 224 during the model inference.
The segmentation performance is obtained by calculating the
mean and variance of the five-fold cross-validation (i.e., 2,303
images for training and 576 images for validation) results. To
train the TRFE Gong et al. (2021) and the proposed TRFE+,
we combine the training set of TN3K with the 2,303 images
from TG3K dataset to form a hybridized training dataset that
contains 4606 images. The architecture of the proposed TRFE+
is shown in Table 2.

5.2. Evaluation Metrics
To quantitatively evaluate the segmentation performance of

the proposed method, we select the following metrics:

• IoU (Intersection Over Union) = TP/(FP + FN);

• DICE (dice coefficient) = 2*TP/(FP + FN + 2 * TP);

• Specificity = TN/(FP+TN);

Table 2. The architecture of the TRFE+. ”E” and ”D” are ”Encoder” and
”Decoder” for short, respectively.

E

output size layer

224 × 224
[

3 × 3, 64
3 × 3, 64

]
2 × 2 max pool, stride 2

112 × 112
[

3 × 3, 128
3 × 3, 128

]
2 × 2 max pool, stride 2

56 × 56
[

3 × 3, 256
3 × 3, 256

]
2 × 2 max pool, stride 2

28 × 28
[

3 × 3, 512
3 × 3, 512

]
2 × 2 max pool, stride 2

14 × 14
[

3 × 3, 1024
3 × 3, 1024

]

D

output size layer output size layer output size layer
adaptive avg pool 2 × 2 upsample, stride 2 2 × 2 upsample, stride 2

1024 Fc layer 28 × 28
[

3 × 3, 512
3 × 3, 512

]
28 × 28

[
3 × 3, 512
3 × 3, 512

]
512 Fc layer 2 × 2 upsample, stride 2 ARPG module

predicted nodule size Fc layer 56 × 56
[

3 × 3, 256
3 × 3, 256

]
2 × 2 upsample, stride 2

2 × 2 upsample, stride 2 56 × 56
[

3 × 3, 256
3 × 3, 256

]
112 × 112

[
3 × 3, 128
3 × 3, 128

]
ARPG module

2 × 2 upsample, stride 2 2 × 2 upsample, stride 2

224 × 224
[

3 × 3, 64
3 × 3, 64

]
112 × 112

[
3 × 3, 128
3 × 3, 128

]
224 × 224 3 × 3, 3 ARPG module

2 × 2 upsample, stride 2

224 × 224
[

3 × 3, 64
3 × 3, 64

]
224 × 224 3 × 3, 32
224 × 224 3 × 3, 32
224 × 224 3 × 3, 3

• PR (Precision) = TP/(TP+FP);

• SE (Sensitivity) = RE (Recall) = TP/(TP+FN);

• Accuracy = (TN+TP)/(TN+TP+FN+FP);

• F1-score = (2*PR*RE)/(PR+RE);

• AUC (Area Under the ROC Curve): this is obtained by the
IoU score of all the five folds segmentation results;

• p-value: this is obtained by the t-test in terms of IoU dif-
ference between the proposed TRFE+ and other models;

• HD95: the qualified metric of segmentation boundaries by
computing the top 95% maximum distance between the
predicted boundaries and ground truth.

where TP, FP, TN, FN indicate true positive, false positive, true
negative, and false negative, respectively. The F1-score is the
harmonic mean of the precision and recall. Any p-value less
than 0.05 demonstrates that the proposed method performs sig-
nificantly better than the other compared methods.

5.3. Comparison with the State-of-the-art Methods

We thoroughly evaluate the proposed method on the test set
of TN3K and DDTI which is shown in Table 3. By com-
paring it with the existing state-of-the-art segmentation meth-
ods, the superiority of our TRFE+ has been demonstrated.
The FCN and the SegNet are trained with the ImageNet pre-
trained VGG Simonyan and Zisserman (2015) backbone, while
the Deeplabv3+, CPFNet, TransUNet are trained with the Im-
ageNet pre-trained ResNet He et al. (2016) backbone. The
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Table 3. Comparisons with the state-of-the-art semantic segmentation models on the TN3K testset and DDTI. The best result is shown in bold.

