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Abstract

Existing methods for video question answering
(VideoQA) often suffer from spurious correlations between
different modalities, leading to a failure in identifying
the dominant visual evidence and the intended question.
Moreover, these methods function as black boxes, making it
difficult to interpret the visual scene during the QA process.
In this paper, to discover critical video segments and
frames that serve as the visual causal scene for generating
reliable answers, we present a causal analysis of VideoQA
and propose a framework for cross-modal causal relational
reasoning, named Visual Causal Scene Refinement (VCSR).
Particularly, a set of causal front-door intervention opera-
tions is introduced to explicitly find the visual causal scenes
at both segment and frame levels. Our VCSR involves two
essential modules: i) the Question-Guided Refiner (QGR)
module, which refines consecutive video frames guided
by the question semantics to obtain more representative
segment features for causal front-door intervention; ii) the
Causal Scene Separator (CSS) module, which discovers a
collection of visual causal and non-causal scenes based
on the visual-linguistic causal relevance and estimates
the causal effect of the scene-separating intervention in
a contrastive learning manner. Extensive experiments on
the NExT-QA, Causal-VidQA, and MSRVTT-QA datasets
demonstrate the superiority of our VCSR in discovering
visual causal scene and achieving robust video question
answering.

1. Introduction
Video question answering [27, 28] is a challenging task

requiring machines to understand and interpret complex vi-
sual scenes to answer natural language questions about the
content of a given video. Since videos have good poten-
tial to understand event temporality, causality, and dynam-

(a) Explanation of VideoQA based on causal scene sets.

(b) Spurious correlations of visual contents in VideoQA tasks.

Figure 1. An example of causal explanation of VideoQA and visual
spurious correlations. (a) illustrates the explanation of the model-
predicted answer through a causal scene set, and (b) shows how
the spurious correlation caused by visual confounders affects the
prediction of the model.

ics [40, 41], we focus on discovering question-critical vi-
sual causal scenes and achieving robust video question an-
swering. Our task aims to fully comprehend the richer
multi-modal event space and answer the given question
in a causality-aware way. To achieve innovative archi-
tecture, several studies have explored VideoQA’s multi-
modal nature, including enhancing vision-language align-
ment [22, 46] and reconsidering the structure of visual
input [27, 63]. Most of the existing VideoQA methods
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[30, 27, 46] use recurrent neural networks (RNNs) [52],
attention mechanisms [55] or Graph Convolutional Net-
works [26] for relation reasoning between visual and lin-
guistic modalities. Although achieving promising results,
the current video question answering methods suffer from
two common limitations.

First, the black-box nature of existing VideoQA models
remains a significant challenge, as they lack transparency
in their prediction process and offer little insight into the
key visual cues used to answer questions about the video
[8, 51]. Specifically, it is difficult to explicitly discover the
dominant visual segments or frames that the model focuses
on to answer the question about the video. This lack of in-
terpretability raises concerns about the robustness and re-
liability of the model, particularly in safety and security
applications. To improve the interpretability of VideoQA
models, it is crucial to identify a subset of visual scenes,
referred to as “causal scenes”, that serve as evidence to sup-
port the answering process in a way that is interpretable to
humans [51]. For instance, Figure 1(a) shows that the causal
scene set contains the boy’s question-related action, which
can serve as the dominant visual causal scene that provides
an intuitive explanation for why the model gives the answer
“unwrap it”. In contrast, the non-causal visual scene set in-
cludes question-irrelevant scenes that cannot faithfully re-
veal the correct question answering process.

Second, most of the existing video question answering
models capture spurious visual correlations rather than the
true causal structure, which leads to an unreliable reason-
ing process [45, 60, 32, 42]. For instance, frequently co-
occurring visual concepts, such as those illustrated in Fig-
ure 1(b), can be visual confounders (C). These confounders
lead to a “visual bias” denoting the strong correlations be-
tween visual features and answers. In the training set shown
in Figure 1(b), the co-occurrence of the concepts “boy” and
“play” dominates, which could lead the predictor to learn
the spurious correlation between the two without consider-
ing the boy’s action (i.e., causal positive scene P ) to under-
stand what the boy actually did. Consequently, there are sig-
nificant differences in visual correlations between the train-
ing and testing sets, and memorizing strong visual priors
can limit the reasoning ability of video question answering
models. To mitigate visual spurious correlations, this pa-
per takes a causal perspective on VideoQA by partitioning
visual scenes into two parts: 1) causal positive scene P ,
which contains question-critical information, and 2) non-
causal scene N , which is irrelevant to the answer. Thus, we
scrutinize that the non-causal scene N is spuriously corre-
lated with the answer A.

To address the aforementioned limitations, we propose
the Visual Causal Scene Refinement (VCSR) framework to
explicitly discover the visual causal scenes through causal
front-door interventions. To obtain representative seg-

ment features for front-door intervention, we introduce the
Question-Guided Refiner (QGR) module that refines con-
secutive video frames based on the question semantics. To
identify visual causal and non-causal scenes, we propose
the Causal Scene Separator (CSS) module based on the
visual-linguistic causal relevance and estimates the causal
effect of the scene-separating intervention through con-
trastive learning. Extensive experiments on the NExT-QA,
Causal-VidQA, and MSRVTT-QA datasets demonstrate the
superiority of VCSR over the state-of-the-art methods. Our
main contributions are summarized as:

• We propose the Visual Causal Scene Refinement
(VCSR) framework, to explicitly discover true causal
visual scenes from the perspective of causal front-door
intervention. To the best of our knowledge, we are the
first to discover visual causal scenes for video question
answering.

• We build the Causal Scene Separator (CSS) module
that learns to discover a collection of visual causal and
non-causal scenes based on the visual-linguistic causal
relevance and estimates the causal effect of the scene-
separating intervention in a contrastive learning man-
ner.

