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Abstract

Automatic radiology report generation is essential for
computer-aided diagnosis and medication guidance. Im-
portantly, automatic radiology report generation (RRG) can
relieve the heavy burden of radiologists by generating med-
ical reports automatically from visual-linguistic data rela-
tions. However, due to the spurious correlations within
image-text data induced by visual and linguistic biases, it
is challenging to generate accurate reports that reliably de-
scribe abnormalities. Besides, the cross-modal confounder
is usually unobservable and difficult to be eliminated ex-
plicitly. In this paper, we mitigate the cross-modal data
bias for RRG from a new perspective, i.e., visual-linguistic
causal intervention, and propose a novel Visual-Linguistic
Causal Intervention (VLCI) framework for RRG, which con-
sists of a visual deconfounding module (VDM) and a lin-
guistic deconfounding module (LDM), to implicitly decon-
found the visual-linguistic confounder by causal front-door
intervention. Specifically, the VDM explores and disen-
tangles the visual confounder from the patch-based local
and global features without object detection due to the ab-
sence of universal clinic semantic extraction. Simultane-
ously, the LDM eliminates the linguistic confounder caused
by salient visual features and high-frequency context with-
out constructing specific dictionaries. Extensive experi-
ments on IU-Xray and MIMIC-CXR datasets show that our
VLCI outperforms the state-of-the-art RRG methods signif-
icantly. Source code and models are available at https:
//github.com/WissingChen/VLCI.

*Corresponding author is Yang Liu

1. Introduction

Radiology images (e.g., X-Ray, MRI) are widely used in
clinical procedures, providing important evidence for dis-
ease analysis and medical intervention [47, 7]. Neverthe-
less, observing suspicious lesions and writing a coherent
diagnosis report is time-consuming, even for experienced
radiologists. Furthermore, inexperienced radiologists often
fail to capture tiny abnormalities due to the high require-
ment for clinical knowledge. To relieve these issues [21],
automatic radiology report generation (RRG) has emerged
and attracted growing interest in recent years.

Similar to image captioning, RRG extracts the features
from the medical images and generates a reliable report.
However, the current RRG suffers from the following four
challenges different from image captioning: 1) longer sen-
tence generation, 2) more sophisticated linguistic and vi-
sual semantic patterns, 3) the abnormal regions within a
radiology image are much smaller than that of the normal
ones, and 4) the inherent anatomical structures within ra-
diology images are challenging to be diagnosed, whereas
entities in natural images are diverse and easily distinguish-
able. Therefore, these challenges present a substantial limit
to modeling visual-linguistic interactions and learning in-
formative cross-modal representations for accurate radiol-
ogy report generation [3]. Great efforts have been devoted
to solving these issues, such as additional knowledge [21],
memory-driven module [3], and comparison with normal
samples [22]. Actually, most of the previous methods aim
to detect abnormalities, which can help discover poten-
tial lesions and list tiny abnormalities for accurate long-
sequence generation. However, these methods usually fo-
cus on training computationally expensive models based on

ar
X

iv
:2

30
3.

09
11

7v
1 

 [
cs

.C
V

] 
 1

6 
M

ar
 2

02
3

https://github.com/WissingChen/VLCI
https://github.com/WissingChen/VLCI


Normal Heart size

No pleural effusion

Mildly enlarged heart

Large pleural effusion

Normal Heart size

Small pleural effusion

Ground Truth

(a) (b) (c)

𝐏(𝐅) 

𝐏(′𝐩𝐥𝐞𝐮𝐫𝐚𝐥 𝐞𝐟𝐟𝐮𝐬𝐢𝐨𝐧′) 
𝐏 ′𝐩𝐥𝐞𝐮𝐫𝐚𝐥 𝐞𝐟𝐟𝐮𝐬𝐢𝐨𝐧′  𝐅  
= 𝐏(𝐑|𝐅,𝐙 = ′𝐧𝐨𝐫𝐦𝐚𝐥 𝐡𝐞𝐚𝐫𝐭′) 

0.3

𝐏 ′𝐩𝐥𝐞𝐮𝐫𝐚𝐥 𝐞𝐟𝐟𝐮𝐬𝐢𝐨𝐧′ 𝐝𝐨 𝐡𝐯  

= ∑(𝐌|𝐅)∑𝐏(𝐅 )𝐏(𝐑|𝐅 ,𝐌) 

Normal Heart size

No pleural effusion

Normal Heart size

Small pleural effusion

VLCI 

(deconfound)

𝑴 

𝒁 

𝑹 𝑭 

Heart Size Pleural EffusionSpurious Correlations：

Baseline 

(confound)

𝐏(′𝐩𝐥𝐞𝐮𝐫𝐚𝐥 𝐞𝐟𝐟𝐮𝐬𝐢𝐨𝐧′) 
𝐦𝐞𝐝𝐢𝐚𝐭𝐨𝐫𝟏 

0.6

0.1

𝐦𝐞𝐝𝐢𝐚𝐭𝐨𝐫𝟐 
𝐦𝐞𝐝𝐢𝐚𝐭𝐨𝐫𝟑 
𝐦𝐞𝐝𝐢𝐚𝐭𝐨𝐫𝟒 

𝐏(𝐅) 

Normal: Normal Heart size, No pleural effusion

Abnormal: Enlarged heart, Pleural effusion
𝑴 

𝒁 

:Report
𝑭 :Multi-Modal Feature
𝑹 

:Multi-Modal Mediator

:Multi-Modal Confounder

(d)

×

𝒁 

𝑹 𝑭 

Figure 1. The visual-linguistic spurious correlation examples on
IU-Xray dataset, where the colored texts in images are from the
radiology reports and also describe as the colored box in radiol-
ogy images. (a-b) shows the ground truth of two different RRG
samples from the training set, and (c) is the sample from the test-
ing set. The visual confounder (the visual feature of the heart) and
linguistic confounder (the description of heart size) from (a-b) lead
to spurious correlations and cause the wrong description of (c). (d)
demonstrates the mechanism of causal intervention via the struc-
tural causal model (SCM). The Baseline tends to capture the spuri-
ous correlations and probability, while our VLCI can estimate the
mediator by accumulating the probability of each sub-distribution
and calculating the deconfounded probability of the correct word.

a large amount of samples and task-specific knowledge1.
Actually, there exist significant visual and linguistic biases
in numerous image-text data, as shown in Figure 1 (a-c).
Therefore, lightweight models that can mitigate the cross-
modal data bias are more essential for RRG to accurately
discover abnormalities and generate reports [44, 27].

Actually, the most essential difficulty in abnormalities
detection is the existence of the visual and linguistic bi-
ases that lead to entangled cross-modal features, i.e., spu-
rious correlations, causing the incorrect report in the model
prediction with confounders, as shown in Figure 1. Here,
we can consider some high-frequently appearing concepts
in the linguistic and visual modalities as the confounders.
Specifically, the “enlarged heart” is frequently accompanied
by “pleural effusion”, leading to a spurious correlation be-
tween the multi-modal feature of the heart and the pleural,
which causes the neglect of “small pleural effusion” in Fig-
ure 1. Different from the cascaded transformer-based fea-

1These methods build the template or knowledge database laboriously,
making it hard to transfer those approaches directly to other datasets [41]

ture extraction method [26], the mediator M (VLCI in Fig-
ure 1 (d)) can be considered as the intervention conditions
that adjust the probability distribution of features to miti-
gate entanglement, rather than the direct feature extraction
for report generation (Baseline in Figure 1 (d)). Therefore,
it is challenging to generate accurate reports that reliably
describe abnormalities due to the existence of confounder.