TN3K testset AUC F1-score Accuracy IoU Dice HD95 p-value

UNet Ronneberger et al. (2015) 95.01 76.43±0.67 96.46±0.11 65.99±0.66 79.51±1.31 18.44±0.75 <0.0001
SGUNet Pan et al. (2021) 92.88 76.54±0.43 96.54±0.09 66.05±0.43 79.55±0.86 18.16±0.71 <0.0001
TRFE Gong et al. (2021) 93.74 78.18±0.72 96.71±0.07 68.33±0.68 81.19±1.35 17.96±1.24 <0.0001
FCN Long et al. (2015) 95.37 78.39±0.25 96.92±0.04 68.18±0.25 81.08±0.50 16.93±0.77 <0.0001

SegNet Badrinarayanan et al. (2017) 96.06 77.02±0.85 96.72±0.12 66.54±0.85 79.91±1.69 17.13±0.89 <0.0001
Deeplabv3+ Chen et al. (2018) 95.80 80.52±0.40 97.19±0.05 70.60±0.49 82.77±0.98 13.92±0.89 0.053

CPFNet Feng et al. (2020) 95.85 80.46±0.37 97.17±0.06 70.50±0.39 82.70±0.78 13.56±0.82 <0.05
TransUNet Chen et al. (2021) 92.78 79.05±0.47 96.86±0.05 69.26±0.55 81.84±1.09 14.92±0.39 <0.0001

TRFE+ 97.44 81.21±0.30 97.04±0.10 71.38±0.43 83.30±0.26 13.23±0.63 -

DDTI AUC F1-score Accuracy IoU Dice HD95 p-value

UNet Ronneberger et al. (2015) 84.81 53.49±4.81 90.94±0.53 42.59±4.16 59.74±7.99 40.43±6.29 <0.0001
SGUNet Pan et al. (2021) 82.98 57.09±2.38 91.30±0.35 45.90±2.12 62.92±4.15 34.62±2.12 <0.0001
TRFE Gong et al. (2021) 78.60 63.68±1.99 92.13±0.25 52.72±1.70 69.04±3.34 34.60±3.39 <0.0001
FCN Long et al. (2015) 85.99 64.99±2.19 92.67±0.22 53.80±2.03 69.96±3.98 31.03±2.54 <0.0001

SegNet Badrinarayanan et al. (2017) 86.03 59.05±2.73 91.84±0.33 48.36±2.35 65.19±4.59 37.32±3.40 <0.0001
Deeplabv3+ Chen et al. (2018) 89.68 69.86±1.28 93.51±0.24 59.23±1.21 74.40±2.39 25.45±0.78 <0.001

CPFNet Feng et al. (2020) 90.74 70.65±1.33 93.25±0.27 59.70±1.10 74.77±2.18 24.79±1.17 <0.05
TransUNet Chen et al. (2021) 85.18 70.65±1.62 93.11±0.33 59.28±1.78 74.43±3.50 24.37±1.06 <0.05

TRFE+ 92.56 72.20±1.10 93.18±0.26 60.47±1.08 75.37±2.14 24.60±1.23 -

proposed TRFE+ considerably exceeds the previous TRFE by
3.19% Jaccard score on TN3K testset and significantly outper-
forms the TRFE by 7.75% Jaccard index on the DDTI dataset.
By taking the advantage of the tailor-designed multi-task learn-
ing diagram, the proposed TRFE+ even outperformed other
state-of-the-art methods equipped with the powerful ImageNet
pre-train backbone.

To illustrate the performance of the proposed method in a
more intuitive manner, we further provide the ROC curves for
both the TN3K testset and the DDTI data set in Fig. 8. Com-
paring to the previous state-of-the-art methods like CPFNet
Feng et al. (2020) or the powerful transformer-based TransUNet
Chen et al. (2021), the proposed method performed well with
the following reasons. Firstly, the proposed method efficiently
takes the advantage of independently labeled thyroid gland data
with a tailor-designed multi-task learning paradigm, which ef-
fectively avoids the neural network’s misunderstanding of nod-
ules in non-thyroid areas. Secondly, the proposed method in-
cludes a region feature enhance module and a size prediction
task, which achieves better performance fully exploiting the
thyroid region prior and the relationship between the nodule
size and the prior intensity. In the end, we take the group norm
as the normalization approach to avoid the distribution gap be-
tween the two different domains of the source data. Thus, the
proposed method achieves much superior performance on the
TN3K test set and DDTI dataset.

5.4. Ablation Study

We conduct a comprehensive ablation study in Table 4 to ver-
ify the effectiveness of different variants of our the proposed
method. As we have demonstrated in our previous work that
simply use the thyroid gland data to pre-train the UNet does not

bring obvious performance improvement Gong et al. (2021), we
mainly focus on the effectiveness of the re-designed method in
this paper. In Table 4, the MTNet denotes the vanilla multi-
task learning framework with two branches. The TRFE refers
to the MTNet with the RPG attention module in Gong et al.
(2021). The TRFE-M0 adds the ARPG module to the MTNet.
The TRFE-M1 replaces the batch norm in TRFE-M0 with the
group norm. TRFE-M2 indicates the TRFE-M1 network with
the size prediction task. TRFE+ denotes the TRFE-M2 with the
additional refinement layer.