• We introduce the Question-Guided Refiner (QGR)
module that refines consecutive video frames guided
by the question semantics to obtain more representa-
tive segment features for causal front-door interven-
tion.

2. Related Work
2.1. Video Question Answering

Compared with image-based visual question answering
[4, 68, 3], video question answering is much more chal-
lenging due to the additional temporal dimension. To
address the VideoQA problem, the model must capture
spatial-temporal and visual-linguistic relationships to infer
the answer. To explore relational reasoning in VideoQA,
Xu et al. [65] proposed an attention mechanism to ex-
ploit the appearance and motion knowledge with the ques-
tion as guidance. Jang et al. [20, 19] proposed a
dual-LSTM-based method with both spatial and tempo-
ral attention, which used a large-scale VideoQA dataset
named TGIF-QA. Later, some hierarchical attention and co-
attention-based methods [30, 12, 23] were proposed to learn
appearance-motion and question-related multi-modal inter-
actions. Le et al. [27] proposed the hierarchical conditional
relation network (HCRN) to construct sophisticated struc-
tures for representation and reasoning over videos. Jiang
et al. [22] introduced the heterogeneous graph alignment
(HGA) nework that aligns the inter- and intra-modality in-



formation for cross-modal reasoning. Huang et al. [18] pro-
posed a location-aware graph convolutional network to rea-
son over detected objects. Lei et al. [28] employed sparse
sampling to build a transformer-based model named CLIP-
BERT, which achieved end-to-end video-and-language un-
derstanding. Liu et al. [34] proposed the hierarchical
visual-semantic relational reasoning (HAIR) framework to
perform hierarchical relational reasoning. However, these
previous works tend to capture cross-modal spurious cor-
relations within the videos and neglect interpreting the vi-
sual scene during the QA process. In contrast, we propose
the Visual Causal Scene Refinement (VCSR) architecture to
explicitly refine the visual causal scenes temporally.

2.2. Visual Causality Learning

Compared to conventional debiasing techniques [59],
causal inference [47, 66, 42] has shown potential in mit-
igating spurious correlations [5] and disentangling model
effects [6] to achieve better generalization. Counterfactual
and causal inference are gaining increasing attention in sev-
eral computer vision tasks, including visual explanations
[16, 57], scene graph generation [9, 54], image recognition
[58, 60], video analysis [38, 37, 39, 13, 25, 44], and vision-
language tasks [1, 45, 67, 35, 36, 10]. Specifically, Tang
et al. [53], Zhang et al. [69], Wang et al. [58], and Qi
et al. [48] computed the direct causal effect and mitigated
the bias based on observable confounders. Counterfactual
based solutions are also effective. For example, Agarwal
et al. [2] proposed a counterfactual sample synthesising
method based on GAN [15]. Chen et al. [8] replaced critical
objects and critical words with a mask token and reassigned
an answer to synthesize counterfactual QA pairs. Apart
from sample synthesising, Niu et al. [45] developed a coun-
terfactual VQA framework that reduces multi-modality bias
by using a causality approach named Natural Indirect Effect
and Total Direct Effect to eliminate the mediator effect. Li
et al. [32] proposed an Invariant Grounding for VideoQA
(IGV) to force models to shield the answering process
from the negative influence of spurious correlations. Li
et al. [31] introduced a self-interpretable VideoQA frame-
work named Equivariant and Invariant Grounding VideoQA
(EIGV). Liu et al. [35] proposed a Cross-Modal Causal Re-
latIonal Reasoning (CMCIR) model for disentangling the
visual and linguistic spurious correlations. Differently, our
VCSR aims for visual causal scene discovery, which re-
quires fine-grained understanding of spatial-temporal and
visual-linguistic causal dependencies. Moreover, our VCSR
explicitly finds the question-critical visual scenes tempo-
rally through front-door causal interventions.

Figure 2. The Structured Causal Model (SCM) of VideoQA. V, Q
and A denote video, question and answer respectively. C is the
visual confounder, S denotes the refined video scenes, P and N are
causal positive and negative visual scenes. Green flows: the causal
path of VideoQA (the front-door path). Blue flows: the non-causal
path. Red flows: biased VideoQA caused by the confounders (the
back-door path).

3. Methodology

3.1. VideoQA in Causal Perspective

To discover visual causal scenes for VideoQA task,
we employ Pearl’s structural causal model (SCM) [47] to
model the causal effect between video-question pairs and
the answer, as shown in Figure 2. The variables V , Q, A
are defined as the video, question, and answer. S is refined
video scene set which can be divided into causal positive
scene set P and negative scene set N . The front-door paths
V → S → P → A, Q → P → A, Q → A repre-
sent the true causal effects of VideoQA. These paths are
involved in the reasoning process of watching the video,
finding question-related scenes, and answering the question.
However, the visual confounder C introduces a backdoor
path V ← C → A, which creates a spurious correlation
between the video and answer. Unfortunately, visual do-
mains have complex data biases, and it can be difficult to
distinguish between different types of confounders. As a
result, the visual confounder C cannot be observed. Since
the causal positive scenes P completely mediates all causal
effects from V to A, to address this issue and achieve the
true visual causal effect of V → S → P → A, we pro-
pose a causal front-door intervention by treating P as the
mediator. The front-door intervention could be formulated
as:

P (A|do(V ), Q) =
∑
p

P (p|do(V = v))P (A|do(P = p), Q)

=
∑
p

∑
s

P (p|s)P (s|do(V = v))P (A|do(P = p), Q)

=
∑
p

∑
s

P (p|s)P (s|v)
∑
v′

∑
s′

P (A|p, s′, Q)P (s′|v′)P (v′)

(1)