To mitigate visual-linguistic spurious correlations,
causal intervention for image captioning often assume that
the confounder is observable and alleviates the problem via
back-door intervention, by approximating the observable
confounder using a well-trained visual object detector or a
well-constructed linguistic dictionary to cut off the shortcut
path [36, 19]. Similarly, there also exists the data bias prob-
lem in RRG, and causal intervention can mitigate the visual-
linguistic biases and improve the reliability of the gener-
ated report description. However, for RRG task, due to the
complex data biases in visual and linguistic modalities, it is
hard to represent the confounder explicitly. Fortunately, the
front-door intervention gives a feasible way to calculate the
confounder. Therefore, we utilize front-door intervention
to implicitly mitigate cross-modal confounder and discover
the true visual-linguistic causality by introducing an addi-
tional mediator involved in RRG [23, 43]. With front-door
intervention, our model eliminates the spurious cross-modal
correlations effectively and generates an accurate descrip-
tion of “small pleural effusion”, as shown in Figure 1.

Motivated by the effectiveness of causal inference
in deconfounding such cross-modal bias, we propose
a lightweight cross-modal causal intervention framework
for RRG without the observable confounder assumption,
named Visual-Linguistic Causal Intervention (VLCI), to
mitigate the visual and linguistic data biases. We com-
bine Prefix Language Modeling (PLM) and Masked Image
Modeling (MIM) for cross-modal feature alignment in pre-
training. To mitigate the visual and linguistic biases, we
propose the visual deconfounding module (VDM) and lin-
guistic deconfounding module (LDM) based on the causal
front-door intervention paradigm. The visual mediator is
constructed by local detail information (e.g., lung texture)
and global contour (e.g., pleural contour) from radiology
images, targeting to discover and disentangle the visual fea-
ture. The linguistic confounder can be eliminated by the
LDM, which estimates the change in the probability of word
embedding caused by visual details and linguistic context.
In summary, our main contributions are as follows:

• To implicitly mitigate cross-modal confounders and
discover the true cross-modal causality, we propose
visual-linguistic causal front-door intervention mod-
ules VDM and LDM. The VDM aims to disentangle
the region-based features from images in the encoder,
and the LDM aims to eliminate the spurious correla-
tions caused by the visual-linguistic embedding.



• To alleviate the problem of unpaired data when pre-
training visual-linguistic RRG data, we combine the
PLM and MIM for cross-modal pre-training in various
data situations (e.g., unpaired, single modality), which
is efficient and easy to implement.

• We propose a lightweight Visual-Linguistic Causal In-
tervention (VLCI) framework for RRG, which intro-
duces mediators without additional knowledge, to im-
plicitly deconfound the visual-linguistic confounder
by causal front-door intervention. Experimental re-
sults show that VLCI achieves state-of-the-art perfor-
mance on two datasets IU-Xray and MIMIC-CXR.

2. Related Work
2.1. Image Captioning

Image captioning aims to understand image information
and describe it in text, which mainly adopts the encoder-
decoder framework [33]. Generally, image features ex-
tracted by the encoder are fed into the decoder, often
based on recurrent neural networks (RNN) and transform-
ers [6]. The recent work achieved great success in this
task [1, 10, 14, 18], which presented the spatial relation-
ships of regional features, and rely on the integration of vi-
sual and semantic data to improve performance. Compared
with the image captioning approaches, the RRG has simi-
lar structures [33]. Nevertheless, image captioning usually
generates a single sentence to describe the main entities,
while the RRG focuses on the potential subtle abnormali-
ties areas in medical images and generate longer sentence
from more sophisticated visual-linguistic semantics.

2.2. Radiology Report Generation

Recently, RRG methods have followed the works of im-
age captioning and have shown remarkable performance.
For the issues above, the knowledge-aware module [21,
41, 38], template retrieval module [22], and memory-driven
module [3, 27] are used to generate useful reports. How-
ever, it still has some limitations. For the data bias, PP-
KED [21] and RG-GSK [41] explored and distilled the dif-
ferent kinds of knowledge for RRG, which needs to be
annotated. Following that, CA [22] and CMCL [20] uti-
lized the comparison of data differences to enact the train-
ing strategy, which needs more data to estimate distribution.
Chen et al. proposed to generate reports with a memory-
driven transformer but inference with slow speed [3]. More-
over, M2TR [27] and MSAT [38] integrate memory into
attention, while needing more computational resources to
generate reports. In summary, the visual-linguistic bias
hinders the promotion of the application of RRG, while
our lightweight VLCI implicitly mitigates cross-modal con-
founders and discovers the true cross-modal causality by
causal front-door intervention and reducing the dependency
on additional annotation for discovering the abnormalities.

2.3. Causal Inference

Causality provides a new methodology to design robust
models via the elimination of spurious correlation [9, 29,
24]. Causal inference estimates the hidden causal effects in
the distribution while significantly improving the model’s
generalization. It mitigates confounders through back-door,
front-door intervention, or counterfactual intervention [42].
For example, Wang et al. [36] improved Faster R-CNN by
causal back-door intervention to obtain a more robust object
detection model, which improves the performance of VQA
and image captioning. However, the confounder is usually
unobservable and elusive, thus front-door intervention and
counterfactual intervention can be applied [43, 37]. There-
fore, causal inference has achieved remarkable performance
in cross-modal tasks [23, 19]. Compared with the previ-
ous works that address VQA or image captioning, we focus
on radiology report generation and propose visual-linguistic
causal intervention, which simultaneously eliminates spuri-
ous correlations from visual and linguistic confounders.

3. Method
In this section, we first introduce the pre-training strat-

egy, followed by the two essential cross-modal causal in-
tervention modules, i.e., the Visual Deconfounding Module
(VDM) and the Linguistic Deconfounding Module (LDM).
Next, we describe how to integrate these two modules into
the VLCI for cross-modal causal intervention.

3.1. Overview

A typical RRG model takes a radiology image I ∈
RC×H×W as input and generates the corresponding report
R = {w1, w2, . . . , wn} that contains critical information.
As illustrated in Figure 2, the VLCI employs the trans-
former structure to model P (R|I) =

∑n
i=1 P (wi|hv, hw),

where hv is the visual feature extracted by an encoder and
guides the prefix word embedding hw to generate the next
word wi with visual-linguistic deconfounding. To ensure
that the estimation of confounder Z is caused by the prior
P (I) and P (R), we leverage the Visual-Language Pre-
training (VLP) model to construct the correlation between
the visual contexts and linguistic concepts. Meanwhile, due
to the absence of a knowledge graph and a well-trained fea-
ture extractor. We innovatively leverage causal front-door
intervention to eliminate implicitly the spurious correlations
from visual and linguistic modalities, and it is integrated
into VDM and LDM, respectively.

3.2. Visual-Linguistic Pre-training (VLP)

In the medical pre-training framework, there exist two
difficulties: (1) The unpaired data that only has a single
modality is hard to be utilized in supervised learning, (2)
heterogeneous data that makes it difficult to distinguish
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Figure 2. The overview of our Visual-Linguistic Causal Intervention (VLCI) framework, which consists of a Visual Representation Learning
Module (VRLM), a Visual Deconfounding Module (VDM), and a Linguistic Deconfounding Module (LDM). The ResNet backbone uses
the first three blocks of ResNet101, and the text embedding layers are weight-sharing. Specifically, the VDM explores visual bias via local
sampling and global sampling. The LDM estimates linguistic bias via a vocab dictionary and visual features.

the region feature because the morphology of the same le-
sion varies greatly [47]. Since the cross-modal pre-training
provides fine-grained regional features without regional la-
bel [46], we utilize PLM and MIM in linguistic and visual
modeling to deal with unpaired data. Therefore, we use
a single encoder to extract multi-modal features and two
weight-shared decoders to solve PLM and MIM tasks, re-
spectively [39, 12]. In each block of the multi-modal en-
coder, the attention layer is weight-shared while the two
feed-forward layers handle the corresponding modal feature
respectively [45] (Refer to Appendix A).