By leveraging the group normalization that normalizes the
feature from the channel perspective, our network could avoid
suffering from the domain shift between the two independently
labeled dataset. Furthermore, a tailor designed feature fusion
module that taking both the channel relationship and the po-
sition information into account. The size prediction task can
regularize the encoder to force the model to achieve better per-
formance on the extremely large or small nodule segmentation.
By adding the refinement layer after the vanilla decoder of the
thyroid nodule segmentation branch, the proposed TRFE+ fo-
cuses more on the nodule segmentation task thus achieves bet-
ter performance. It is worth noting that GroupNorm could im-
prove the performance of the task when batch size is extreme
small. However, the batch size in our paper is set to 16 which is
not small. According to Wu and He (2018), BatchNorm out-
performed GroupNorm when batch size is set to 16, but in
this work GroupNorm significantly outperformed BatchNorm,
which proves the effectiveness of our method in another way.
Furthermore, we enforce the framework to learn the nodule size
with an additional size prediction task, which alleviates the mis-
match between the nodule size and the gland size. The sensitiv-
ity analysis of the trade-off parameter is shown in Tab. 6. As λ



Haifan Gong et al. /Computers in Biology and Medicine (2022) 9

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.75

0.80

0.85

0.90

0.95

1.00

Se
ns

iti
vi

ty

TN3K

UNet(AUC=0.9501)
SGUNet(AUC=0.9288)
TRFE(AUC=0.9374)
FCN(AUC=0.9537)
SegNet(AUC=0.9606)
Deeplabv3+(AUC=0.9580)
CPFNet(AUC=0.9585)
TransUNet(AUC=0.9278)
TRFE+(AUC=0.9744)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.5

0.6

0.7

0.8

0.9

1.0

Se
ns

iti
vi

ty

DDTI

UNet(AUC=0.8481)
SGUNet(AUC=0.8298)
TRFE(AUC=0.7860)
FCN(AUC=0.8599)
SegNet(AUC=0.8603)
Deeplabv3+(AUC=0.8968)
CPFNet(AUC=0.9074)
TransUNet(AUC=0.8518)
TRFE+(AUC=0.9256)

Fig. 8. ROC curves of different algorithms on the TN3K testset and the DDTI dataset.

Table 4. Ablation study on the TN3K test set. N.S. means not significant.

Models Methods IoU p-ValueARPG GN SPT R
MTNet 68.03±0.41 <0.001
TRFE 68.19±0.43 <0.001
TRFE-M0 ✓ 68.61±0.45 <0.001
TRFE-M1 ✓ ✓ 70.65±0.51 <0.05
TRFE-M2 ✓ ✓ ✓ 71.11±0.34 N.S.
TRFE+ ✓ ✓ ✓ ✓ 71.38±0.43 -

Table 5. Sensitivity analysis of the λ value in equation 11

λ 0.25 0.5 0.75 1

Mean IoU 71.23±0.46 71.38±0.43 71.28±0.26 70.94±0.36

changes, the performance of the model does not change signifi-
cantly, and the model performs best with λ value of 0.5. We also
compare with the region guided attention machination named
MGA Li et al. (2019) by replacing our ARPG module with their
MGA module. The detailed comparison result is shown in Ta-
ble 6. The analysis of size prediction task is shown in Tab. 8.
We regard the nodule with an occupation ratio of more than 0.1
as a large nodule, and the experimental results are shown be-
low. We can see that the size prediction task significantly boost
the performance of our method on the large nodules, while also
improve the performance on small nodules.

Table 6. Compairson with other location prior based attention method.

Method IoU Improvement

TRFE 68.19±0.43 -
TRFE+MGA Li et al. (2019) 68.44±0.38 +0.25
TRFE+ARPG 68.61±0.45 +0.42

Table 7. Analysis of size prediction task.

Large Small Overall

w/o SPT 77.4±0.36 66.1±0.63 70.65±0.51
w SPT 78.7±0.26 66.3±0.39 71.11±0.34

6. Discussion

6.1. Qualitative analysis

The qualitative comparison result is shown in Fig. 9. We
can observe that the vanilla UNet achieves a relatively inferior
performance, due to the lack of the thyroid gland region prior
knowledge. Deeplabv3+, CPFNet, and TransUNet achieve bet-
ter performance to UNet. However, they still make some mis-
takes including regarding the non-nodule/non-gland region as
the thyroid nodule (second raw and fifth raw in Fig.9) and un-
able to segment all the nodules in the image (first raw in Fig.9).
In contrast, the proposed TRFE+ yields more accurate results.
TRFE+ avoids the mistake of identifying non-thyroid gland ar-
eas as thyroid nodules as much as possible. Furthermore, with
the help of group normalization, the TRFE+ shows much better
performance on the DDTI dataset (last two rows of Fig.9).