Figure 3. An overview of our Visual Causal Scene Refinement (VCSR) framework. The Question-Guided Refiner (QGR) encodes consec-
utive video frames guided by the question semantics to obtain representative segment features for causal front-door intervention. Then, the
Causal Scene Separator (CSS) learns to construct a collection of visual causal and non-causal scenes based on the visual-linguistic causal
relevance and estimates the causal effect of the scene-separating intervention in a contrastive learning manner. Finally, the Video Question
Reasoner (VQR) computes the answer embedding with positive and negative video features. (SPL: Semantic Preserving Loss, VCL: Visual
Contrastive Loss, QAL: Question Answering Loss)

where do(·) is the do-operator indicating the intervention
operation, and P (s|do(V = v)) = P (s|v) because there
is only front-door path between V and S, v′ and s′ denotes
intervened videos and segment sets after do(P = p). Since
the total scene set S is determined given a video, we could
eliminate s and s′ from the eq.1:

P (A|do(V ), Q) =
∑
p

P (p|v)
∑
v′

P (A|p, v′, Q)P (v′)

(2)
This is the front-door adjustment on causal path V →

S → P → A. After the intervention, we could eliminate
the non-causal effect of biased back-door path V ← C →
A, making the model focus on the real causal effect. In
section.3.2, we proposed the implementation of the front-
door intervention eq.2.

3.2. Overall Causal Model Architecture

To implement the front-door intervention, we propose:
1) a QGR (question-guided refiner) to construct the total
scene set S from video frames; 2) a CSS (causal scene sepa-
rator) to model the causal positive scene distribution P (p|v)
in eq.2, and a multi-modal transformer to parameterize the
expectation of P (A|p, v′, Q); and 3) leverage a contrastive
learning-based training objective to handle the causal inter-
vention. The overall framework of our VCSR is illustrated
in Figure.3.

Figure 4. The Question-Guided Refiner (QGR) module. The frame
features are grouped into T overlapped segments, then pass the
In-segment Self Attention (ISA) module which contains L lay-
ers of in-segment Multi-head Self Attention (MHSA), and finally
question-guided Cross-modal Attention (CMA) aggregates frames
in the same segment.

3.3. Question-Guided Refiner

As shown in Figure.2 and eq.1, the causal effect of video
V on the answer A comes through the total scene set S. To
construct the scene set S from video segments, we designed
Question-Guided Refiner (QGR) module to refine consec-
utive video frames by leveraging question semantics and
obtaining more representative segment-level features for



causal front-door intervention. Firstly, a pre-trained BERT
model [11] is employed to extract the question features from
raw question texts. Next, the question features are encoded
by a single-layer transformer encoder. The global repre-
sentation of the question is denoted as the [CLS] features
qg ∈ Rd, while the concatenation of other output features
represents the local question, denoted as ql.

Given the original video v, we sparsely sampleN frames
and utilize a pre-trained CLIP[49] encoder to extract the
frame features Fa = {f1, f2, ..., fN}, where fn ∈ Rd,
and d denotes the dimension of the frame feature. Then,
we combine m adjacent frames to form a segment and ob-
tain T overlapping segments S = {s1, s2, ..., sT }, where
st ∈ Rm×d denotes the frame features in a single segment,
as Figure.4 shows, each adjacent segments sharem−1 over-
lapping frames. To mix the features within each segment,
we employ an In-segment attention module (ISA), which is
a transformer with l-layer multi-head self-attention module:

s′t = [f ′t,1, f
′
t,2, ..., f

′
t,m] = MHSA(l)(st + PE(st)) (3)

where MHSA denotes the multi-head self-attention module,
PE is the positional embedding and f ′i,j is the j-th frame
feature in the i-th segment.

The QGR module refines the frame features within the
same segment to aggregate them temporally within the seg-
ment. To enhance the integration of feature aggregation
with the VideoQA task, we incorporate a global question
representation qg to guide our refining process. We begin
by utilizing a cross-modal attention (CMA) module to ob-
tain attention scores, which implicitly reflect the relevance
of frames to the QA task. We then aggregate the frame fea-
tures to refine the segment-level features using the attention
scores obtained from the CMA module:

Q = fq(qg), K = fs(s
′
t), V = s′t (4)

s∗t = Softmax(
QKT

√
dk

)V (5)

in which fq and fs are linear projection layers, and s∗t is
the t-th segment feature after refining. Then, T segment
features are concatenated as the refined segments for the
next causal scene separation step: S∗ = {s∗1, s∗2, ..., s∗T }, as
shown in Figure.4.

3.4. Causal Scene Separator

To construct a collection of causal scenes related to the
question in a video(i.e., the positive scene P ), we propose a
Causal Scene Separator (CSS) that identifies segments and
frames with higher causal relevance to the question, as de-
picted in Figure.5. The Causal Scene Separator comprises
two modules: a causal segment generator and a causal frame
filter.

Causal segment generator. The causal segment gen-
erator aims to generate sets of causal positive and nega-
tive segments for forming causal scenes. For positive seg-
ments, it initially computes the attention scores of the re-
fined segments S∗ and the global question features qg using
the cross-modal attention (CMA) module:

as = Softmax(gq(q) · gs(S∗)T ) (6)
where gq and gs are linear layers. Then, we leverage
Gumbel-Softmax to generate a discrete selection mask for
capturing the causal content:

sip = S∗Gumbel-Softmax(as)T (7)

We repeat the selection process for k times to obtain the
causal positive segment set of size k, denoted as Sp =
{s1p, s2p, ..., skp}. Other segments with attentive probability
lower than a threshold τ and segments from the segment
pool, including segments from other videos, form a nega-
tive candidate set. A subset of the candidate set is sampled
as the causal negative segment set Sn = {s1n, s2n, ..., skn}.

Causal frame filter. Besides segment features,
question-related frames in a segment can complement the
causal scenarios since some causal scenes may only con-
tain a few or even one single frame. As shown in Fig-
ure.5(b), the causal frame filter first aligns the positive and
negative segment sets with frames to obtain frames that be-
long to corresponding segments. Then, a selector similar to
the one used in the segment filter in Figure.5(a) chooses a
single frame for each segment to construct the causal posi-
tive frame set Fp = {f1p , f2p , ..., fkp } and the causal negative
frame set Fn = {f1n, f2n, ..., fkn}. The causal segment sets
and the causal frame sets combine to form causal scenes.
Formally, we have causal positive scene setsCp = {Sp, Fp}
and causal negative scene sets Cn = {Sn, Fn}.

