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Abstract

Large-scale cross-modal pre-training paradigms have re-
cently shown ubiquitous success on a wide range of down-
stream tasks, e.g., zero-shot classification, retrieval and im-
age captioning. However, their successes highly rely on the
scale and quality of web-crawled data that naturally contain
much incomplete and noisy information (e.g., wrong or irrel-
evant content). Existing works either design manual rules to
clean data or generate pseudo-targets as auxiliary signals for
reducing noise impact, which do not explicitly tackle both the
incorrect and incomplete challenges at the same time. In this
paper, to automatically mitigate the impact of noise by solely
mining over existing data, we propose a principled Noise-
robust Language-Image Pre-training framework (NLIP) to
stabilize pre-training via two schemes: noise-harmonization
and noise-completion. First, in noise-harmonization scheme,
NLIP estimates the noise probability of each pair accord-
ing to the memorization effect of cross-modal transform-
ers, then adopts noise-adaptive regularization to harmonize
the cross-modal alignments with varying degrees. Second,
in noise-completion scheme, to enrich the missing object in-
formation of text, NLIP injects a concept-conditioned cross-
modal decoder to obtain semantic-consistent synthetic cap-
tions to complete noisy ones, which uses the retrieved visual
concepts (i.e., objects’ names) for the corresponding image
to guide captioning generation. By collaboratively optimiz-
ing noise-harmonization and noise-completion schemes, our
NLIP can alleviate the common noise effects during image-
text pre-training in a more efficient way. Extensive experi-
ments show the significant performance improvements of our
NLIP using only 26M data over existing pre-trained mod-
els (e.g., CLIP, BLIP) on 12 zero-shot classification datasets
(e.g., +8.6% over CLIP on average accuracy), MSCOCO im-
age captioning (e.g., +1.9 over BLIP trained with 129M data
on CIDEr) and zero-shot image-text retrieval tasks.

1 Introduction

Vision-Language Models (VLMs) (Yao et al. 2021; Radford
et al. 2021; Li et al. 2021; Jia et al. 2021; Li et al. 2022a)
pre-trained with image-text pairs has shown its extraordinary
zero-shot transfer abilities in different downstream tasks, in-
cluding zero-shot classification (Radford et al. 2021; Yao
et al. 2021), image-text retrieval (Radford et al. 2021; Yao
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Figure 1: Illustration of two proposed schemes. (a) Noise-
harmonization: NLIP estimates the noise probability of each
image-text pair and enforces the pairs with larger noise prob-
ability to have fewer similarities in embedding space. (b)
Noise-completion: NLIP generates enriched descriptions via
a concept-conditioned captioner by taking visual concepts
retrieved from a vocabulary as auxiliary inputs.

et al. 2021), image captioning (Wang et al. 2021) and text-
to-image generation (Patashnik et al. 2021), etc. Previous
works (Radford et al. 2021; Li et al. 2022a) show that the
downstream performance of VLMs highly relies on the scale
or the quality of pre-training image-caption pairs. How-
ever, considering the prohibitive expense of acquiring high-
quality annotated image-caption datasets (Lin et al. 2014),
current paradigms resort to collecting increasingly larger
sizes of unlabeled image-text datasets (Thomee et al. 2016;
Sharma et al. 2018), largely overlooking the prevalent noise
in the web. They thus lead to the heavier computation bur-
den and make the pre-training process severely unstable due
to the negative impact of noise.

To leverage the advantages of both quality and scale, sev-
eral attempts have been made to mitigate the negative impact
of noisy pairs. On the one hand, some filtering and post-
processing procedures (Sharma et al. 2018; Changpinyo
et al. 2021; Jia et al. 2021) have been designed to clean up
the large-scale unlabeled data for pre-training. On the other
hand, few works explore automatic ways during training.
For example, ALBEF (Li et al. 2021) resorts to a momentum
model to generate pseudo-targets as additional supervision.
BLIP (Li et al. 2022a) uses a filter to remove the noisy data
rectified by the similarity of image-text pairs and a captioner
to regenerate texts. NCR (Huang et al. 2021) utilizes the loss



distribution to divide clean samples and noisy samples and
then rectify the labels by model predictions. However, un-
labeled “noise" data often naturally appear with either in-
correct text descriptions or incomplete ones (e.g., missing
descriptions of some object concepts), where none of the ex-
isting works consider automatically alleviating both of them
within one framework. Here, we aim to achieve noise-robust
learning from two aspects: self-diagnosing incorrect vs. cor-
rect pairs and harmonizing the loss; self-generating and se-
lecting confident captions with enriched concepts.

To fully utilize the entire image-caption pairs includ-
ing the noisy ones, we introduce a principled Noise-
robust Language-Image Pre-training framework (NLIP) to
stabilize pre-training by noise-harmonization and noise-
completion schemes: (a) Noise-harmonization, where
NLIP learns to harmonize the cross-modal alignment and
adopts noise-adaptive regularization for each pair based on
the estimated noisy probability. Specifically, Arpit et al.
(2017) suggests that deep network tends to fit the easy (i.e.,
clean) samples first and then the noisy ones. Based on
the memorization effect of cross-modal transformers, NLIP
first estimates the noise probability for each pair, then ap-
plies a noise-adaptive regularization on the image-text con-
trastive loss to avoid over-fitting to the noisy data (shown
in Fig.1(a)). This scheme pulls the embeddings of the image
and caption in the clean pair more tightly than the one with a
higher noisy probability. (b) Noise-completion, where NLIP
employs a concept-conditioned cross-modal decoder to syn-
thesize semantic-consistent captions to replace the detrimen-
tal noisy texts. Specifically, to guide the caption generation
procedure via providing prior information about the exist-
ing objects, we first retrieve the visual concepts (i.e., names
of existing objects) for each image via a pre-trained VLM.
Then these visual concepts and the image are fed into an ad-
ditional caption head to generate the enriched descriptions
for each noisy pair to substitute the noisy caption (shown
in Fig.1(b)). Furthermore, inspired by He et al. (2021), we
further explore enhancing the visual encoder via randomly
masking the input image tokens and then reconstructing
them, which can help reduce the computation cost during
training and boost visual embedding by maintaining low-
level visual information.

Experimental results show that NLIP achieves significant
performance on several downstream tasks, including zero-
shot classification, zero-shot image-to-text/text-to-image re-
trieval and image-captioning tasks. Our NLIP outperforms
CLIP (Radford et al. 2021) by 8.6% in terms of average
accuracy on 12 zero-shot classification datasets. With re-
spect to image captioning, NLIP is superior to existing im-
age captioning methods that are trained with substantially
more data, e.g., 1.9 over BLIP (Li et al. 2022a) trained with
129M image-text pairs in terms of CIDEr on MSCOCO. For
zero-shot image-text retrieval tasks, NLIP surpasses CLIP
by 28.7% in terms of R@1 on Flickr30k.