Motivated by SimVLM [39], we extract image features
from the first three blocks of ResNet101 [13] as prefix to-
kens in PLM. Simultaneously, the text is divided randomly
into two parts, of which one is generated by another under
the guidance of the obtained image tokens. When the corre-
sponding image is absent, the PLM can also be trained with
only text modality, which is the same as SimVLM. Assume
that hv ∈ R

HW
P2 ×d is denoted as the image token extracted

by the raw image I , where P is the patch size, and d is
the embedding size. Then{wnp

, . . . , wn} is the postfix se-
quence after the textual description hw of length np ≥ 0.
Thus, the formulation is as follows:

LPLM(θ) = −
n∑

i=np

logPθ(wi|hv, hw<np
), (1)

where θ is the trainable parameters of the model, hv is the
visual embedding with a trainable 2D positional encoding,
hw is learned for a fixed vocabulary and received by the
encoder as the prefix, and n is the report length.

To deal with unpaired images like MAE [12], we take
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Figure 3. Front-door causal intervention P (R|do(hv), do(hw)) is
implemented by the mediator Mv and Ml. It is the SCM of RRG
with the confounder Zv and Zl in (a) and cut off the path Zv → hv

and Zl → hw via blocking the back-door path hv ← Zv → R
and hv ← hw ← Zl → R in (b) and get the SCM of VLCI in (c).

advantage of the MIM paradigm. Additionally, since the
MIM is trained with pairwise data, the missing seman-
tics of masked images can be provided by text to enhance
the cross-modal association [8]. Thus, we reconstruct the
masked visual token via the semantics of the unmasking vi-
sual token and linguistic token, which can learn the tiny dif-
ference in the dataset [32]. The target of the MIM can be
formulated as follows:

LMIM(θ) = Pθ(hvm|hvv, hw), (2)

where hvm denotes the masked visual tokens extracted by
the ResNet backbone, hvv is the unmasked tokens, and hw
denotes the word tokens of the whole report. Then the
ResNet and the multi-modal transformer encoder are uti-
lized as VRLM in the downstream tasks.

3.3. Visual-Linguistic Causal Intervention

After visual-linguistic pre-training, the trained visual-
linguistic feature encoders still contain visual and linguis-
tic biases from cross-modal confounders [42]. Therefore,



we employ Pearl’s structural causal model (SCM) [9] to
characterize the causal effect between visual and linguis-
tic modalities when conducting RRG. As illustrated in Fig-
ure 3 (a), the causal effects hv → R and hw → R are
affected by the confounder Z = {Zv, Zl} from back-door
paths hv ← Zv → R and hw ← Zl → R [19], respec-
tively. In our SCM, the non-interventional prediction can
be expressed by the Bayes rule:

P (R|I) = P (R|hv, hw)

=

n∑
i=1

∑
z

P (wi|hv, hw, Z = z)P (Z = z|hv, hw),
(3)

where Z brings the spurious correlation via P (Z =
z|hv, hw), leading to incorrect reports. Taking the ex-
ample in Figure 1, when P (Z = “normal heart”|hv =
“heart”, hw = “normal”) is large while P (Z =
“enlarged heart”|hv = “heart”, hw = “normal”) is small,
it will enlarge P (R = “no pleural effusion”|hv, hw, Z =
“normal heart”). To mitigate visual-linguistic confounders
and uncover the cross-modal causal structure, we apply
causal front-door intervention by introducing mediator Mv

and Ml, respectively, as shown in Figure 3(b). Generally,
Zv is unobservable without a well-trained object detector,
and the back-door path hv ← Zv → R can be blocked by
Mv via learning the true causal effect h ← Mv ← hv ←
Zv → R. The confounders and mediator can be shown in-
tuitively in Figure2 (b). Similarly, the intervention on the
back-door path hv ← hw ← Zl → R can be implemented
by calculating the Ml without well-constructed confounder
dictionaries. Since the front-door intervention can elimi-
nate unobservable confounders, we integrate the Front-door
Intervention Module (FIM) into VDM and LDM.

3.3.1 Front-door Intervention Module (FIM)

To cut off back-door paths hv ← Zv → R and hw ← Zl →
R via Mv and Ml (SCM in Figure 3(b)), we leverage the do
calculus do(·) [19, 23, 25, 30], which is formulated as:

P (R|do(hv), do(hw)) =∑
m

P (R|do(M = m))P (M = m|do(hv), do(hw)), (4)

where M is the mediator containing Mv and Ml. Since
the intervention probability is equal to the conditional
probability in the path {hv, hw} → M , the back-door
path between M and R can be blocked, and enlarge
P (R = “small pleural effusion”|hv = “heart”, hw =
“normal”,M = “pleural”), as the previously mentioned
example, where the “pleural” is the multi-modal feature
of pleural in each condition of heart size. Consequently,
we can assume that {hv, hw} is feature F , and formulate

Eq. (4) as:

P (R|do(hv), do(hw)) = P (R|do(F )) =∑
m

P (M = m|F )
∑
F̂

P (F = F̂ )P (R|F = F̂ ,M = m).

(5)
To further estimate P (R|do(F )), we implement the front-
door causal intervention Eq. (5) with the deep learning
framework. Here, we adopt Normalized Weighted Geomet-
ric Mean (NWGM) [40] and approximate the Eq. (5) as:

P (R|do(hv), do(hw)) ≈ Softmax(g(hw, hv, M̂v, M̂l)),
(6)

where g(·) denote the network mapping functions, M̂v and
M̂l denote the estimations of Mv and Ml via VDM and
LDM. In Figure 2 (c), the FIM consists of two Attention
Fusion (AF) layers and it is integrated into VDM and LDM.

3.3.2 Visual Deconfounding Module (VDM)

In Figure 2, we calculate the visual mediator Mv via local
feature hvl and global feature hvg . The hvl is denoted as
the local detail information acquired from Local Sampling,
while the hvg is the contours and position feature acquired
from Global Sampling [34]. For instance, the contour of the
heart affects the determination of pleural effusion, and the
texture of the lungs can also be the basis of detection.
Local Sampling. Inspire by TransFG [11], we use the at-
tention accumulated from the encoder to select top k tokens
that correspond to the report and only use these selected
tokens as hvl ∈ Rk×d, where k = 6 for each head of atten-
tion. Then, hvl is enhanced via CaaM [37], which further
excavates the local internal relations. The hvl aims to obtain
local critical details in the image, which can be used as the
key basis for RRG.
Global Sampling. The global sampling is implemented by
Down Sampling Transformer block, in which the 14 × 14
visual tokens are down-sampled to 7 × 7 as hvg ∈ R49×d.
Max pooling in this block can better retain the global struc-
ture information in the image as the general features of the
data itself. We formulate the operation as follows:

hvg =W [P(hv) + Attn(P(LN(hv))], (7)

where P is the 2d max pooling layer, LN is layer normaliza-
tion, Attn is the 2d relative attention [4], and W denotes the
weights of linear layer.

Finally, the hvl is integrated with hvg to enhance local
details with global structural information via Local-Global
Fuse Module formulated as Eq. (8), namely mediator Mv .

Mv = FFN([MHA(hvl, hvl, hvl),MHA(hvl, hvg, hvg)])
(8)

where MHA and FFN are the Multi-Head Attention layer
and Feed-Forward Network layer, respectively. [·, ·] denotes
concatenation.



Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr Rouge-L METEOR Precision Recall F1

IU-Xray Dataset

Lightweight

R2Gen[3] 0.470 0.304 0.219 0.165 / 0.371 0.187 / / /
CMCL[20] 0.473 0.305 0.217 0.162 / 0.378 0.186 / / /
PPKED[21] 0.483 0.315 0.224 0.168 0.351 0.376 0.190 / / /
CA[22] 0.492 0.314 0.222 0.169 / 0.381 0.193 / / /
AlignTransformer[44] 0.484 0.313 0.225 0.173 / 0.379 0.204 / / /

Heavyweight M2TR[27] 0.486 0.317 0.232 0.173 / 0.390 0.192 / / /
RG-GSK[41] 0.496 0.327 0.238 0.178 0.382 0.381 / / / /

VLCI (ours) 0.495 0.327 0.239 0.185 0.449 0.389 0.206 / / /

MIMIC-CXR Dataset

Lightweight

R2Gen[3] 0.353 0.218 0.145 0.103 / 0.277 0.142 0.333 0.273 0.276
CMCL[20] 0.334 0.217 0.140 0.097 / 0.281 0.133 / / /
PPKED[21] 0.360 0.224 0.149 0.106 0.237 0.284 0.149 / / /
CA[22] 0.350 0.219 0.152 0.109 / 0.283 0.151 0.352 0.298 0.303
AlignTransformer[44] 0.378 0.235 0.156 0.112 / 0.283 0.158 / / /

Heavyweight
M2TR[27] 0.378 0.232 0.154 0.107 / 0.272 0.145 0.240 0.428 0.308
RG-GSK[41] 0.363 0.228 0.156 0.115 0.203 0.284 / 0.458 0.348 0.371
MSAT*[38] 0.373 0.235 0.162 0.120 0.299 0.298 0.143 / / /

VLCI (Ours) 0.390 0.248 0.167 0.119 0.168 0.302 0.172 0.409 0.390 0.398

Table 1. The performances of VLCI and other methods on IU-Xray and MIMIC-CXR datasets. The 1st and 2nd best results are bolded and
underlined, respectively. The method marked by * means its result is from [38], while the rest is from [41], and / means the absent result.

3.3.3 Linguistic Deconfounding Module (LDM)

For linguistic deconfounding, we have some observations
from the link hv ← ht ← Zl → R: (1) the linguistic
contexts can affect the generation of the next word, and (2)
the attended word features affect the attended visual fea-
tures via cross-attention [19]. Additionally, the difference
in word frequency brings a large distance deviation in em-
bedding space, so the distance of word vectors cannot rep-
resent semantic relevance well [17]. Thus, we calculate the
linguistic mediator Ml in embedding space via all vocabu-
laries from the tokenizer as the global feature and use hvl
obtained from the VDM, which estimates the current word
frequency to adjust the distribution of hw (Figure 2).

h
′

vl = FFN(MHA(hvl, ŵ, ŵ));

Mt = FFN(MHA(h
′

vl, hvl, hvl))
(9)

where ŵ denotes all word tokens from the tokenizer. Then,
we build the causal link h ← Ml ← ht ← Zl → R to cut
off the path Zl → hv via Ml.

In Figure 2, the deconfounded visual and linguistic fea-
tures are fed to the decoder to learn fused cross-modal fea-
tures. The output layer is a linear projection with softmax
operation, mapping probability into N -dimensional, where
N is the vocabulary size. Finally, the training target is to
minimize the negative log-likelihood loss:

Lnll(θ) = −
n∑
i=1

log[Pθ(wi|do(hv), do(hw<i))] (10)

4. Experiment

4.1. Experimental settings

Dataset. IU-Xray [5], namely Indiana University Chest X-
ray Collection, is a public radiology dataset widely used
to evaluate the performance of RRG methods. It con-
tains 7,470 chest images and 3,955 corresponding reports.
We apply the same setting as R2Gen [3] and tokenize the
words more than three occurrences. MIMIC-CXR [16] is
a large-scale chest radiology dataset, with 377,110 images
and 227,835 corresponding reports. We use the official split
and tokenize the words with more than ten occurrences.
Evaluation Metrics. We adopt the widely used NLG met-
rics, including BLEU [28], ROUGE-L [31], METEOR [2]
and CIDEr [35]. Since the RRG specifically focuses on the
abnormality detection accuracy rather than the text fluency
and similarity with the real report, we further adopt clinical
efficacy (CE) metrics [3, 22, 27, 41]. It is calculated by the
labels extracted from CheXpert [15].
Implementation Settings. We use the first three blocks of
ResNet101 [13] to extract 1,024 feature maps, which are
projected into 512 maps of size 14× 14. The dimension of
the latter VLCI layers and the number of attention heads are
fixed to 512 and 8. The number of layers is 3 for both the
encoder and the decoder. We adopt the same dataset during
pretraining and fine-tuning. The batch size is set to 64 in
pretraining and 16 in fine-tuning. In the pre-training stage,
we adopt the image mask rate of 85% (Refer to Appendix B)
for MIM. The VLP is trained by the AdamW optimizer with
a warm-up step 10% of the whole train step and the peak
learning rate is 5e-4. The weight decay of the optimizer is
set to 1e-2. The total epochs are set to 100 and 30 for the IU-
Xray and MIMIC-CXR datasets, respectively. The model is



Type Abnormalities Baseline VLCI

Lung Opacity 0.497 0.542 (0.045)
Lung Lesion 0.924 0.929 (0.005)
Consolidation 0.617 0.862 (0.245)

Lung Pneumonia 0.639 0.805 (0.166)
Atelectasis 0.657 0.673 (0.016)
Edema 0.509 0.746 (0.237)

Pneumothorax 0.564 0.940 (0.376)
Pleural Pleural Effusion 0.551 0.727 (0.176)

Pleural Other 0.957 0.958 (0.001)

Enlarged Cardiomediastinum 0.473 0.632 (0.159)
Other Cardiomegaly 0.454 0.598 (0.144)

Fracture 0.924 0.933 (0.009)
Support Devices 0.761 0.701 (-0.060)

Table 2. Evaluation of abnormality classification results (accuracy)
on MIMIC-CXR. The numbers in the bracket mean the improve-
ment with green and decrement with red.

finetuned by the Adam optimizer with an initial learning
rate of 1e-5 and weight decay of 5e-5 for 10 and 3 epochs
for the IU-Xray and MIMIC-CXR dataset, respectively.
Baseline Models. We compare the proposed VLCI model
with several state-of-the-art RRG models, which are di-
vided into lightweight and heavyweight models (Refer to
Appendix C). Specifically, the lightweight models have no
more than 3-layer modules for both the encoder and the de-
coder. Most of them employ different modules for boosting
model performances, which are computationally expensive.
Note that the total parameters of our VLCI are comparable
to the R2Gen, while VLCI is faster because our model gets
rid of the dependency of calculating memory recursively.

4.2. Quantitative Analysis

As shown in Table 1, our VLCI outperforms al-
most all the RRG methods. Specifically, compared with
the lightweight AlignTransformer, the VLCI significantly
boosts the BLEU-4 metric by 1.2% on the IU-Xray dataset
and 0.7% on the MIMIC-CXR dataset. Compared with
heavyweight model M2TR, our lightweight VLCI boosts
the METEOR metric by 1.4% and 2.7% on the IU-Xray and
MIMIC-CXR datasets, respectively. Since the METEOR
metric considers the synonyms, it shows the effectiveness
of our causal intervention for discovering semantic correla-
tion. But the performance of VLCI is slightly lower than
RG-GSK on the IU-Xray dataset for the BLEU-1 metric,
due to the fact that BLEU-1 metric evaluates the single word
performance of the reports. While our performance for the
BLEU-1 metric is significantly improved on MIMIC-CXR
dataset. It reveals that the visual-linguistic data bias and the
spurious correlation among multiple words are more signif-
icant on large dataset MIMIC-CXR, which can fully take
advantage of our cross-modal causal intervention.

Similarly, for the Rough-L metric that calculates the re-
call of each word, the performance of VLCI and M2TR
shows the similar phenomena. However, for the CIDEr and
BLEU-4 metrics, the performance of VLCI is lower than

VLCI:  there is 3.a small right pleural effusion with 1.overlying atelectasis, 2.underlying 

consolidation is not excluded.