Segment-frame semantic preserving loss. To preserve
specific semantics of segment and frame features, we pro-
pose a novel segment-frame semantic preserving loss. This
loss is based on the assumption that if a single frame is suf-
ficient to answer a question, then the video segment that
contains that frame should also be sufficient for the same
question. The above assumption described that the positive
video segment should be relatively more important in an-
swering the question. We estimate the relative importance
of two types of visual contents with their cosine similarity
to the question representation:

I = [Iif , I
i
s] = Softmax([sim(qg, f

i
p), sim(qg, s

i
p)]) (8)

where sim(·) refers to the cosine similarity, [, ] means con-
catenation, Iif and Iis are the relative importance of i-th pos-
itive frame and segment. We then introduce hinge loss to
model the relative importance constraint:

LSP =

k∑
i=1

max((Iif − Iis), 0) (9)



(a) (b)

Figure 5. The internal structure of Causal Scene Separator. (a) Causal segment generator. This module selects the possible causal positive
segments in the video and generates negative segments by sampling segments from the segment pool. (b) Causal frame filter. Given
positive and negative segments, the causal frame filter aligns segments with their respective frames, and then selects the most question-
relevant frame for each positive and negative segment.

Figure 6. The multi-modal transformer (MMT) reasoner reasons
the positive answer, negative answer, and global answer when
given different causal scenes.

3.5. Video Question Reasoning

Given the causal scene sets Cg = [Cp, Cn] (i.e., the in-
tervened scene set s′ in eq.1, by fixing the positive scene
set, we implement do(P = p)), we leverage contrastive
learning to model the reasoning about causal interventions
based on scene separating. As shown in Figure.6, we derive
answer representations by feeding the multi-modal trans-
former (MMT) reasoner with positive, negative, and global
causal scenes:

ap =MMT (ME(Cp),ME(ql)) (10)

an =MMT (ME(Cn),ME(ql)) (11)

ag =MMT (ME(Cg),ME(ql)) (12)

where ME is modality embedding module ,ap and an are
answer contrastive counterparts ,and ag act as the con-
trastive anchor.

Visual contrastive loss. To estimate the causal effect
of the scene-separating intervention, we introduce InfoNCE
loss to construct a contrastive objective as follows:

LV C = − log
ea

T
p ·ag

ea
T
p ·ag +

∑N
i=1 e

aT
p ·ai

g

(13)

where N is the number of negative answers, those answers
are obtained by feeding the QA reasoner with different sam-
pling subsets of negative scenes.

3.6. Answer Prediction

For multi-choice QA settings, the local question repre-
sentation ql is derived by feeding the concatenation of ques-
tions and answer candidates to the question encoder. And
the answer prediction is given by the positive part of answer
representations:

ã = argmax(F (ap)) (14)

where F is a set of linear projections that F = {fa}|A|a=1, A
is the set of answer candidates, fa ∈ Rd×1 denotes the final
linear head for each question candidates.

As for the open-ended QA setting, the formulation of the
final answer prediction is:

ã = argmax(fo(ap)) (15)

in which fo ∈ Rd×|A| is a fully-connected layer, and |A|
denotes the length of answer dictionary.

Question answering loss. The question-answering loss
is the cross entropy loss between the predicted answer ã and
the ground truth answer agt:

LQA = CrossEntropy(ã, agt) (16)



Methods Visual backbones Val Test
Causal Temporal Descriptive Acc. Causal Temporal Descriptive Acc.

EVQA[4] ResNet + ResNeXt 42.64 46.34 45.82 44.24 43.27 46.93 45.62 44.92
STVQA[20] ResNet + ResNeXt 44.76 49.26 55.86 47.94 45.51 47.57 54.59 47.64
CoMem[14] ResNet + ResNeXt 45.22 49.07 55.34 48.04 45.85 50.02 54.38 48.54
HME[12] ResNet + ResNeXt 46.18 48.20 58.30 48.72 46.76 48.89 57.37 49.16
HCRN[27] ResNet + ResNeXt 45.91 49.26 53.67 48.20 47.07 49.27 54.02 48.89
HGA[22] ResNet + ResNeXt 46.26 50.74 59.33 49.74 48.13 49.08 57.79 50.01
IGV[32] ResNet + ResNeXt - - - - 48.56 51.67 59.64 51.34
HQGA[62] ResNet + ResNeXt + FasterRCNN 48.48 51.24 61.65 51.42 49.04 52.28 59.43 51.75
ATP[7] CLIP 53.1 50.2 66.8 54.3 - - - -
VGT[63] ResNet + ResNeXt + FasterRCNN 52.28 55.09 64.09 55.02 51.62 51.94 63.65 53.68
EIGV[31] ResNet + ResNeXt - - - - - - - 53.7

VCSR-ResNet* ResNet + ResNeXt 50.17 50.74 57.92 51.56 49.62 50.28 61.00 51.69
VCSR-ResNet ResNet + ResNeXt 50.9 51.3 58.36 52.22 49.98 51.98 61.78 52.53
VCSR-CLIP* CLIP 53.13 53.23 62.55 54.62 52.00 50.88 60.64 53.07
VCSR-CLIP CLIP 54.12 55.33 63.06 55.92 53.00 51.52 62.28 54.06

Table 1. Comparison with state-of-the-art methods on NExT-QA dataset. The best and second-best results are highlighted. The “VCSR-
ResNet*” and “VCSR-CLIP* denote the VCSR models that do not incorporate QGR and CSS modules and are trained without contrastive
learning objective LV C and semantic preserving objective LSP .