2 Related Work
Vision Language Pre-training (VLP) models recently gar-
ner increasing attention as the surprisingly superior per-
formances on diverse zero-shot downstream tasks. They

propose to learn semantic alignments across image and
language modalities by pre-training on large-scale data
which brings strong performance benefits in downstream
tasks (e.g., zero-shot classification, zero-shot retrieval, im-
age caption). Existing VLP models often appear with ei-
ther encoder-only or encoder-decoder architectures. The
encoder-only architectures (Radford et al. 2021; Jia et al.
2021; Yao et al. 2021; Yuan et al. 2021; Mu et al. 2021; Li
et al. 2022b; You et al. 2022) aim to align the visual features
with textual features in a common cross-modal semantic
space. The encoder-decoder architectures (Wang et al. 2021;
Li et al. 2022a) employ autoregressive Language Model-
ing (LM) (e.g., image captioning, text-grounded image gen-
eration) to supervise the decoder and excel in generation-
related downstream tasks. Despite the nature merits in data
diversity, the large-scale web-crawled image-text pairs con-
tain much noise (i.e., incomplete or even error informa-
tion) (Thomee et al. 2016; Changpinyo et al. 2021). Some
works attempt to mitigate the impact in two aspects. From
the data perspective, some strict rules are used to clean up
the data (Sharma et al. 2018; Changpinyo et al. 2021; Jia
et al. 2021). From the modeling perspective, ALBEF (Li
et al. 2021) adopts momentum models to generate pseudo-
targets as additional supervision; BLIP (Li et al. 2022a)
presents a filter to remove the noisy data rectified by the
similarity of image-text pairs and a captioner to regenerate
the corresponding web texts. However, they have not explic-
itly stabilized and harmonized the pre-training objectives by
reevaluating noisy data in a soft way. In this work, we al-
leviate the noisy impact by simultaneously addressing in-
correct and incomplete image-text pairs. Two novel noise-
harmonization and noise-completion schemes are collabora-
tive to achieve noise-robust pre-training.

Noisy Data Learning has been a long-standing research
area to cope with the noise in training data, practically all
of which are applied to the classification task. Existing stud-
ies (Song et al. 2020) frequently use robust architecture de-
sign, regularization, loss modification, or sample selection
strategies to limit the detrimental impact of noisy labels.
Here we discuss the last three techniques, which are the
most relevant to our model. First, the regularization enforces
the networks to over-fit less to false-labeled examples ex-
plicitly or implicitly, e.g., label smoothing (Pereyra et al.
2017; Lukasik et al. 2020) avoids over-fitting by prevent-
ing the networks from assigning full probabilities to noisy
data samples. Second, the loss modification adjusts the con-
tribution of clean and noisy samples to the loss (Reed et al.
2014; Zheng et al. 2020). Third, sample selection methods
concentrate on choosing clean samples from noisy ones. For
example, Arpit et al. (2017) demonstrates the memorization
effect of networks that always prefer to learn simple samples
before fitting noisy data. Motivated by the memorization
effect, Arazo et al. (2019) adopts a two-component Gaus-
sian Mixture Model (GMM) to fit per-sample loss and treats
the samples with minor loss as clean samples. To trans-
fer the above noisy label learning technique from the clas-
sification problem to the cross-matching problem, Huang
et al. (2021) proposes noisy correspondence learning. Am-
rani et al. (2021) use density of similarity to estimate the
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Figure 2: Overview of the proposed NLIP architecture. NLIP consists of an image encoder V., text encoder 7, cross-modal
decoder C4 and MAE decoder V. During training, given an input image x, it feeds the randomly masked visual patches into
an image encoder and the MAE decoder learns to reconstruct them via L;r. The correlated concepts are also retrieved from a
vocabulary for each image and then concatenated with the text y as inputs of the text encoder. The concept-conditioned cross-
modal decoder is fed with image features, concept-conditioned text features and text embedding, and optimized via L ;.
The noise-adaptive image-text contrastive loss £ ¢ is adopted to learn cross-modal alignment by considering varying noise
probabilities. Note that the concept-conditioned cross-modal decoder does not utilize image tokens as input for £ ;¢ to avoid

information leakage while does for L, ;. Omit the index ¢ here.

noise probability. Thomas and Kovashka (2022) apply se-
mantic neighborhood discrepancy and diversity to capture
the degree of abstractness of an image-text pair. Different
from them, NLIP introduces a new noise-adaptive image-
text contrastive loss that harmonizes the cross-modal align-
ment by considering the varying noise probabilities of differ-
ent pairs and also rectifies the noisy samples via a concept-
guided captioner. NLIP would be one of the early attempts
that provide effective and efficient schemes within a large-
scale image-text pre-training framework. It can be coupled
with any VLP models to improve their robustness.

3 Method

We proposed Noise-robust Language-Image Pre-training
framework (NLIP), a new VLP framework to learn from
noisy image-text pairs. In this section, we first introduce
the overall model architecture of NLIP (Sec. 3.1). Then we
present the model details in two noisy learning schemes
respectively, including the noise-harmonization scheme to
harmonize the cross-modal alignment with noise-adaptive
regularization (Sec. 3.2) and the noise-completion scheme
to enrich the missing object information of text (Sec. 3.3).

Basic Notations. We use D = {X, Y’} to denote the image-
text dataset with the images X = {z;}Y; and texts Y =
{y:}¥,, where N denotes the total number of image-text
pairs of the dataset. For vision modality, V. and V4 de-
note vision encoder and vision decoder respectively. For lan-
guage modality, 7. denotes the text encoder. We denote the

concept-conditioned cross-modal decoder by Cq.