6.2. Clinical Analysis

In this work, we proposed a model that using the indepen-
dently labeled thyroid nodule images and thyroid gland images
to improve the segmentation accuracy of the thyroid nodule for
the first time. This is of great significance because despite the
difficulty in annotating medical images, the TRFE+ can make
full use of a large amount of respectively labeled data with the
shared backbone and three decoders. Automatic thyroid nod-
ule segmentation is not only valuable for the convenience of
the clinicians, but also plays an important role for the diagnose
of thyroid nodules as the size, shape, even the number of the
nodules are statistically significant for thyroid nodule grading.
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Fig. 9. Qualitative comparison of the algorithms on the TN3K test set and the DDTI dataset.

Based on the segmentation result, we can also locate the pe-
riphery region and use the periphery information Mohammadi
et al. (2022) around the thyroid nodule to provide better diag-
nosis accuracy. In the TN3K dataset, we carefully label each
nodule independently. Furthermore, our proposed dataset are
acquired from different views with different equipment, which
better adapts to the real world application of the nodules. How-
ever, as we can see from Table. 3, the models trained on the
TN3K training set is unable to accurately segment the nodules
in the DDTI dataset. Our proposed method significantly out-
performs the previous methods by a large margin on the DDTI
dataset which is from different domain. A potential explanation
is that the batch norm will lead the information reveal of the
dataset from a recent work Wu and Johnson (2021). The infor-
mation reveal does do harm to the transfer ability of the model.
Still, the domain shift is a valuable research topic for the further
study of thyroid nodules segmentation. We also provide the
morphemetric analysis according to Abbasian Ardakani et al.
(2019) which is shown in Tab. 9. The proposed method signifi-
cantly exceeds the UNet with a higher PCC score.

6.3. Limitation

One of the limitations of this work is that this model works
not that well on the DDTI dataset, which is obtained from other
devices. In the future, we think it will be a valuable topic to fur-
ther utilize domain adaptation technologies to alleviate the do-
main shift between two domains. Besides, in this work, we ne-
glect the thyroid nodule segmentation based on B-mode images,

and we think it will be valuable to further apply our method to
these images.

7. Conclusion

In this paper, we present a novel thyroid nodule segmentation
framework named TRFE+ that takes the thyroid region prior as
guidance for nodule segmentation. This framework is designed
as a multi-task learning paradigm that simultaneously learns the
nodule region segmentation, gland region segmentation, and the
nodule size prediction. Besides, the ARPG module is incorpo-
rated to enhance the thyroid nodule segmentation by utilizing
the feature of the thyroid gland segmentation branch. More-
over, we discover the fact that normalizing the data from chan-
nel dimension could not only alleviate the domain gap between
the TN3K and TG3K during the training phase, but also boost
the performance of heterogeneous testset. To the best of our
knowledge, the proposed TRFE+ is the first to successfully uti-
lize the independently labeled thyroid nodule data and thyroid
gland data, which is valuable as there exists a large amount of
independently labeled clinical data. Experiment results on the
TN3K testset and the DDTI dataset have demonstrated the ef-
fectiveness of the proposed method. We have selected various
metrics and conducted paired t-tests on the segmentation IoU
of our method and others. The statistical analysis in Section V
demonstrates competitive performance of the proposed method.

To promote research in the field of automatic thyroid diag-
nosis, we contribute TN3K: a challenging, heterogeneous, and
precisely labeled benchmark for thyroid nodule segmentation.
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Table 8. Morphemetric analysis according to Abbasian Ardakani et al. (2019) based on TN3K testset. “Avg.” denotes the average result. “PCC” denotes
the Pearson correlation coefficient. “GT” denotes the manual annotated result obtained by radiologist.

X-coor Y-coor Eccentricity Orientation Diameter Area Perimeter Convex Solidity Extent

GT Avg. 270.83 153.06 0.6695 3.9996 156.77 30390.05 618.71 33615.77 0.9416 0.7288

UNet Avg. 270.01 150.97 0.6928 2.0185 158.75 30051.89 657.73 33075.04 0.9060 0.6763
UNet PCC 0.6670 0.7614 0.2179 0.1276 0.7954 0.7866 0.7368 0.8932 0.1450 0.1233

TRFE+ Avg. 271.63 152.07 0.6915 3.2135 160.46 30763.45 641.96 33562.21 0.9298 0.7010
TRFE+ PCC 0.8635 0.9303 0.4039 0.3395 0.8117 0.7828 0.7414 0.8945 0.2159 0.1936

To guarantee the patient privacy not being revealed, the personal
identities of all images have been removed and cannot be recon-
structed. We plan to keep on constructing the dataset with more
challenging situations such as instance-level nodule masks, la-
beling the grading clues (e.g., strong echo) from the treatment
guidelines within the nodule. We believe these efforts will facil-
itate the future development of computer-aided thyroid nodule
diagnosis.
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