3.7. Training objective

Our total training objective comprises three components:
question-answering loss (See eq.16), visual contrastive loss
(See eq.13), and segment-frame semantic preserving loss
(See eq.9), the overall objective is achieved by aggregating
the above three objectives:

L = LQA + αLV C + βLSP (17)
where α and β are hyper-parameters that control the contri-
bution of sub-objectives.

4. Experiments
4.1. Datasets

We evaluate our VCSR model on three VideoQA
benchmarks that evaluate the model’s reasoning capac-
ity from different aspects including temporality, causal-
ity, and commonsense: NExT-QA[61], Causal-VidQA[29]
and MSRVTT-QA[65].

NExT-QA highlights the causal and temporal relations
among objects in videos. It is a manually annotated multi-
choice QA dataset targeting the explanation of video con-
tents, especially causal and temporal reasoning. It contains
5,440 videos and 47,692 QA pairs, each QA pair comprises
one question and five candidate answers.

Causal-VidQA emphasizes both evidence reasoning and
commonsense reasoning in real-world actions. It is a multi-
choice QA benchmark containing 107,600 QA pairs and
26,900 video clips. Questions in Causal-VidQA dataset are
categorized into four question types: description, explana-
tory, prediction, and counterfactual. For prediction and
counterfactual questions, Causal-VidQA proposed three
types of reasoning tasks: question to answer (Q → A),
question to reason (Q → R), and question to answer and
reason (Q→ AR).

MSRVTT-QA focuses on the visual scene-sensing abil-
ity by asking the descriptive questions. It is an open-ended
QA benchmark containing 10,000 trimmed video clips and
243,680 QA pairs, with challenges including description
and recognition capabilities.
4.2. Implementation details

For each video, we uniformly sample 64 frames follow-
ing [27], and extract the features using a pre-trained CLIP
(ViT-L/14) encoder. For the questions, we obtain word em-
beddings using a pre-trained BERT model.

For Causal-VidQA dataset, we follow [29] to add the
BERT representation with Faster-RCNN[50] extracted in-
stance representation for a fair comparison. The model hid-
den dimension d is set to 512, the segment length m is set
to 6, and the positive segment number k is set to 4 for each
dataset. The number of MHSA layers L in QGR is set to 2,
and the MMT in the video question reasoner is implemented
by a 3-layer transformer. The number of heads of all multi-
head attention modules is set to 8. The training process is
optimized by the AdamW[43] optimizer with the learning
rate lr = 1e − 5, β1 = 0.9, β2 = 0.99, and weight decay
of 0. The hyper-parameter α is set to 0.0125 and β is set to
0.04. The training progress is carried out for 50 epochs, and
the learning rate is halved if the validation accuracy does
not improve after 5 epochs.

4.3. Comparision with State-of-the-art Methods

Table 1 presents a comparison of our VCSR methods
with state-of-the-art (SOTA) methods on the NExT-QA
dataset. The results demonstrate that our VCSR achieves
superior performance on both the validation set and test set.
Notably, our VCSR excels in Causal question splits, with
an accuracy improvement of 1.02% and 1.38% in the val-
idation set and test set, respectively, indicating a stronger
causal relational reasoning ability. Additionally, our VCSR



Methods AccE AccD
AccP AccC Acc

Q→ A Q→ R Q→ AR Q→ A Q→ R Q→ AR
EVQA[4] 60.95 63.73 45.68 46.40 27.19 48.96 51.46 30.19 45.51
CoMem[14] 62.79 64.08 51.00 50.36 31.41 51.61 53.10 32.55 47.71
HME[12] 61.45 63.36 50.29 47.56 28.92 50.38 51.65 30.93 46.16
HCRN[27] 61.61 65.35 51.74 51.26 32.57 51.57 53.44 32.66 48.05
HGA[22] 63.51 65.67 49.36 50.62 32.22 52.44 55.85 34.28 48.92
B2A[46] 62.92 66.21 48.96 50.22 31.15 53.27 56.27 35.16 49.11
VCSR-CLIP* 64.91 65.00 57.69 54.74 36.74 52.26 53.14 32.27 49.73
VCSR-CLIP 65.41(+0.5) 65.98(+0.98) 60.88(+3.19) 58.54(+3.8) 41.24(+4.5) 53.38(+1.12) 54.37(+1.23) 34.06(+1.79) 51.67(+1.94)

Table 2. Comparison with state-of-the-art methods on Causal-VidQA dataset. (E: explanatory, D: descriptive, P : prediction, C: counter-
factual, Q: question, A: answer, R: reason)

Methods What Who How Total

QueST[21] 27.9 45.6 83.0 34.6
HGA[22] 29.2 45.7 83.5 35.5
DualVGR[56] 29.4 45.5 79.7 35.5
HCRN[27] - - - 35.6
QESAL[33] 30.7 46.0 82.4 36.7
B2A[46] - - - 36.9
ClipBert[28] - - - 37.4
ASTG[24] 31.1 48.5 83.1 37.6
IGV[32] - - - 38.3
HQGA[62] - - - 38.6

VCSR-CLIP 31.9 51.0 85.0 38.9
Table 3. Comparison with SOTAs on MSRVTT dataset.

achieves competitive performance for Temporal questions.
This validates that our VCSR can effectively discover tem-
porally sensitive visual scenes in videos. For Descriptive
questions, our VCSR achieves lower performance than pre-
vious methods ATP and VGT. This is because VGT adopts
object detection pipeline that makes visual scene sensing
more fine-grained. And ATP preserves the most represen-
tative frame for each video clip at the cost of harming tem-
poral reasoning ability. Although without object detection,
our VCSR can outperform these two methods on more chal-
lenging problems Causal and Temporal. Moreover, we as-
sess the generalization ability of our VCSR on different vi-
sual backbones. VCSR-ResNet[17] replaces the CLIP vi-
sual feature with the concatenation of ResNet-101[64] ex-
tracted appearance feature and ResNeXt-101 extracted mo-
tion feature. The results reveal that the introduction of
causal scene intervention also enhances the performance
of VCSR-ResNet, highlighting the effectiveness of causal
scene intervention on different visual backbones.