3.1 Overall Architecture

Fig. 2 illustrates an overview of NLIP architecture for learn-
ing the high-quality cross-modal feature alignment. NLIP
contains a visual encoder-decoder inspired by MAE (He
et al. 2021) for reducing the computation cost and main-
taining the high quality of visual feature representation, a
text encoder encoding the texts enriched by extra auxiliary
visual concepts and a concept-conditioned cross-modal de-
coder learning to synthesize semantic-consistent captions to
complete noisy ones. For visual modality, we use Vision
Transformer(ViT) (Dosovitskiy et al. 2020) that takes the
concatenation of an extra [CLS] token embedding and lin-
early projected image patches as input and output the [CLS]
token to represent the global image feature. Specifically, we
randomly mask the patches and skip the mask token to re-
duce the computation cost. To enhance visual feature rep-
resentation via self-supervised regularization, an MAE de-
coder is adopted to restore masked patches by Image Re-
construction (IR) loss Lrg:
N

Ve () x;

Lin=) (mrr — )™ (1)
2 T

where ||-|| denotes the normalization, and x’ represents

masked patches. As for the language modality, we exploit
an encoder-decoder structure to obtain the generation ca-
pability and synthesize enriched captions. We first retrieve



the visual concepts (i.e., names of existing objects) for each
input image from a large corpus via a pre-trained model.
The visual concepts concatenated with corresponding in-
put texts are encoded by text encoder. Then a concept-
conditioned cross-modal decoder is trained with the Lan-
guage Modeling (LM) loss L1 to generate a more de-
tailed caption for each image guided by the visual concepts.
For the cross-modal alignment, the Noise-adaptive Image-
Text Contrastive (NITC) loss Ly7c is conducted to not
only encourage the positive pair representations to get closer
contrast to the negative pairs but also introduce the noise-
adaptive label smoothing as an instance-aware regulariza-
tion for avoiding severe bias to the noisy data. Therefore,
the overall loss can be written as:

L=Lig+a L+ -Lyrirc. )

where « and [ denote the weighting factors.

3.2 Noise Harmonization

To avoid over-fitting to the noisy image-text pairs, NLIP
introduces the noise harmonization scheme by learning to
harmonize the cross-modal alignments and adopts noise-
adaptive regularization for each pair based on the estimated
noisy probability.
Preliminaries. To align between two different modalities,
current vision-language pre-training models (Radford et al.
2021) adopt the Image-Text Contrastive (ITC) loss, to en-
courage positive image-text pairs {x;, y; };—; aligned in the
same feature space while in contrast to the negative pairs
{xi,y;}iz;. The normalized features from the image en-
coder and text encoder are denoted as V. (z;) and T (y;).
We first calculate the per-sample image-to-text similarity
s¥ € REXE and text-to-image similarity s* € RP*P in
a batch as:

sty = sty = Velw:) " Tely;). 3)
where B denotes the batch size. Then the Image-Text Con-
trastive loss L;7c can be written as the average of image-
to-text and text-to-image contrastive loss:

B
1
Lirc = 3B ;(ﬁl +LY%), 4
L7 = Li(wi {y;}]) = —log (i) 5)
o >, exp(st,)
Yy Yy B exp(sy;)
L =LY (yi, {x;}j=1) = —log : 6)

However, existing ITC loss forces models to align the fea-
ture of each image-text pair without considering the situa-
tion that many of them are noisy. Directly pre-training with
these samples may degrade the model performance.

Noise-adaptive Image-Text Contrastive Loss. We further
propose a Noise-adaptive Image-Text Contrastive (NITC)
loss £ x7rc to harmonize the cross-modal alignments with
varying degrees according to its noisy probability. We first
calculate the noisy probability of each image-text pair,
which indicates the image and text in this pair are not seman-
tically matched, according to the memorization effect (Arpit

et al. 2017; Zhang et al. 2021a). Specifically, the cross-
modal transformer tends to fit the easy (i.e., clean) sam-
ples first and then the noisy ones. Therefore, we adopt a
two-component Gaussian Mixture Model (GMM) (Permuter
et al. 2006) to fit the per-sample ITC loss. Specifically, we
consider the probability predicted by the higher mean com-
ponent as noisy probability ¢; of i-th image-text pair, in-
spired by (Huang et al. 2021; Arazo et al. 2019):

2
p(Lrrc(@i,yi)l0) = > ymé(Lirc (@i yi)lm), (1)

g = p(ﬂh)p(ﬁch(mi;;i)|:uh)/p(£ITC(Iia vi)). ()

where ~,, denotes the mixture coefficient, ¢(-|m) is the
probability density of the m-th GMM component, 6 repre-
sents the parameters of GMM, and p;, denotes the compo-
nent with a higher mean.

Then we directly regularize the ground-truth alignment
label with various degrees considering its noisy probabil-
ity ;. Lower regularization is adopted for the clean sam-
ples (i.e., with low ¢;) to learn the alignment, while the
higher regularization is adopted for noisy samples (i.e., with
high ¢;) to avoid over-fitting the noise. In detail, inspired by
the label-smoothing (Szegedy et al. 2016), we regularize the
ground-truth image-to-text and text-to-image alignment la-
bel with different smoothing rates W = {w; } ,, which is
linearly associated with the noisy probability of each sample
{w; = Ae;, w; € [0,A]}. A denotes the hyper-parameter to
control the range of smooth rate. Then the Noise-adaptive
Image-Text Contrastive loss £ ¢ is defined as:

B
1 . A
Lynire = = » (L7 +LY), ©)
2B =
R (1 — wy) exp(s?,)
L = —log T - (10
(1 —w;)exp (Siz)""Bi_Ll > eXP(Si%j)
i#]
. 1 — w;)exp(s?,
£Y = —log ( ) exp(siy) an

(1 —w;)exp (s¥ )+ 52 § exp(s? ;) .
i#j

3.3 Noise Completion

Apart from adopting the above instance-ware regularization
on the noisy pairs, NLIP also introduces the noise comple-
tion scheme to enrich the missing object information of text
since the captions from the web are naturally incomplete.
Especially, NLIP injects a concept-conditioned cross-modal
decoder to obtain semantic-consistent synthetic captions to
complete noisy ones, which uses the retrieved visual con-
cepts (i.e., names of existing objects) for the corresponding
image to guide captioning generation.

Visual Concept. Although the image-text data can be eas-
ily crawled from the web, the texts usually contain much
noise, including missing details of the image and carrying
unrelated contents to the image (Li et al. 2022a). To better
address the problem of image-text misalignment, we intro-
duce the visual concepts ¢ as auxiliary inputs to provide the
prior information of existing objects for each image. We first
construct a large visual concept vocabulary () via parsing the
various concept nouns from the web-collected corpus. Then
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Figure 3: Illustration of NLIP procedure. The whole pre-
training contains three stages: noisy-aware pre-training,
captioning and conception-enhanced pre-training. At noisy-
aware pre-training stage, we adopt the noisy-adaptive regu-
larization to pre-train NLIP. At captioning stage, we use cap-
tioning data to train concept-conditioned cross-modal de-
coder and generate synthetic captions for web images. At
conception-enhanced pre-training stage, we select training
captions by noisy probabilities and fine-tune NLIP.

we retrieve the words of top-k similarity with image x; as
visual concepts ¢; € @ based on a pre-trained VLM for that
image. The similarity sim(z;, Q) between the input image
x; and the nouns in () is calculated by

sim(zi, Q) = (Ve(z) - Te([p, Q)))- (12)
where p denotes the pre-defined text prompt that is aggre-
gated with the visual concepts to narrow down the gap with
natural language (Radford et al. 2021). Based on the re-
trieved visual concepts g;, NLIP uses an additional concept-
conditioned cross-modal decoder (shown in Fig. 2) to syn-
thesize new texts Y to replace the original texts Y in noisy
image-text pairs. Specifically, the cross-modal decoder is
optimized by recovering the masked texts y™ with an au-
toregressive (i.e., language modeling) loss:

‘CLJW - _E(w,y)ND 10gp(ytlcd(y‘r<t7 [Ve($)77:3([p7% ym])}))' (13)

where [-] denotes the concatenation operation and ¢ denotes
the word index of text y. Note that we omit index ¢ here.