Ground Truth:  right hemidiaphragm with adjacent 1.compressive atelectasis or 

2.consolidation.  There is 3.a small right pleural effusion.  

(a)

(b)

(c)

Baseline:  the right hemidiaphragm with 1.overlying atelectasis.  no definite focal 

consolidation is seen.  there is no pleural effusion.

Ground Truth:  1.the heart size is enlarged.  2.large right-sided pleural effusion is 

increased,  3.there is also some consolidation, due to 4.compressive atelectasis.  
Baseline:  there is 2.a large right pleural effusion with 4.associated compressive 

atelectasis. difficult to exclude pneumonia.  1.heart size cannot be assessed. 
VLCI:  there is 2.a large right pleural effusion with 4.overlying atelectasis. 3.underlying 

consolidation is not excluded. 1.the enlarged cardiac silhouette.
Ground Truth: 1.peribronchial opacities. Lungs are mildly hyperinflated. 2.Heart size, 

mediastinal and  hilar contours are normal. 3.No pleural effusion.
Baseline:  2.the heart size is normal.  the hilar and mediastinal contours are within normal 

limits.  there is 3.no pneumothorax focal consolidation or pleural effusion.

VLCI:    2.the heart size is normal. the mediastinal and hilar contours are normal. the 

pulmonary vasculature is normal.  3.no pleural effusion or pneumothorax is seen.

Figure 4. Examples of generated reports on MIMIC-CXR. The
baseline is a transformer with the same setting as our VLCI. Dif-
ferent colors are applied to the target keywords. The uncertain and
wrong words are underlined with italics and bold, respectively.

that of MSAT on MIMIC-CXR. These metrics tend to eval-
uate the similarity of the whole report, which is challeng-
ing for a long-sequence report with medical terminology.
Thus, the knowledge-based approach (PPKED, RG-GSK,
MSAT) with professional concepts can generate a more
precise description of the disease and achieve better per-
formance, while VLCI only intervenes in the causal effect
without external knowledge. The CE metric is only applied
to MIMIC-CXR dataset because the label extractor (CheX-
pert) [15] is specially designed for MIMIC-CXR to obtain
class labels. Compared with the state-of-the-art lightweight
CA in Table 1, VLCI improves the performance by 5.7%
in Precision, 9.2% in Recall, and 9.5% in F1-Score. This
validates that VLCI can provide a more accurate clinic di-
agnosis rather than only generating a fluent report.

4.3. Qualitative Analysis
To further analyze the clinic diagnosis from VLCI, we

evaluate the abnormality used in the CE metric. In Table 2,
VLCI boosts the performance of the abnormalities detec-
tion on the MIMIC-CXR dataset, especially the accuracy
of “Pneumothorax”, “Edema” and “Consolidation”. This
is because our VLCI explores sufficient visual information
and further produces more accurate and less biased descrip-
tions by cross-modal causal intervention than the Trans-
former baseline. However, the estimation of some cate-
gories still keeps ambiguous, e.g., “Lung Opacity”. It re-
veals that VLCI can provide an comprehensive considera-
tion of various radiologic signs to detect the abnormality
but give less improvement for the single source abnormality.
For example, whether “Edema” is caused by the heart has
different radiologic signs, while the increase in lung density
can be considered as “Lung Opacity”. Thus, VLCI can cap-
ture the abnormality with complex causes more effectively,
where exists more spurious correlations. Besides, Table 2
shows the unavailability of causal intervention in indepen-
dent abnormalities, e.g. “Support Devices”.

We further conduct the qualitative analysis on MIMIC-
CXR dataset via three intuitive generated examples of the



Method BLEU-1 BLEU-4 CIDEr Rouge-L

Baseline 0.433 0.148 0.501 0.345
w/ MAE 0.449 0.154 0.486 0.360
w/ VLP (MIM) 0.439 0.162 0.602 0.362
w/ VLP (PLM) 0.467 0.165 0.538 0.365
w/ VLP (PLM+MIM) 0.466 0.160 0.431 0.364

w/ VLP (PLM)* 0.448 0.151 0.399 0.349
w/ VLP (PLM+MIM)* (Ours) 0.452 0.161 0.522 0.351

Table 3. The performance of different pre-training methods on IU-
Xray, the result marker by * means finetuning on downstream task
with 5 epoch, while the rest only use the encoder with 100 epochs.

baseline and the VLCI in Figure 4. Particularly, as in Fig-
ure 4 (a), the reference report consists of three abnormali-
ties, the baseline neglects “pleural effusion” and “consoli-
dation”, while VLCI discovers all abnormalities accurately.
It shows that our VDM can comprehensively perceive all
essential visual features. Figure 4 (b) shows an example
where the same visual region is simultaneously discovered
by the baseline and the VLCI, but leads to different descrip-
tions. Our VLCI can accurately describe the heart, while
the baseline is uncertain and even has a miscalculation of
pneumonia. It shows that LDM can alleviate the semantic
bias caused by word frequency in word embedding space.
Figure 4 (c) shows a normal case that only contains “Lung
Opacity”. Both the Baseline and VLCI can generate a flu-
ent report and indicates the normality. But VLCI fails to
capture the peribronchial opacities, which are the radiologic
signs between “Clear Lung” and “Consolidation”. This is
because the “Lung Opacity” only changes the pulmonary
density and it is difficult to be discovered determinedly.

4.4. Ablation Studies

4.4.1 Effectiveness of VLP

In Table 3, we make a comparison with different pre-
training methods. It shows that the cross-modal pre-training
method has a more robust representation ability than the
MIM with single-modality. Additionally, our cross-modal
pre-training achieves comparable performance to the PLM
model that only finetunes the encoder, while ours finetunes
the whole model with fewer epochs.

Furthermore, in Table 4, Baselinew�• is significantly
worse than baseline on MIMIC-CXR dataset, e.g., 0.101
→ 0.070 for BLEU-4, while still keeping performance im-
provement on IU-Xray dataset. This validates the signifi-
cant feature complexity from the large-scale MIMIC-CXR
dataset leads to unstable probability distribution estimation
with causal intervention. Meanwhile, we find that the VLP
can substantially boost the performance of the baseline, e.g.,
0.148 → 0.161, 0.101 → 0.108 for BLEU-4 on IU-Xray
and MIMIC-CXR datasets, respectively. The improvement
is caused by the learned comprehensive concepts and con-
text in the pre-training and the cross-modal feature align-
ment stage, which shows the importance of VLP. Similarly,

Dataset Method BLEU-4 CIDEr Rouge-L

Baseline 0.148 0.501 0.345
Baselinew� (w/ VDM) 0.160 0.521 0.364
Baselinew• (w/ LDM) 0.155 0.509 0.361
Baselinew�• (w/ VDM&LDM) 0.163 0.544 0.361
R2Gen 0.165 0.493 0.360
R2Genw� (w/ VDM) 0.171 0.553 0.370
R2Genw• (w/ LDM) 0.166 0.546 0.360

IU-Xray R2Genw�• (w/ VDM&LDM) 0.173 0.628 0.368

BaselinewF (w/ VLP) 0.161 0.522 0.351
BaselinewF� (w/ VLP&VDM) 0.176 0.514 0.377
BaselinewF• (w/ VLP&LDM) 0.175 0.342 0.382
VLCI 0.185 0.449 0.389
Baseline 0.101 0.137 0.274
Baselinew�• (w/ VDM&LDM) 0.070 0.074 0.230

MIMIC-CXR BaselinewF (w/ VLP) 0.108 0.167 0.298
BaselinewF� (w/ VLP&VDM) 0.110 0.157 0.297
BaselinewF• (w/ VLP&LDM) 0.117 0.158 0.299
VLCI 0.119 0.168 0.302

Table 4. Ablation analysis of our VLCI. The Baseline is imple-
mented by the transformer. The marker at Baseline and R2Gen [3]
means the operation in the brackets.