To further evaluate the evidence reasoning and com-
monsense reasoning ability of our VCSR in real-world ac-
tions, we evaluate the VCSR on the Causal-VidQA dataset,
as shown in Table.2. Our VCSR achieves a total accu-
racy of 51.67%, outperforming the state-of-the-art B2A [46]
by 2.56%. Additionally, for predictive and counterfactual
tasks, the introduction of causal intervention significantly
promotes the performance of VCSR in answering predic-

Methods NExT-QA Val MSRVTT-QACausal Temporal Descriptive Total
VCSR-CLIP* 53.13 53.23 62.55 54.62 38.5
VCSR-CLIP w/o QGR 52.78 56.08 60.49 55.04 38.7
VCSR-CLIP w/o CSS 52.78 54.40 63.35 55.06 38.7
VCSR-CLIP w/o LSP 53.43 54.34 63.19 55.24 38.5
VCSR-CLIP w/o LV C 53.36 54.28 63.06 55.16 38.8
VCSR-CLIP 54.12 55.33 63.06 55.92 38.9

Table 4. Ablation study on modules and training objectives.

tive and counterfactual questions, which require better rea-
soning capability. This highlights the effectiveness of cross-
modal causal relational reasoning when addressing these
types of questions.

To evaluate the visual scene-sensing ability of our
VCSR, we evaluate our VCSR on open-ended descriptive
QA dataset MSRVTT. In Table 3, we compare the perfor-
mance of VCSR with the state-of-the-art methods on the
MSRVTT dataset. The results show that VCSR has good
overall performance on the open-ended dataset, particularly
for question types “Who” and “How”.

The experimental results in these three large-scale
datasets demonstrate that our VCSR outperforms state-of-
the-art methods in terms of comprehensive understanding of
visual concepts, temporality, causality, and commonsense
within videos. This validates that our VCSR generalizes
well across different VideoQA benchmarks.

5. Ablation Studies

We conduct ablation studies to verify the effectiveness
of (1) QGR and CSS module, (2) training objectives LSP

and LV C . All ablation studies are conducted on NExT-QA
validation set and MSRVTT-QA dataset, the variants of our
VCSR are listed as follows:

VCSR-CLIP*: the VCSR model without QGR and CSS
modules and training without contrastive objective LV C

and semantic preserving objective LSP .
VCSR-CLIP w/o QGR: the VCSR model without QGR

module, the segment features are obtained by mean-pooling
frame features.

VCSR-CLIP w/o CSS: remove the CSS module from
VCSR. Without scene separation, the whole scene set is fed
to the reasoner. In this setting, the contrastive objective is
naturally removed since the lack of counterparts.



Figure 7. The visualization of proposed causal positive scenes on the NExT-QA dataset. For the first two questions, the proposed positive
scenes cover critical video clips and the model predicts the correct answer accordingly. However, the model makes a mistake in the answer
prediction for the last question, as it did not fully capture the entire critical scene set. The green boxes and answers represent the VCSR
predicted rationales and answers, respectively, while the red circles indicate the ground truth answer. In the second example, the orange
answer denotes the answer predicted by VCSR*, and in the last example, the red dashed box shows the rationale provided by a human.

VCSR-CLIP w/o LSP : Training without semantic pre-
serving loss LSP .

VCSR-CLIP w/o LV C : Remove the contrastive objec-
tive LV C from the total objective L, the answer prediction
is predicted based on the positive answer embedding.

Table 4 presents the ablation results, indicating that all
of the modules and objectives contribute to improving the
total performance on both datasets. Specifically, on the
validation set of NExT-QA, we observed that removing all
modules and objectives would negatively affect the perfor-
mance of the Causal split. Removing QGR, on the other
hand, resulted in a decline in the performance of Causal and
Descriptive splits but a boost in the performance of Tem-
poral split. This is because the QGR module refining the
question-related frames by weighing down other frames in
a segment and leading to the partial loss of temporal infor-
mation.

Moreover, we notice that removing CSS modules and
both objectives has little effect on the performance of the
Descriptive split. This could be due to the fact that our
scene refinement and separating methods primarily focus
on the temporal perspective, while descriptive questions de-
pend more on spatial information.

6. Qualitative Results
To verify the ability of the VCSR in discovering visual

causal scenes and visual-linguistic causal reasoning, we an-
alyze correct and incorrect visualizations on the NExT-QA
dataset. The results are presented in Figure 7. As shown in

the figure, when answering the first two questions, the pos-
itive scene given by CSS could evidently explain the rea-
son for choosing the correct answer (i.e., scenes of person
putting the cat back to the cot and elephant saving the ball).
This validates that the VCSR can reliably focus on the dom-
inant visual scenes when making decisions. Specially, for
the second question, we compare the answer predicted by
VCSR and VCSR* and find that the VCSR* without causal
intervention is affected by a spurious correlation between
visual content “boy” and “ball”, leading to the wrong an-
swer of “boy kicked it”. In our VCSR, we reduce such spu-
rious correlation and pursue the true causality by adopting
causal intervention, resulting in better dominant visual ev-
idence and question intention. Moreover, we observe that
when answering the last question, the CSS does not capture
the entire causal scene set and thus predicts the wrong an-
swer. This is probably caused by the similarity of the visual
semantics of the pug’s actions, which could be addressed
with better visual backbones.