3.4 Pre-training procedure

As shown in Fig. 3, we divide the whole pre-training
paradigm of NLIP into three steps: noisy-aware pre-
training, captioning and conception-enhanced pre-training.
At noisy-aware pre-training stage, we first warm up the
NLIP architecture with E, epochs under the supervision of
Lir, Lry and Lype. Then we estimate the noisy prob-
ability ¢; of the i-th image-text pair based on the L;r¢
and adopt the noisy-adaptive regularization by replacing the
Lirc with L7 in the following E; epochs. At caption-
ing stage, to obtain better generation ability, we further fine-
tune the captioner, which includes the image encoder V.,

text encoder 7, and cross-modal decoder Cq, on caption-
ing dataset COCO Captions (Lin et al. 2014) and generates
new texts Y/ = {y/}}¥, for each image-text pair. Finally, at
conception-enhanced pre-training stage, we fine-tune NLIP
with E; epochs with the revised image-text pairs D', where
each text y; of the i-th pair in original dataset D is replaced
by the synthetic text y; randomly with sampling rate same
as the noisy probability ¢;.

4 Experiments
4.1 Experimental Settings

Model Architecture. We adopt the ViT-B/16 and ViT-
B/32 as our visual encoder architecture. Unless specified,
NLIP uses ViT-B/16 as the visual encoder. The text encoder
and concept-conditioned cross-modal decoder are initialized
from BART}, (Lewis et al. 2020) and the MAE decoder
only has 4 transformer blocks with 64-d head.

Training Details. We pre-train our NLIP on 32 Nvidia V100
for 50 epochs with 6144 batch size. LAMB (You et al. 2020)
optimizer is adopted with a weight decay of 0.05. The base
learning rate is set to 0.003 and the scaling rule keeps the
same with Yao et al. (2021). The learning rate is linearly
warmed up in the first five epochs and then gets decayed
by the cosine learning rate schedule (Loshchilov and Hutter
2016). We pre-train NLIP on a 26M subset of YFCC100M
named YFCC26M, and the filtering rules follow FILIP (Yao
et al. 2021). During the pre-training, the images are ran-
domly cropped between 50% and 100% of the original size
and then resized to 224 x 224 resolution. The visual en-
coder applies 50% masking ratio. When conducting down-
stream tasks (e.g., image captioning), the image resolution is
resized to 384 x 384 and we don’t mask any image patches.
The training epochs F., Ey and E in different stages are
set as 5, 45 and 20, respectively. The weighting factor a
and 3 are both 1 and X in Ly ¢ is 0.5. During captioning
stage, following BLIP (Li et al. 2022a), we fine-tune NLIP
on COCO (Lin et al. 2014)’s Karpathy train split (Karpathy
and Fei-Fei 2015) to generate high-quality captions. Note
that the COCO Captions contains only 113K images and
567K human-annotated caption while YFCC26M contains
230x more data than COCO Captions. We discuss the effect
of fine-tuning captioner with COCO Captions in Appendix.
Visual Concept Vocabulary. The visual concept vocabulary
(@ is built by parsing the nouns from the collected text corpus
via spaCy toolkit and filtering nouns that appear less than
5 times. The source corpus includes YFCC100M (Thomee
et al. 2016), OpenWebText (Gokaslan et al. 2019), WordNet
of NLTK (Natural Language Toolkit) (Loper and Bird 2002)
and the most-frequent n-gram collected from web.

After collecting, the visual concept vocabulary () con-
tains about 151k unique nouns. We use a pre-trained
FILIPyge (Yao et al. 2021) to retrieve visual concepts for
each image. Unless specified, NLIP uses FILIPp. to re-
trieve visual concepts. More ablation studies about the ef-
fect of utilizing different pre-trained VLMs (e.g. YFCC26m-
pretrained CLIP-ViT-L/16 and CLIP-ViT-L/14) and the ef-
fect of different visual concept vocabularies are shown in
Sec. 4.5 and Appendix.



Table 1: Top-1 accuracy(%) of zero-shot image classification and linear probing image classification tasks on 12 datasets when

pre-training on YFCC26M.
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Zero-Shot Image Classification
CLIP 74.8 44.1 64.5 3.7 514 45.1 437 145 43 22.9 23.0 34.8 35.6
FILIP | ViT-B/32 | 83.6 51.7 73.6 7.8 60.5 559 479 1838 8.0 29.9 29.5 41.4 424
NLIP 740 474 751 6.8 589 538 554 323 89 368 354 424 | 439
CLIP 75.3 424 69.5 3.9 54.8 51.1 466 18,6 3.9 21.7 20.5 39.2 37.3
FILIP | ViT-B/16 | 83.8 51.2  76.1 8.9 628 635 525 21.8 102 367 249 467 | 449
NLIP 81.9 475 795 7.8 540 592 587 329 75 392 339 474 | 459
Linear Probing Image Classification
CLIP 90.4 69.7 84.7 23.8 91.5 70.7 663 66.1 32.7 61.0 96.0 60.3 67.8
FILIP | ViT-B/32 | 90.5 69.5 83.2 30.0 909 692 676 660 313 560 934 5838 67.6
NLIP 9209 734 89.2 34.1 956 769 719 713 398 625 968 67.1 72.5
CLIP 90.5 71.1 86.6 29.4 928 784 677 662 372 660 943 650 | 704
FILIP | ViT-B/16 | 90.6 674  83.6 32.8 937 71.8 69.8 685 357 594 937 623 69.5
NLIP 928 742 904 41.2 975 850 759 743 434 792 968 71.8 | 76.9