The Rough-L is also barely improved due to the feature
complexity and long sequence from MIMIC-CXR dataset.
For example, although AlignTransformer achieves the same
score of the Rough-L as CA on MIMIC-CXR dataset, it out-
performs CA on all other metrics.

4.4.2 Effectiveness of Causal Intervention

VDM. In Table 4, Baselinew� and R2Genw� can boost
the performance compared to Baseline and R2Gen,
which demonstrates the model-agnostic property of the
VDM. However, the improvement of BLEU-4 between
BaselinewF� and BaselinewF on IU-Xray dataset is more
significant than that on MIMIC-CXR dataset. This is be-
cause the VDM can discover more essential visual infor-
mation, but the report of the MIMIC-CXR dataset is more
complex and the model fails to generate accurate descrip-
tions. The performance degradation of CIDEr can further
illustrate it. In Figure 5, the attention map from the en-
coder of our VLCI can truly focus on the dominated area
of possible abnormalities rather than spurious correlations
with biased visual concepts. This validates that the VDM is
semantics-sensitive to capture dominant visual content by
conducting visual causal intervention.
LDM. Compared to the VDM, the LDM plays a more sig-
nificant role in RRG because the sophisticated linguistic se-
mantic patterns within reports are entangled and biased that
require elaborate linguistic deconfounding. In Table 4, the
performance drops without LDM, e.g., 0.119 → 0.110 for
the BLEU-4 metric on MIMIC-CXR dataset. This shows
the importance of adjusting semantic relevance in word
embedding space. Compared with the baseline, the per-
formance improvement of BaselinewF• on MIMIC-CXR
dataset demonstrates that the LDM can generate more ac-



Baseline
No Finding 1
Pneumothorax 0
Support Devices 1

Ours
Cardiomegaly 1
Pneumothorax 0
Pleural Effusion 1
Support Devices 1

As compared to the previous radiograph, 
the endotracheal tube has  been slightly 
pulled back.  It now projects roughly 3 cm 
above the carina.  The lung parenchyma 
has minimally increased in transparency, 
potentially reflecting improved ventilation 
or higher respiratory pressures.  Small 
bilateral pleural effusions are likely.  
Unchanged evidence of mild fluid overload 
and cardiomegaly.

Ground Truth
Cardiomegaly 1
Pneumothorax 0
Pleural Effusion 1
Support Devices 1B
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Figure 5. The visualization of the attention map. (a) is an example
from MIMIC-CXR dataset that the colored text should be discov-
ered in the marked region of the image. The images in (b-c) are the
attention maps of the baseline and our VLCI, respectively. (b) are
the accumulated attention maps from the encoder for the selected
local feature, and (c) are the response to the “pleural” (decoder
output). The labels shown in (d) are extracted by CheXpert.

curate reports even with biased visual information. How-
ever, the CIDEr metric on IU-Xray dataset shows the ef-
fectiveness of the combination of VDM and LDM, while
ILVD obtains a lower score. This is due to the worse diver-
sity on IU-Xray dataset, where Baselinew�• and R2Genw�•

can get higher CIDEr but lower BLEU-4 with inadequate
multi-modal feature correlation. In Figure 5 (c), the atten-
tion map of the baseline decoder shows an obvious redun-
dancy response, while VLCI can capture dominated seman-
tic information in a coarse-to-fine manner, which is more
related to the abnormalities. These results show that LDM
can capture more discriminative semantic information from
linguistic modality by linguistic front-door intervention.

5. Conclusion
In this paper, we propose Visual-Linguistic Causal Inter-

vention (VLCI) framework for RRG, to implicitly decon-
found the visual-linguistic confounder by causal front-door
intervention. To alleviate the problem of unpaired visual-
linguistic data when pre-training, we combine the PLM and
MIM for cross-modal pre-training. To implicitly mitigate
cross-modal confounders and discover the true cross-modal
causality, we propose visual-linguistic causal front-door in-
tervention modules VDM and LDM. Experiments on IU-
Xray and MIMIC-CXR datasets show that our VLCI can
effectively mitigate visual-linguistic bias and outperforms
the state-of-the-art methods. The lower computational cost

and faster inference speed of VLCI promote its clinical ap-
plication. We believe our work could inspire more causal
reasoning methods in medical report generation.
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A. VLP Framework

In the pre-training phase, we proposed a novel ap-
proach that combines Prefix Language Modeling (PLM)
and Masked Image Modeling (MIM) to address the chal-
lenges discussed in Section 3.2. The detailed Visual Lan-
guage Pre-training (VLP) framework is illustrated in Fig-
ure 6, which demonstrates its ability to handle diverse data
scenarios, such as unpaired and single-modal data.

B. Ablation on Mask Ratio

Masking Ratio BLEU-1 BLEU-4 CIDEr Rouge-L

Baseline 0.433 0.148 0.501 0.345
w/ 75% 0.450 0.160 0.486 0.360
w/ 85% 0.452 0.161 0.522 0.351
w/ 95% 0.432 0.153 0.460 0.346

Table 5. We evaluated the performance of various masking ratios
for MIM on the IU-Xray dataset. In our experiments, we pre-
trained the VLP model for 100 epochs and then fine-tuned it in the
baseline for an additional 5 epochs.

We conducted ablation experiments to assess the impact
of masking ratios on model performance, and the results are
presented in Table 5. Our VLP model achieved the best per-
formance with a higher masking ratio of 85%, which is in
contrast to the optimal masking ratio of 75% reported by
MAE [12]. We attribute this difference to the cross-modal
information correlations, where the masked information can
be reconstructed by visible features from both language and
images. Furthermore, VLP tends to learn general features
from the masked modality at higher masking ratios, while
distinguishable features can be extracted by the complete
information from another modality. To explore whether in-
creasing the masking ratio further would further improve
the performance, we experimented with a higher masking
ratio of 95%. However, the decreased results in Table 5
indicates that this approach leads to excessive information
loss.
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Figure 6. The overview of VLP. MHA and FFN are the Multi-Head Attention layer and Feed-Forward Network layer, respectively.

Method Backbone #Enc #Dec K T M

L
ig

ht

R2Gen[3] Resnet101 3 3
√

CMCL[20] Resnet50 / ♠
PPKED[21] Resnet152 2 1

√ √

CA[22] Resnet50 ♣ ♠
√

AlignTransformer[44] Resnet50 3 3
√

H
ea

vy M2TR[27] Densenet151 6 12
√

RRG-GSK[41] Resnet101 12 3
√ √

MSAT[38] CLIP 6 6
√ √

VLCI Resnet101* 3 3

Table 6. The details of VLCI and several compared RRG mod-
els, the #Enc and #Dec denote the number of transformer layers
in the encoder and decoder, respectively. The marker ♣ means
2 Contrastive Attention, and ♠ means Hierarchical LSTM. The
backbone of VLCI is the first three blocks of Resnet101. Be-
sides, we show the employed model boosting modules, including
the knowledge-aware moduleK, template retrieval module T , and
memory-drive moduleM.

C. Model Scale

The RRG models used in our experiment can be cat-
egorized as heavyweight or lightweight, as shown in Ta-
ble 6. Models with no more than 3 layers in both the en-
coder and decoder are considered lightweight, while oth-
ers are considered heavyweight. To enhance model per-
formance, these models employ various modules, such as
the knowledge-aware module, template retrieval module,
and memory-driven memory. In contrast, our lightweight
VLCI model only utilizes causal intervention and achieves a
significant improvement in performance. Additionally, our
VLCI model can be trained on the MIMIC-CXR dataset us-
ing only one NVIDIA RTX 3090, whereas the heavyweight
MSAT model requires eight NVIDIA TESLA V100 GPUs.