7. Conclusion
In this paper, we propose a cross-modal causal relational

reasoning framework named VCSR for VideoQA, to explic-
itly discover the visual causal scenes through causal front-
door interventions. From the perspective of causality, we
model the causal effect between video-question pairs and
the answer based on the structural causal model (SCM). To
obtain representative segment features for front-door inter-
vention, we introduce the Question-Guided Refiner (QGR)



module. To identify visual causal and non-causal scenes,
we propose the Causal Scene Separator (CSS) module. Ex-
tensive experiments on three benchmarks demonstrate the
superiority of VCSR over the state-of-the-art methods. We
believe our work could shed light on exploring new bound-
aries of causal analysis in vision-language tasks. In the fu-
ture, we will leverage object-centric causal relational infer-
ence to alleviate the spurious correlations.
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[7] Shyamal Buch, Cristóbal Eyzaguirre, Adrien Gaidon, Jiajun
Wu, Li Fei-Fei, and Juan Carlos Niebles. Revisiting the”
video” in video-language understanding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2917–2927, 2022. 7

[8] Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shiliang
Pu, and Yueting Zhuang. Counterfactual samples synthesiz-
ing for robust visual question answering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10800–10809, 2020. 2, 3

[9] Long Chen, Hanwang Zhang, Jun Xiao, Xiangnan He, Shil-
iang Pu, and Shih-Fu Chang. Counterfactual critic multi-
agent training for scene graph generation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 4613–4623, 2019. 3

[10] Weixing Chen, Yang Liu, Ce Wang, Guanbin Li, Jiarui Zhu,
and Liang Lin. Visual-linguistic causal intervention for ra-
diology report generation. arXiv preprint arXiv:2303.09117,
2023. 3

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 5

[12] Chenyou Fan, Xiaofan Zhang, Shu Zhang, Wensheng Wang,
Chi Zhang, and Heng Huang. Heterogeneous memory en-
hanced multimodal attention model for video question an-
swering. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1999–2007,
2019. 2, 7, 8

[13] Zhiyuan Fang, Shu Kong, Charless Fowlkes, and Yezhou
Yang. Modularized textual grounding for counterfactual
resilience. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6378–
6388, 2019. 3

[14] Jiyang Gao, Runzhou Ge, Kan Chen, and Ram Nevatia.
Motion-appearance co-memory networks for video question
answering. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6576–6585,
2018. 7, 8

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 3

[16] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh,
and Stefan Lee. Counterfactual visual explanations. In In-
ternational Conference on Machine Learning, pages 2376–
2384. PMLR, 2019. 3

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 8

[18] Deng Huang, Peihao Chen, Runhao Zeng, Qing Du, Mingkui
Tan, and Chuang Gan. Location-aware graph convolutional
networks for video question answering. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
pages 11021–11028, 2020. 3

[19] Yunseok Jang, Yale Song, Chris Dongjoo Kim, Youngjae Yu,
Youngjin Kim, and Gunhee Kim. Video question answer-
ing with spatio-temporal reasoning. International Journal of
Computer Vision, 127(10):1385–1412, 2019. 2

[20] Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and
Gunhee Kim. Tgif-qa: Toward spatio-temporal reasoning in
visual question answering. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2758–2766, 2017. 2, 7

[21] Jianwen Jiang, Ziqiang Chen, Haojie Lin, Xibin Zhao, and
Yue Gao. Divide and conquer: Question-guided spatio-
temporal contextual attention for video question answering.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 11101–11108, 2020. 8

[22] Pin Jiang and Yahong Han. Reasoning with heterogeneous
graph alignment for video question answering. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 11109–11116, 2020. 1, 2, 7, 8

[23] C JiayinCai, Cheng Shi, Lei Li, Yangyang Cheng, and Ying
Shan. Feature augmented memory with global attention net-
work for videoqa. In IJCAI, pages 998–1004, 2020. 2



[24] Weike Jin, Zhou Zhao, Xiaochun Cao, Jieming Zhu, Xi-
uqiang He, and Yueting Zhuang. Adaptive spatio-temporal
graph enhanced vision-language representation for video qa.
IEEE Transactions on Image Processing, 30:5477–5489,
2021. 8

[25] Atsushi Kanehira, Kentaro Takemoto, Sho Inayoshi, and Tat-
suya Harada. Multimodal explanations by predicting coun-
terfactuality in videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8594–8602, 2019. 3

[26] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 2

[27] Thao Minh Le, Vuong Le, Svetha Venkatesh, and Truyen
Tran. Hierarchical conditional relation networks for video
question answering. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9972–9981, 2020. 1, 2, 7, 8

[28] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg,
Mohit Bansal, and Jingjing Liu. Less is more: Clipbert for
video-and-language learning via sparse sampling. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7331–7341, 2021. 1, 3, 8

[29] Jiangtong Li, Li Niu, and Liqing Zhang. From representa-
tion to reasoning: Towards both evidence and commonsense
reasoning for video question-answering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21273–21282, 2022. 7

[30] Xiangpeng Li, Jingkuan Song, Lianli Gao, Xianglong Liu,
Wenbing Huang, Xiangnan He, and Chuang Gan. Beyond
rnns: Positional self-attention with co-attention for video
question answering. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 8658–8665,
2019. 2

[31] Yicong Li, Xiang Wang, Junbin Xiao, and Tat-Seng Chua.
Equivariant and invariant grounding for video question an-
swering. In Proceedings of the 30th ACM International Con-
ference on Multimedia, pages 4714–4722, 2022. 3, 7

[32] Yicong Li, Xiang Wang, Junbin Xiao, Wei Ji, and Tat-Seng
Chua. Invariant grounding for video question answering. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2928–2937, 2022. 2, 3,
7, 8

[33] Fei Liu, Jing Liu, Richang Hong, and Hanqing Lu. Question-
guided erasing-based spatiotemporal attention learning for
video question answering. IEEE Transactions on Neural
Networks and Learning Systems, 2021. 8

[34] Fei Liu, Jing Liu, Weining Wang, and Hanqing Lu. Hair:
Hierarchical visual-semantic relational reasoning for video
question answering. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1698–1707,
2021. 3