4.2 TImage Classification

We evaluate our proposed NLIP on the zero-shot im-
age classification and linear probing image classification
tasks on 12 downstream classification datasets as in Ta-
ble 1, demonstrating the superior zero-shot transfer ca-
pability. These 12 classification datasets consist of CI-
FARI10 (Krizhevsky et al. 2009), CIFAR100 (Krizhevsky
et al. 2009), Caltech101 (Fei-Fei, Fergus, and Perona 2006),
StanfordCars (Krause et al. 2013), Flowers102 (Nilsback
and Zisserman 2008), Food101 (Bossard, Guillaumin, and
Gool 2014), SUN397 (Xiao et al. 2010), DTD (Cimpoi
et al. 2014), Aircrafts (Maji et al. 2013), OxfordPets (Parkhi
et al. 2012), EuroSAT (Helber et al. 2019), ImageNet (Rus-
sakovsky et al. 2015), covering a wide range of domains.
Note that the linear probing task only trains a random ini-
tialized linear classifier with a frozen image encoder on
the downstream datasets. We compare with other vision-
language pre-training methods, including FILIP with the to-
ken reduction layer (Yao et al. 2021; Gu et al. 2022) and
CLIP (Radford et al. 2021) under the same dataset (i.e.,
YFCC26M) and the same evaluation settings in (Radford
et al. 2021). For fair comparison, we pre-train CLIP with
the same augmentation strategies as ours on YFCC26M. We
ensemble all prompts by averaging the text embeddings for
each class across the prompt templates as in (Radford et al.
2021) for all models. More results in CLIP benchmark (Cui
et al. 2022) are listed in Appendix.

Zero-Shot Image Classification. Experimental results
show that NLIP largely outperforms the corresponding base-
line CLIP in terms of average top-1 accuracy over 12
datasets and achieves an improvement of 8.6%. In particu-
lar, NLIP surpasses CLIP on ImageNet over 8.2%. Besides,
NLIP also obtains substantial performance gains in most in-

dividual datasets with images in different domains, demon-
strating the effectiveness of proposed noise-harmonization
and noise completion schemes. Compare to FILIP which
learns the finer-grained alignment between image and text,
NLIP with global image-text alignment achieves 1.0% aver-
age improvement over 12 datasets.

Linear Probing Image Classification. Table 1 demon-
strates that NLIP achieves 76.9% on average top-1 accuracy
over 12 downstream tasks, which surpasses FILIP and CLIP
by 7.4% and 6.5%, respectively. NLIP with ViT-B/32 also
outperforms FILIP and CLIP about 4.9% and 4.7%. The lin-
ear probing experiments demonstrate the robustness repre-
sentation learned by NLIP.

4.3 Image-Text Retrieval

We evaluate NLIP on both zero-shot image-to-text retrieval
(TR) and zero-shot text-to-image retrieval (IR) tasks on
Flickr30K (Plummer et al. 2015). Then we also com-
pare NLIP against the existing vision-language pre-training
methods, including Unicoder-VL (Li et al. 2020a), Image-
BERT (Qi et al. 2020), UNITER (Chen et al. 2020). These
models are single-stream and employ an additional object
detector to extract region features while NLIP only employs
visual patch features for simplicity.

As shown in Table 2, NLIP achieves substantial improve-
ment compared with CLIP pre-trained in YFCC26M. In
image-to-text retrieval, NLIP outperforms CLIP 28.7% in
R@1. In text-to-image retrieval, NLIP is 26.6% higher than
CLIP on R@1 and 7.1% higher than CLIP* fine-tuned on
MSCOCO dataset. NLIP also achieves 1.9% improvement
than UNITER in R@1. As shown in Table 4, when only
using YFCC26M-pretrained CLIP to retrieve visual con-
cepts, our NLIP still beats CLIP and CLIP* over 23.2%



Table 2: Results of zero-shot image-to-text and text-to-
image retrieval on Flickr30K. * means the model fine-tuned
on MSCOCO dataset.

image-to-text text-to-image
R@l R@5 R@I0 R@l R@5 R@I0

Unicoder-VL (Liet al. 2020a) 64.3 858 923 484 760 852
ImageBERT (Qi et al. 2020) 70.7 902 940 543 79.6 875
UNITER (Chen et al. 2020) 80.7 957 98.0 662 884 929

CLIP(ViT-B/32) 464 754 841 298 561 678
FILIP(ViT-B/32) 56.6 827 90.0 395 667 758
NLIP(ViT-B/32) 772 948 977 566 832 898
CLIP(ViT-B/16) 539 81.0 90.1 346 626 73.6
CLIP(ViT-B/16)* 735 926 962 541 819 898
FILIP(ViT-B/16) 66.5 884 939 471 744 825
NLIP(ViT-B/16) 826 966 983 612 857 917

Table 3: Comparison with SOTA image captioning methods
on COCO captioning benchmark. NLIP achieves the best
performance even using a small-scale pre-training dataset.

# Pre-train MSCOCO
Model Images | BLEU@4 CIDEr
Encoder-Decoder (Changpinyo et al. 2021) ISM - 110.9
BUTD (Anderson et al. 2018) 1.7M 36.4 120.1
VinVL(Zhang et al. 2021b) 5.7M 38.2 129.3
VLP (Zhou et al. 2020) 3M 39.5 129.8
AoANet (Huang et al. 2019) 1.7M 389 129.8
UNIMOp, (Li et al. 2020b) 11.3M 38.8 124.4
SimVLMp,se (Wang et al. 2021) 1.8B 39.0 134.8
BLIP (Li et al. 2022a) 129M 39.7 133.3
NLIP 26M 40.3 135.2

and 3.6% on zero-shot image-to-text retrieval task, which
demonstrates the superiority of the noise-robust learning in
NLIP under the exact same pre-training data.

4.4 Image Captioning

We further evaluate the pre-trained NLIP on downstream im-
age captioning task, which aims at generating the descrip-
tion of an image in natural language, on COCO Caption (Lin
et al. 2014) dataset. We evaluate different methods on stan-
dard metrics for the captioning task, including BLEU (Pap-
ineni et al. 2002), CIDEr (Vedantam, Lawrence Zitnick, and
Parikh 2015). For fair comparison with other models, we fol-
low BLIP (Li et al. 2022a) to initialize the visual encoder of
NLIP from an ImageNet pre-trained ViT-B/16.

As shown in Table 3, NLIP achieves 40.3 in BLEU@4
and 135.2 in CIDEr, outperforming BLIP (Li et al. 2022a)
by 1.9 in CIDEr. Note that BLIP is pre-trained with 5x
more image-text pairs(129M v.s. 26M). NLIP with train-
from-scratch image encoder still outperforms BLIP, accord-
ing to the third row of Table. 4. NLIP also beats other meth-
ods (e.g., SimVLM) pre-trained on large-scale datasets. Par-
ticularly, VinVL (Zhang et al. 2021b) requires an object
detector pre-trained on 2.5M images with high resolution
(800x1333) and full human-annotated bounding boxes.