D. Structural Causal Model

To clarify the mechanism of causal intervention, we in-
troduce the Structural Causal Model (SCM) and its sym-
bols, which are shown in Figure 9. The SCM is a math-
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Figure 7. The demonstration of the Structural Causal Model
(SCM), (a-d) is the fundamental structure of SCM, and (e-g) is
the SCM for the description of VLCI.

ematical framework used in causal inference to model the
relationships between variables and determine cause-and-
effect relationships. It uses directed acyclic graphs (DAGs)
to represent causal systems, where each variable is a node
and the arrows show causal relationships between the vari-
ables.

For example, in Figure 9(a), the symbol hv → h rep-
resents the visual feature affecting the multi-modal feature.
In contrast, the multi-modal feature can be caused by the
attended word feature, as shown in Figure 9(b) (hv → h←
hw). This fork structure indicates that two variables share a
common effect or outcome, such as the word ”normal” and
the visual feature of the heart, leading to the multi-modal
feature of “normal heart.”

However, the attended word feature can influence the vi-
sual feature through cross-attention and cause confounding,
as shown in Figure 9(c) (hv ← hw → h ← hv). The word
”normal heart” is the linguistic confounder Zl that affects
the visual feature extraction of the pleura through hw and
causes h confounding, as shown in Figure 9(e).

To eliminate this back-door path, we can use causal in-
tervention, which involves changing the value of a variable
in the system to observe the resulting changes in other vari-
ables. The chain hv → Mv → h in Figure 9(d) is a direct



connection from cause to effect, allowing us to manipulate
the variable (Mv) affected by the cause variable (hv) and
in turn affecting the effect variable (h). Thus, the multi-
modal feature of ”small pleural effusion” can be accurately
extracted using Mv (the visual feature of ”pleural effusion”
in each heart size situation). A similar operation can be ap-
plied to the linguistic modality to complete the multi-modal
front-door intervention, as shown in Figure 9(f, g).

E. Proof of Equation. 5
Assume that F , {hv, hw}, we can formulate the inter-

ventional probability as follows:

P (R|do(hv), do(hw)) = P (R|do(F )). (11)

To eliminate the unobservable confounder, we introduce the
mediator M to cut off the link V ← Z → R. The total
probability P (R|do(F )) can be represented as the follow-
ing summation:∑

m

P (R|do(F ),M = m)P (M = m|do(F )), (12)

where M is introduced by F without the back-door path.
Thus, the intervention probability is equal to the conditional
probability in the path F → M [23]. Besides, there is no
direct causal path between F and R. In this way, the intro-
duced summation in Eq. (12) can be reformulated as:∑

m

P (R|do(F ), do(M = m))P (M = m|F )

=
∑
m

P (R|do(M = m))P (M = m|F ).
(13)

To estimate P (R|do(M = m)), we can apply the back-door
intervention to cut off the link M ← F ← Z → R [19].
Therefore, we have the intervention probability formulation
as follows:

P (R|do(M = m)) =∑
F̂

P (R|do(M = m), F = F̂ )P (F = F̂ |do(M = m)) =

∑
F̂

P (F = F̂ )P (R|F = F̂ ,M = m),

(14)
where F̂ is the selected features from F not caused by
M . At last, via applying Eq. (14), we can further calculate
Eq. (13) as follows:∑
m

P (M = m|F )
∑
F̂

P (F = F̂ )P (R|F = F̂ ,M = m).

(15)
So the proof of Equation. 5 is done.

F. Visualization Result
In general, the evaluation of RRG’s performance in-

volves three key aspects: keyword detection, determination
of whether the identified keywords indicate abnormalities,
and generation of lengthy texts. The performance of each
aspect can be assessed using specific evaluation metrics.
The BELU-1 metric is used to evaluate the accuracy of iden-
tifying individual words, while the BELU-4 metric exam-
ines the precision of detecting individual abnormalities. On
the other hand, the CIDEr metric assesses the overall coher-
ence, logic, and similarity of the entire text. Our approach
has yielded noteworthy improvement in both the BELU-1
and BELU-4 metrics. However, our method’s performance
falls considerably short of knowledge-based models in the
CIDEr metric. The inferior performance is attributed to the
fact that our method only relies on the report content of the
training set, rather than utilizes the medical corpus provided
from the knowledge graph. Specifically, the target reports
in the training set only include the presence and location of
pneumothorax. The limited information (e.g., lack of evi-
dence and description) in the target reports makes it chal-
lenging for VLCI to learn such associations.

We further evaluated the errors produced by VLCI by
presenting three samples in Figure 8. While our method
successfully detected multiple abnormalities, it failed to de-
tect ”Fracture” and ”Support Device” in Figure 8 (a). This
may consistent with our previous statement that single-
source abnormalities are challenging to detect. Similarly,
Figure 8 (b) shows that VLCI ignored some abnormalities,
such as atelectasis and lung opacities, which are difficult
to be disentangled from other abnormalities when a patient
has multiple abnormalities at the same time. In Figure 8 (c),
the ground truth indicated the presence of hydropneumoth-
orax, a condition characterized by the presence of both gas
and fluid in the chest, whereas pleural effusion only con-
tains fluid. While VLCI correctly identified the presence
of gas and fluid in the chest and proposed pneumothorax,
it incorrectly estimated pleural effusion due to the lack of
knowledge and incorrect estimation. In this example, our
method produced messy text and failed to estimate pneu-
monia and lung consolidation. Furthermore, while VDM
and LDM can help identify visual and language concepts,
detecting highly specialized concepts with latent relation-
ships that are not present in the data is difficult.



VLCI: frontal and lateral views of the chest were obtained.♦ there has been interval removal of a right-sided chest tube .        

there is no significant interval change in the right apical pneumothorax. ⑦there is a small right apical pneumothorax .        

⑧there is a small right pleural effusion. there is a small amount of subcutaneous emphysema in the right chest wall .        

there is a small amount of subcutaneous emphysema in the right lateral chest wall. there is a small amount of subcutaneous 

emphysema. there is a small amount of subcutaneous emphysema in the right chest wall.

(a) Ground Truth: Lateral view somewhat limited due to overlying motion artifact. The lungs are low in volume. There is ③
no focal airspace consolidation to suggest pneumonia. A 1.2-cm calcified granuloma just below the medial aspect of the

right hemidiaphragm is unchanged from prior study. ⑧No pleural effusions or ⑥ pulmonary edema. There is ⑦no 

pneumothorax.  ♥The inferior sternotomy wire is fractured but unchanged. ♦Surgical clips and vascular markers in the 

thorax are related to prior CABG surgery.

VLCI: frontal and lateral views of the chest were obtained .  the patient is rotated somewhat to the left.  the patient is rotated 

somewhat to the left.  the patient is rotated somewhat to the left.  there is ③no focal consolidation ⑧pleural effusion or ⑦
evidence of pneumothorax .  ♠the cardiac and ♣mediastinal silhouettes are stable .

① Lung Opacity

② Lung Lesion

③ Consolidation

♣ Enlarged Cardiomediastinum

♠ Cardiomegaly

♥ Fracture

♦ Support Devices

④ Pneumonia

⑤ Atelectasis

⑥ Edema

⑦ Pneumothorax

⑧ Pleural Effusion

⑨ Pleural Other

Abnormality:

Ground Truth: ⑦There is a large right hydropneumothorax with a moderate amount of fluid. There is no evidence of 

tension as is supported by the fact that the trachea, the aortic knob, and the left heart border appear in similar position ⑦as 

radiograph prior to the pneumothorax on ___. ①Hazy opacities are seen involving the right middle and lower lobes. ④

The localized nature of this process more likely represents hemorrhage or infectious process ⑥rather than reexpansion 

edema. The left lung is clear. ♣The cardiomediastinal silhouette is stable. ♥There are no acute bony abnormalities.