[35] Yang Liu, Guanbin Li, and Liang Lin. Cross-modal causal
relational reasoning for event-level visual question answer-
ing. arXiv preprint arXiv:2207.12647, 2022. 3

[36] Yang Liu, Guanbin Li, and Liang Lin. Causality-aware
visual scene discovery for cross-modal question reasoning.
arXiv preprint arXiv:2304.08083, 2023. 3

[37] Yang Liu, Zhaoyang Lu, Jing Li, and Tao Yang. Hierarchi-
cally learned view-invariant representations for cross-view
action recognition. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 29(8):2416–2430, 2018. 3

[38] Yang Liu, Zhaoyang Lu, Jing Li, Tao Yang, and Chao
Yao. Global temporal representation based cnns for in-
frared action recognition. IEEE Signal Processing Letters,
25(6):848–852, 2018. 3

[39] Yang Liu, Zhaoyang Lu, Jing Li, Tao Yang, and Chao Yao.
Deep image-to-video adaptation and fusion networks for ac-
tion recognition. IEEE Transactions on Image Processing,
29:3168–3182, 2019. 3

[40] Yang Liu, Keze Wang, Guanbin Li, and Liang Lin.
Semantics-aware adaptive knowledge distillation for sensor-
to-vision action recognition. IEEE Transactions on Image
Processing, 30:5573–5588, 2021. 1

[41] Yang Liu, Keze Wang, Lingbo Liu, Haoyuan Lan, and Liang
Lin. Tcgl: Temporal contrastive graph for self-supervised
video representation learning. IEEE Transactions on Image
Processing, 31:1978–1993, 2022. 1

[42] Yang Liu, Yu-Shen Wei, Hong Yan, Guan-Bin Li, and Liang
Lin. Causal reasoning meets visual representation learning:
A prospective study. Machine Intelligence Research, pages
1–27, 2022. 2, 3

[43] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 7

[44] Guoshun Nan, Rui Qiao, Yao Xiao, Jun Liu, Sicong Leng,
Hao Zhang, and Wei Lu. Interventional video ground-
ing with dual contrastive learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2765–2775, 2021. 3

[45] Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-
Sheng Hua, and Ji-Rong Wen. Counterfactual vqa: A cause-
effect look at language bias. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12700–12710, 2021. 2, 3

[46] Jungin Park, Jiyoung Lee, and Kwanghoon Sohn. Bridge to
answer: Structure-aware graph interaction network for video
question answering. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15526–15535, 2021. 1, 2, 8

[47] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell.
Causal inference in statistics: A primer. John Wiley & Sons,
2016. 3

[48] Jiaxin Qi, Yulei Niu, Jianqiang Huang, and Hanwang Zhang.
Two causal principles for improving visual dialog. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10860–10869, 2020. 3

[49] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 5

[50] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 7



[51] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-
Velez. Right for the right reasons: training differentiable
models by constraining their explanations. In Proceedings
of the 26th International Joint Conference on Artificial Intel-
ligence, pages 2662–2670, 2017. 2

[52] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob
Fergus. End-to-end memory networks. Advances in Neural
Information Processing Systems, 2015:2440–2448, 2015. 2

[53] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-
tailed classification by keeping the good and removing the
bad momentum causal effect. Advances in Neural Informa-
tion Processing Systems, 33, 2020. 3

[54] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and
Hanwang Zhang. Unbiased scene graph generation from bi-
ased training. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3716–
3725, 2020. 3

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2

[56] Jianyu Wang, Bing-Kun Bao, and Changsheng Xu. Dualvgr:
A dual-visual graph reasoning unit for video question an-
swering. IEEE Transactions on Multimedia, 24:3369–3380,
2021. 8

[57] Pei Wang and Nuno Vasconcelos. Scout: Self-aware dis-
criminant counterfactual explanations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8981–8990, 2020. 3

[58] Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru
Sun. Visual commonsense r-cnn. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10760–10770, 2020. 3

[59] Tao Wang, Yu Li, Bingyi Kang, Junnan Li, Junhao Liew,
Sheng Tang, Steven Hoi, and Jiashi Feng. The devil is
in classification: A simple framework for long-tail instance
segmentation. In European Conference on computer vision,
pages 728–744. Springer, 2020. 3

[60] Tan Wang, Chang Zhou, Qianru Sun, and Hanwang Zhang.
Causal attention for unbiased visual recognition. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3091–3100, 2021. 2, 3

[61] Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua.
Next-qa: Next phase of question-answering to explaining
temporal actions. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9777–9786, 2021. 7

[62] Junbin Xiao, Angela Yao, Zhiyuan Liu, Yicong Li, Wei Ji,
and Tat-Seng Chua. Video as conditional graph hierarchy
for multi-granular question answering. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages
2804–2812, 2022. 7, 8

[63] Junbin Xiao, Pan Zhou, Tat-Seng Chua, and Shuicheng Yan.
Video graph transformer for video question answering. In
Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXVI, pages 39–58. Springer, 2022. 1, 7

[64] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 8

[65] Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang,
Xiangnan He, and Yueting Zhuang. Video question answer-
ing via gradually refined attention over appearance and mo-
tion. In Proceedings of the 25th ACM international confer-
ence on Multimedia, pages 1645–1653, 2017. 2, 7

[66] Xu Yang, Hanwang Zhang, and Jianfei Cai. Deconfounded
image captioning: A causal retrospect. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021. 3

[67] Xu Yang, Hanwang Zhang, Guojun Qi, and Jianfei Cai.
Causal attention for vision-language tasks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9847–9857, 2021. 3

[68] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and
Alex Smola. Stacked attention networks for image question
answering. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 21–29, 2016. 2

[69] Dong Zhang, Hanwang Zhang, Jinhui Tang, Xian-Sheng
Hua, and Qianru Sun. Causal intervention for weakly-
supervised semantic segmentation. Advances in Neural In-
formation Processing Systems, 33, 2020. 3