4.5 Ablation Studies

Effect of Noise Harmonization. Table 4 ablates the effec-
tiveness of our noise harmonization. By comparing with the
last two rows, we can find that NLIP gains 1.2% and 2.5%

Table 4: Ablation studies of all components on zero-shot
classification, image-text retrieval and image caption. We
denote using condition of visual concepts in noise comple-
tion as “VC”, noise completion as “NC”, and noise harmo-
nization as “NH”. Note that removing the noise completion
scheme degrades the performance severely. 1 denotes using
the YFCC26M-pretrained CLIP to retrieve visual concepts.

Dataset ~ ImageNet COCoO Flickr30K

Task ZS-CLS image-to-text  text-to-image

Metric Top-1 BLEU  CIDEr R@]1 R@10 R@1 R@I10

CLIP 39.2 - - 539 90.1 346 73.6

NLIP} 43.0 39.0 130.6 77.1 982 639 925

NLIP 474 39.9 1340 826 983 612 917
wlo VC 46.7 39.6 1328 822 986 60.1 916
wlo NC 47.0 39.6 1324 722  96.1 49.6 842
w/o NH 46.7 39.6 1315 71.0 956 471 820

improvement in image-to-text retrieval and text-to-image re-
trieval with noise harmonization, respectively, verifying that
pre-training with NITC loss helps the model avoid over-
fitting on the mismatched image-text pairs.

Effect of Noise Completion. Table 4 shows that NLIP with
the noise completion scheme can boost performance on all
downstream tasks. We can observe the noise completion
scheme helps boost the image caption task by over 1.6% on
CIDEr and the text retrieval task by 10.4% on R@1. Besides,
without the condition of visual concepts in noise completion,
NLIP will drop 0.7% accuracy on zero-shot ImageNet clas-
sification and 1.1% R@1 on image retrieval. Incorporating
visual concepts into the cross-modal decoder further help
enrich the synthetic caption with more information of ex-
isting objects and boost the performance in all downstream
tasks, as shown in Table 4. We illustrate some examples via
noise completion in Appendix.

5 Conclusion

In this paper, we propose a new vision-language pre-training
framework named NLIP to learn from the noisy image-text
pairs crawled from the web. NLIP introduces two schemes,
including noise-harmonization and noise-completion, to sta-
bilize the pre-training and efficiently make full use of noisy
pairs. In noise-harmonization scheme, NLIP adopts noise-
adaptive regularization to harmonize the cross-modal align-
ments with varying degrees by considering the noise proba-
bility of each pair. And in noise-completion scheme, NLIP
further introduces a concept-conditioned cross-modal de-
coder to obtain synthetic captions to complete noisy ones.
Retrieved visual concepts are utilized as the auxiliary input
for the cross-modal decoder to provide the prior information
of existing objects. Experiments show that NLIP achieves
significant performance gaps on several downstream tasks,
including zero-shot classification, image-text retrieval and
caption generation tasks. In the future, our NLIP can be eas-
ily injected into any cross-modal pre-training models and
the proposed noisy-robust learning schemes can be benefi-
cial for more downstream fine-grained tasks such as open-
world object detection, segmentation, and image generation.
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Appendix for NLIP: Noise-robust
Language-Image Pre-training

A More Details about Pre-training

For all three stages, NLIP uses Automatic Mixture Preci-
sion(AMP) to accelerate the training and gradient check-
point to save memory and enlarge the batch size. NLIP does
not apply the weight decay regularization on embedding,
bias and layer normalization. The maximum context length
of the text is 77.

During noisy-aware pre-training stage, the input of the
text encoder is a masked text. NLIP randomly samples a
span of the text and replaces the span with a (mask) token
and the span lengths are drawn from a Poisson distribution
(A =3). The input of the text decoder is a complete text with-
out masking. The language modeling loss at the pre-training
stage can be regarded as recovering the masked part. Table
5 shows the hyperparameters for pre-training.

Table 5: More hyperparameters used for NLIP at pre-
training stage. Vocabulary means the vocabulary of the text
encoder. Temperature is a learnable parameter used in con-
trastive learning.

Hyperparameter \ Value

Vocabulary size 50265
Initial temperature | 0.07

LAMB betal 0.9

LAMB beta2 0.95
LAMB epsilon 10~*
Weight decay 5e~2

During captioning stage, we use Cross-Entropy Optimiza-
tion and Self-Critical Sequence Training (SCST) (Rennie
et al. 2017) both. Note that we don’t mask any image patches
at this stage. We feed the visual concepts aggregated with a
prompt prefix ‘This photo may describe these objects:” into
the text encoder only. To generate new texts for YFCC26M,
we parse the nouns from the original texts of YFCC26M
and concatenate the nouns with visual concepts retrieved by
the pre-trained VLM. Table 6 summarizes the hyperparame-
ters of Cross-Entropy optimization. The hyperparameters of
SCST are similar to Cross-Entropy optimization except only
training 5 epochs and the batch size is set to 96 (i.e., 4 for
each GPU).

During conception-enhanced pre-training stage, we
mainly follow the hyperparameters of noisy-aware pre-
training stage but shrink the base learning rate to 0.0003 and
turn off the Noise-adaptive Contrastive Learning. We set the
warm up iterations to 4000.

B More Comparison

The performance comparisons on CLIP benchmark(Cui
et al. 2022) are shown in Table 7. We follow CLIP
benchmark pre-train NLIP with ViT-B/32 backbone on
YFCC15M-v2(Cui et al. 2022) to make a fair comparison.
NLIP outperforms DeCLIP(Li et al. 2022b), which performs

Table 6: Hyperparameters of CrossEntropy Optimization at
captioning stage.

Hyperparameter \ Value

Epoch 30

Warm up iter 2217
Learning rate le™?®
Batch size 256

AdamW betal 0.9

AdamW beta2 0.999
AdamW epsilon | le™
Weight decay 5e=2

six different image-text contrastive supervisions, bringing
on computation and communication.

Table 7: Performance comparison on CLIP benchmark (Cui
et al. 2022).

Downstream Task \CLIP SLIP FILIP DeCLIP NLIP

ImageNet (ZS-CLS) | 32.8 343 395 432 43.5

C Discussion of Visual Concept
C.1 Visual Concept with Different VLLMs

Retrieving via Large-scale Pre-trained VLMs Table §
shows the performance comparison of using different large-
scale pre-trained VLMs to retrieve the visual concepts.
Experimental results show that the FILIPjyg(pre-trained
on 340M image-text pairs) achieves the best performance
that outperforms CLIP with ViT-L/14(pre-trained on 400M
image-text pairs) about 0.4%. We speculate that FILIPj,ge
with fine-grained interaction between image and text im-
proves the effectiveness of the retrieved visual concepts.