(c)

(b) Ground Truth: ♦Left-sided pacer is re-demonstrated with leads terminating in the right atrium and right ventricle. ♥The 

patient is status post median sternotomy, aortic valve replacement, and CABG. ♠Heart size is mildly enlarged, unchanged.   

♣Mediastinal and hilar contours are similar. Mild upper zone pulmonary vascular redistribution is likely chronic ⑥without 

overt pulmonary edema. ①Lung volumes remain low with streaky opacities in the lung bases ⑤suggestive of atelectasis. 

⑧No large pleural effusion or ⑦pneumothorax is present. Fusion hardware within the lumbar spine is partially imaged as 

well as hardware within the right humeral head.

VLCI: frontal and lateral views of the chest were obtained. ♥the patient is status post sternotomy and cabg. ♦left-sided is 

again seen with leads to the of the right atrium and right ventricle. the patient is status post sternotomy and cabg. ♠the 

cardiac silhouette is mildly enlarged. the aorta is calcified and tortuous. there is ③no focal consolidation ⑧pleural effusion 

or ⑦evidence of pneumothorax. ⑥no overt pulmonary edema is seen.

Figure 8. The erroneous result of our VLCI models on the MIMIC-CXR dataset is presented. Thirteen kinds of abnormalities are marked
with different markers and colors. Note that keywords in the reports are also marked with different markers and colors. Correctly identified
abnormalities are marked in the corresponding color, while other descriptions in bold, italics, and underscores are incorrect. Descriptions
marked only with underscores indicate repeated words.



No Finding
Ground Truth: Right-sided Port-A-Cath terminates in the mid SVC as before. ♠Heart is top-normal in size. 

♣Mediastinal and hilar contours are within normal limits. Lung volumes are low over the lungs are clear without ③focal 

consolidation, ⑧effusion or ⑦pneumothorax.

Baseline: as compared to the previous radiograph there is no relevant change. low lung volumes. ♠borderline size of the 

cardiac silhouette without pulmonary edema. ⑧no pleural effusions. ④no pneumonia.

VLCI: frontal and lateral views of the chest were obtained. the patient is status post sternotomy and cabg. ♠the heart size 

is normal. ♣the mediastinal and hilar contours are normal. the pulmonary vasculature is normal. lungs are clear. ⑧no 

pleural effusion or ⑦pneumothorax is seen. ♥ there are no acute osseous abnormalities.

♠ Ground Truth: there is no evidence of acute cardiopulmonary disease. ④No pneumonia, vascular congestion, or ⑧
pleural effusion. ♠he cardiac silhouette is at the upper limits of normal in size or slightly enlarged.

Baseline: as compared to the previous radiograph there is no relevant change. low lung volumes. ♠borderline size of the 

cardiac silhouette ⑥without pulmonary edema. ⑧no pleural effusions. ④no pneumonia.

VLCI: frontal and lateral views of the chest were obtained. lung volumes are low in bronchovascular crowding. there is ③

no focal consolidation ⑧pleural effusion or ⑦pneumothorax. ♠the cardiac silhouette is mildly enlarged.  ♣mediastinal and 

hilar contours are normal.

① Lung Opacity

② Lung Lesion

③ Consolidation

Ground Truth: Interstitial prominence has increased compared to prior, ⑥suggestive of mild edema. ③No focal 

consolidation or ⑦pneumothorax is detected. ⑧Tiny right pleural effusion appears new compared to prior. Heart and 

mediastinal contours appear stable ♠with mild cardiomegaly.

Baseline: frontal and lateral views of the chest were obtained. ⑥there is diffuse increase in interstitial markings bilaterally 

which may be due to mild interstitial edema although atypical infection is not excluded in the appropriate clinical setting. ⑧

no large pleural effusion is seen. ⑦there is no pneumothorax. ♠the cardiac and ♣mediastinal silhouettes are stable.
VLCI: ap and lateral views of the chest. ⑥there is mild pulmonary edema with ⑧small bilateral pleural effusions. ♠the 

heart is mildly enlarged. the mediastinal contour is stable with atherosclerotic calcification along the aortic. ♥bony 

structures are intact 

♦♠①
Ground Truth: ♦The ET tube is 3.5 cm above the carina. Right IJ Cordis tip is in the proximal SVC. ♠The heart size is 

moderately enlarged. ① There is ill-defined vasculature and alveolar infiltrate, right greater than left. This is markedly 

increased compared to the film from two hours prior and likely represents fluid overload.

Baseline: ♦endotracheal tube tip terminates approximately 45 cm from the carina.  ♠heart size is mildly enlarged. 

♣mediastinal contours are unremarkable .  there is crowding of the bronchovascular structures ⑥with mild pulmonary 

edema .  patchy opacities in the lung bases ⑤may reflect areas of atelectasis.  ⑧no large pleural effusion or ⑦
pneumothorax is identified .  ♥no acute osseous abnormalities are seen .

VLCI: ♦the tip of the tube projects _ cm above the carina. the tube is in position. ⑦there is no evidence of no 

pneumothorax. the lung volumes are low. ①there are diffuse bilateral airspace opacities with air. ♠the cardiac silhouette 

remains enlarged.

⑥⑧♠

⑤③⑧ Ground Truth: Chest PA and lateral radiograph demonstrates a markedly elevated right hemidiaphragm with 

adjacent compressive ⑤atelectasis or ③consolidation. Minimal blunting of the posterior costophrenic angle ⑧may 

indicate a small right pleural effusion. Left lung is clear. ♣Cardiomediastinal borders are unremarkable.

Baseline: frontal and lateral views of the chest were obtained. there is persistent elevation of the right 

hemidiaphragm ⑤with overlying atelectasis. ③no definite focal consolidation is seen. ⑧there is no pleural 

effusion or ⑦pneumothorax. the cardiac and mediastinal silhouettes are stable.

VLCI: frontal and lateral views of the chest were obtained. ⑧there is a small right pleural effusion ⑤with 

overlying atelectasis ③underlying consolidation is not excluded. the left lung is clear. ♠the cardiac silhouette is not 

enlarged. the aorta is calcified and tortuous. ⑦no pneumothorax is seen.

♦①④
Ground Truth: ♦Esophageal stent is again seen, appears more inferior in position as compared to the prior study. 

Right perihilar chronic changes are seen. ①There is slight increase in the right mid lung opacity which ④could be 

due to underlying infection, possibly in the superior right lower lobes. ⑦No pneumothorax is seen.

Baseline: there is diffuse increase in interstitial markings bilaterally which ⑥may be due to mild interstitial edema. 

⑧no large pleural effusion is seen. ⑦there is no pneumothorax. ♠the cardiac and ♣mediastinal silhouettes are 

stable.

VLCI:  ①there has been interval development of a right upper lobe opacity ④which is for pneumonia. ⑧there is 

also a small right pleural effusion. ⑦there is no pneumothorax. ♣the cardiomediastinal silhouette is within normal 

limits. ♥no acute osseous abnormalities identified .

♣ Enlarged Cardiomediastinum

♠ Cardiomegaly

♥ Fracture

♦ Support Devices

④ Pneumonia

⑤ Atelectasis

⑥ Edema

⑦ Pneumothorax

⑧ Pleural Effusion

⑨ Pleural Other

Abnormality:

Figure 9. The results of the Baseline and VLCI models on the MIMIC-CXR dataset are presented. Thirteen kinds of abnormalities are
marked with different markers and colors. Note that keywords in the reports are also marked with different markers and colors. Correctly
identified abnormalities are marked in the corresponding color, while other descriptions in bold, italics, and underscores are incorrect.