Retrieving via VLMs Pre-trained on YFCC26M To
avoid using large-scale pre-trained VLMs and verify the ef-
fectiveness of retrieving visual concepts, we conduct an ex-
periment on CLIP with ViT-B/16 pre-trained on YFCC26M,
denote CLIP for simple, and discuss which visual concept
vocabulary performs the best. Table 9 shows the perfor-
mance comparison of utilizing visual concepts from differ-
ent corpus. We use CLIP pre-trained on YFCC26M to re-
trieve the visual concepts and pre-train CLIP with the re-
trieved visual concepts. Experimental results show that us-
ing the visual concepts of YFCC achieves the best perfor-
mance which obtains a 4.5% improvement than the model
without visual concepts and is slightly better than using the
ensemble visual concept vocabulary. We speculate that the
visual concepts from the pre-trained dataset can better lever-
age the knowledge of VLM pre-trained on the same dataset.

C.2 Comparison of Different Visual Concept
Vocabulary

The visual concept vocabulary we used in our pre-training is
collected from several corpora. Table 10 shows the compar-



Table 8: Ablation studies of different VLMs to retrieve visual concepts from the ensemble concept vocabulary. The results
are Top-1 accuracy(%) of zero-shot image classification on 12 datasets. All models are pre-trained on YFCC26M and follow
CLIP’s architecture with ViT-B/32 backbone, MAE decoder and 50% masking ratio. Note that CLIP is pre-trained on 400M
image-text pairs and FILIP is pre-trained on 340M image-text pairs. The first line is the result without using visual concepts.

Only use single prompt: ‘a photo of a [classname]’.
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Table 9: Ablation studies of different vocabulary to retrieve visual concepts by using the VLM pre-trained on YFCC26M. The
experiments are conducted on CLIP with ViT-B/16 backbone and image augmentation. The first model is pre-trained without
visual concepts and is the VLM used to retrieve visual concepts for the next two models. The results are Top-1 accuracy(%) of
zero-shot image classification on 12 datasets. “VC” is the Visual Concept. All results apply prompt ensembling.
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ison when pre-training with the visual concepts from differ- | import pickle )
ent corpora. Experimental results demonstrate that the wider % from nltk.corpus import wordnet as wn
range the visual concept vocabulary covers, the better per- _ e
formance achieves. In Fig. 4, we show a code example of g nouns {iszazeiz'iﬁlii Syésils[?} nryy
ccf)r;?E%;:(ting the visual concept vocabulary from WordNet 6 nouns = [’ ’.join (n.épli;(’_’ )) for n in
o . nouns]

D Discussion of Different Text Encoder

The original text encoder of CLIP (Radford et al. 2021) is
a GPT(Radford et al. 2019)-like architecture that applies
the causal mask to perform autoregressive manner, while
we employ BART(Lewis et al. 2020) as the text encoder.
Table 11 shows the comparison of different language mod-
els on the zero-shot classification of ImageNet. We conduct
the experiments on CLIP. Without a pre-trained language
model, training with BART performs worse than the original
CLIP model. Training with a pre-trained BART will bring
an improvement of 2.6%. While existing works, e.g., Im-
ageBERT (Qi et al. 2020), ALBEF (Li et al. 2021), employ
BERT (Devlin et al. 2018) as the text encoder backbone be-
cause of its good Natural Language Understanding(NLU)
performance, NLIP apples BART(Lewis et al. 2020) un-
der the consideration of better Natural Language Gen-
eration(NLG). BART is a sequence-to-sequence architec-
ture that combines Bidirectional Transformers (i.e., BERT)
and Auto-Regressive Transformers (i.e., GPT). With BART,
NLIP is able to pre-training with the cross-modal contrastive

7 pickle.dump (nouns, open (’
nltk_wordnet_noun.pkl’, "wb’))

Figure 4: A code example to get a clean visual concept vo-

cabulary from NLTK.

learning (aligning the masked image with completed text)
and the language modeling (reconstructing the masked text
of text encoder), simultaneously. With BERT, pre-training
with masked language modeling is harmful to cross-modal
contrastive learning because the masked input of image and
text might lose the key information and lead to misalign-
ment.

E More Discussion

Influence of COCO caption Due to NLIP using COCO
caption at captioning stage, for the sake of fair comparison,
we directly pre-train CLIP on YFCC26M and COCO cap-
tion simultaneously. The experimental results, shown in Ta-
ble 12, demonstrate that directly pre-training on YFCC26M



Table 10: Ablation studies of various corpus to construct the visual concept vocabulary. The results are Top-1 accuracy(%) of
zero-shot image classification on 12 datasets. All models are pre-trained on YFCC26M and follow the architecture of CLIP
with ViT-B/32 backbone, MAE decoder and 50% masking ratio. OWT denotes the OpenWebText corpus(Gokaslan et al. 2019).

Only use single prompt: ‘a photo of a [classname]’.
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Table 11: Comparison of different language model ar-
chitecture with ViT-B/32. All models are pre-trained on
YFCC26M and follow the architecture of CLIP with ViT-
B/32 backbone, MAE decoder and 50% masking ratio. The
models with BART receive the masked text in the text en-
coder. “Top-1 Acc” means the top-1 accuracy of zero-shot
classification on ImageNet. Only use single prompt: ‘a photo
of a [classname]’.

Language Model ‘ Params Pre-trained Top-1 Acc
CLIP-GPT (Radford et al. 2021) | 165M X 30.1
BART (Lewis et al. 2020) 241M X 29.0
BART (Lewis et al. 2020) 241M v 32.7

and COCO Caption doesn’t achieve significant improve-
ment but slightly drop the performance on specific datasets,
e.g., ImageNet, Caltech101, while NLIP with Noise Com-
pletion can achieve 0.5% improvement on ImageNet and
nearly 3% improvement on Caltech101. This is because the
Noise Completion generates finer descriptions of images on
YFCC26M that makes full use of the model’s caption gen-
eration capability and denoises the dataset. And COCO cap-
tion with limited categories and 113K images has little im-
pact on pre-training.

Abaltion of Visual Encoder-Decoder Table 13 studies
the effect of key factors in the visual encoder-decoder of
NLIP, including the masking ratio and positional embed-
ding, on ImageNet zero-shot classification task. Experi-
ments are conducted with ViT-B/32 as the visual encoder
and without using data augmentation. Besides, we adopt a
hand-crafted prompt ‘a photo of a {category}’ for evalua-
tion. Results in Table 13 shows that adding the positional
embedding brings the gain of 0.5% on top-1 accuracy (row 2
vs. row 3) in zero-shot classification. As we can see, a high
masking proportion (e.g., 50% masking ratio) of the input
image still reserves 30.1% zero-shot top-1 accuracy on Im-
ageNet which just slightly drops compared to the baseline
31.3%. Moreover, experiments show that the high masking

ratio can speed up training, which is consistent with He et al.
(2021).

Benefit of Masked Image Encoder The masked image
encoder randomly masked image patches to save memory
and accelerate the training processing. We conduct an ad-
ditional experiment to demonstrate the effectiveness of the
masked image encoder. As Table 14 shows, with 50% mask-
ing ratio, we process 448 more samples and save 27% pre-
training time on single node with 8§ NVIDIA V100. Besides,
the masked image encoder can achieve 1% improvement
on zero-shot classification of ImageNet. Note that gradient
checkpoint is not utilized for this comparison.

Effect of Noise Harmonization. Fig. 5 shows the per-
sample loss distribution at the final epoch of the noise-aware
pre-training stage and the distribution predicted by the two-
component GMM. Three image-text examples located on
different points of the per-sample loss distribution are shown
in the right side of Fig. 5. We can observe that along with
the increased per-sample loss, the predicted noise probabil-
ity is increasing and the relevance between the image and
text is decreasing. It verifies the reliability of our noise-
harmonization scheme by dividing the unlabeled image-text
pairs into clean and noisy sets implicitly with the memoriza-
tion effect of the cross-model transformer.

Effect of Noise Completion. Fig. 7 reports the zero-shot
classification results of our NLIP with or without using the
noise completion scheme on five different datasets. We can
observe the noise completion scheme helps boost the perfor-
mance by over 1.9% on average accuracy. Furthermore, we
illustrate some examples of enriched synthetic captions of
YFCC via noise completion scheme in Fig. 8. We can ob-
serve that the synthetic captions generated by NLIP show
more concrete meanings and contain more semantic infor-
mation compared to the original web texts.

Fair comparison with BLIP We pre-train BLIP on
YFCC26M to provide fair comparison with our method
since BLIP uses a lot more data (129M vs 26M) than us.
Note that we compare NLIP w/o noise completion with
BLIP w/o using synthetic captions. Both using Image-Text



Table 12: Influence of pre-training CLIP with COCO caption. CLIP w/ coco means pre-training on YFCC26M and COCO

caption simultaneously. All results apply prompt ensemble.
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Figure 5: Illustration of per-sample loss distribution of the final epoch and the distribution of GMM predictions in Eq. (7). The
left side shows three examples with different distribution locations and predicted noise probabilities. The right side shows three

image-text pairs at corresponding locations.

Table 13: Ablation study of the visual encoder-decoder mod-
ule. Mask Ratio represents the masking proportion of the in-
put image. “Top-1 Acc.” means the top-1 accuracy of zero-
shot classification on ImageNet. PE indicates positional em-
bedding. The first row represents the baseline without mask-
ing the input image tokens.

Mask Ratio(%) PE | Top-1 Acc.(%)
- v 31.3
75 X 26.5
75 v 27.0
50 v 30.1
25 v 30.4

Table 14: Benefit of Masked Image Encoder. “Top-1 Acc”
means the zero-shot performance on ImageNet. The exper-
iment is conducted on single node with § NVIDIA V100
GPU with ViT-B/16. Only use single prompt: ‘a photo of a
[classname]’.

Model Batch Size Hour/Epoch  Top-1 Acc
w/o masking 1152 5.5 334
w/ 50% masking 1600 4 34.4

q sewing room, abandonment
, |ateddy bear sitting on top of
BLIPy a wooden table

a teddy bear sitting on top of a
sewing machine

NLIPy

q surfboarder, surfboard

BLIP v/

a man and a baby are in the ocean

a man and a child riding a wave on a

!
NLIPy surfboard in the ocean

Figure 6: Qualitative captioning comparison of BLIP and
NLIP. With the visual concepts Q) as the auxiliary input,
NLIP can better complete the caption with more detailed in-
formation of existing objects in the image.

Contrastive loss and being evaluated on Flickr30k, NLIP
achieves 75.5 and 49.7 at R@1 on Image-to-text (I2T) and
Text-to-image (T2I) retrieval while BLIP achieves 68.3 and
31.0 at R@1 on 12T and T2I retrieval.

Retrieval on Conceptual Captions (CC3M) We evaluate
on a random-sampled subset of CC3M (with 1000 image-
text pairs, similar to following Flickr’s karpathy test set). As
shown in Table 15, NLIP surpasses FILIP and CLIP by 6.8
and 10.3 on R@1 of image-to-text retrieval.
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Figure 7: Ablation study of noise completion scheme on
zero-shot image classification on five datasets. The first row
is the average performance of these five datasets.

Table 15: Results of zero-shot image-to-text(I2T) and text-
to-image(T2I) retrieval on a 1k subset of CC12M.

Model | 2T T2I
| R@l R@I0 R@l R@IO
CLIP | 148 393 151 410

FILIP 18.3 44.7 194 469
NLIP 25.1 53.5 247 54.1




"Hoop in the air Foot in the air"

"nice flash game "

"hula", "hula-hoop"

"game", "exhitbition game"

"a woman and a man are playing a video game"

"a woman standing next to a man holding a
hula hoop"

"a cartoon image of a television set with characters
on it"

"a video game with a lot of cartoon characters on it "

"Blissdom Canada Sessions, Speakers and Peeps "

"Guys Playing Xiangqi Chines

"conference", "attendee"

"chinese checkers", "chess match"

"a group of people sitting around a table "

"a group of people sitting on a bench next to a tree "

"a group of people sitting in a conference room"

"a group of men playing a game of chess"

"These still have iOS 6., via Instagram <LK>"

"Tattooed Bell Porters"

"apple tree", "apple orchard"

"bell", "siamese twin"

"a tree filled with lots of fruit on it *

"two young men holding tennis racquets in their hand"

"a tree with many apples hanging from it"

"two men in bathing suits holding onto a bell"

"Jazz Fest 20100429 Chouval Bwa, Chouval Bwa
group from Martinique. "

"Just messing around while taking a break from a
small plumbing job."

“carasel", "carousel”

"rings", "old gold"

"a toy horse sits on top of a carnival cart"

"a pair of orange scissors are sitting on a blue surface"

"a toy horse sitting on top of a wooden carousel”

"a pair of gold rings sitting on top of a blue surface"

Figure 8: More examples about the synthetic captions generated by NLIP. Note that y, 3’ and ¢ denote the web text, synthetic
text and the visual concepts, respectively. Better generation performance can be achieved with visual concepts as the auxiliary
input. (LK) means the dropped web link.



