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Abstract—Aiming at recognizing and localizing objects of novel
categories with just a few reference samples, few-shot object
detection (FSOD) is quite a challenging task. Previous works
rely heavily on the fine-tuning process to transfer their models
to the novel categories. They are flawed in the real application
since the fine-tuning process is time-consuming and it suffers
from serious deterioration on the low-quality support set. Based
on the observation, this paper proposes an instant-response
and accurate few-shot object detector (IRA-FSOD) that can
detect the objects from novel categories without fine-tuning. We
carefully analyze the limitations of widely-used Faster R-CNN
and transform it to IRA-FSOD. Specifically, we first propose
a novel semi-supervised Region Proposal Network (SS-RPN)
module and a switch classifier module to precisely recognize the
potential foreground instances from novel categories without fine-
tuning. Moreover, we introduce two explicit inference strategies
into the localization module, including explicit localization score
and semi-explicit box regression, to alleviate over-fitting towards
the base categories. Extensive experiments demonstrates that
the proposed IRA-FSOD not only accomplish few-shot object
detection with the instant-response, but also reaches state-of-the-
art performance under various FSOD protocols and settings.

Index Terms—Deep learning, object detection, Few-Shot Ob-
ject Detection, Few-Shot Learning, Instant-Response.

I. INTRODUCTION

Deep-learning-based methods have achieved remarkable
success in various computer vision tasks. However, the gener-
alization ability of these methods towards the open domains is
quite limited as the training data is scarce. This triggers active
research on few-shot learning, which aims to develop models
that can be generalized to the unseen categories with only a
few data with annotations.

Specifically, when it comes to the field of few-shot object
detection (FSOD), setbacks are frequently encountered due
to the complexity of FSOD tasks. Most existing methods
[3, 7, 15–17, 29, 38, 39, 45, 47, 51] require fine-tuning on the
support set. It must be admitted that fine-tuning is an effective
method to solve FSOD problems especially when the models
are well pretrained on large dataset and the data in novel
domains is limited. But the bottlenecks are quite apparent.

Bottleneck 1: the fine-tuning methods will lead to lots of
preparation time during inference. As illustrated in Figure 1,
the time spent on fine-tuning varies from 15 minutes to 6
hours. That means each time a brand-new detection task is
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Fig. 1. Comprehensive comparison among different models on MS COCO
dataset, including the performance under low-shot setting, performance
with/without fine-tuning and response time for fine-tuning. TFA [38], FSIW
[47], and FSCE [29] are invalidated before fine-tuning. A-RPN [7] can respond
instantly the same as ours, but it performs poorly before fine-tuning. In
summary, IRA-FSOD can achieved optimal performance while supporting
instant-response (without fine-tuning).

given, these methods require a long preparation process before
it works, which is unacceptable in real-world scenarios.

Bottleneck 2: we expect models to dig out countless objects
belonging to novel categories by only a few reference samples.
But as illustrated in Figure 1, when it comes to 1-shot setting,
methods that require fine-tuning seriously degrade. Intuitively
speaking, the fine-tuning-based methods cause the model to
over-fit the support set with quite limited samples.

Bottleneck 3: from the perspective of meta learning, we
expect models to “learn to detect” rather than just “transfer”
to the novel dataset. But we can’t admit that models relying
on fine-tuning have learnt to detect, even with the so-called
promising results. Consequently, we hope that the models can
be qualified for detection tasks towards novel categories, even
without fine-tuning.

Driven by the aforementioned points of view strongly asso-
ciated with fine-tuning, this paper proposes a novel Instant-
Response and Accurate Few-shot Object Detector (IRA-
FSOD), which is born out of vanilla Faster R-CNN [27] and
is competent for FSOD tasks. We attempt to get rid of the
cumbersome fine-tuning to accomplish the goal of “Instant-
Response” (IR), that is, without the preparatory work such as
fine-tuning, the model itself can directly and instantly detects
objects from novel categories. To accomplish this goal, we
carefully analyze the components of widely-used Faster R-
CNN [27] and make improvements on them. On the whole,
the region proposal network (RPN) module, the box classifier
and the localization module will be modified.

Firstly, the training mode of the RPN is contradictory to
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Fig. 2. The foreground instances in the training and testing phase are disjoint.

the few-shot learning setting. As shown in Figure 2, the
foreground instances are disjoint in training phase and test
phase, which means the potential foreground instances not
belonging to base categories will be treated as background
during the training process. We argue that the RPN module
should focus on any potential foreground instances instead
of only the annotated instances during the base training. To
break the bottleneck, we train the RPN module by remarking
the potential novel instances as unlabeled data and leveraging
them in a semi-supervised paradigm. To the best of our
knowledge, IRA-FSOD is the first work to solve such problem
using the semi-supervised learning algorithm.

Secondly, most of the existing box classifiers are difficult to
achieve satisfying performance without fine-tuning. In Figure
3, we compare three kinds of widely-used classifiers: (a) The
multi-classifier [29, 38, 47] learns a hyper-plane for each
base category in the feature space, which shows the best
learnability but spends much time on fine-tuning, and it is
invalidated on the novel category without fine-tuning; (b) The
comparison-classifier [7, 36] learns a class-agnostic binary
classifier in the joint feature space. It can directly recognize
the objects from novel categories but still suffers from the
bias of base categories since its parameters are trained on the
base category data; (c) The distance-classifier [17, 28] is non-
parameter and performs classification according to the nearest
neighbor rule. It doesn’t suffer from category bias, but it can’t
preserve the classification knowledge from training. Based
on the observation, we propose a switch classifier module.
It switches different classifiers during training and inference
to build a box classifier, contributing both generalization and
learnability to the IRA-FSOD. It can significantly improve the
few-shot performance while supporting instant-response.

Thirdly, the localization module, composed of the local-
ization score calculation and box regression, is supported by
implicit fitting and lacks logical inference, which suffers from
over-fitting to the distribution of the base categories. So we
attempt to improve its generalization and accuracy by intro-
ducing explicit logical inferences into the localization module.
For the localization score, we introduce the pixel-wise contrast
into the box classifier to evaluate it, which can generate the
confidence that has a high correlation with the localization
result of given region proposal. For the box regression module,
we propose a promoted box regressor to strengthen the logical
relation between the region feature and its box regression.
These logical inferences are category-agnostic, and thus can
maintain generalization to novel categories.

Extensive experiments on two large and challenging few-
shot detection benchmark datasets, i.e., MS COCO [19] and
FSOD dataset [7], show that IRA-FSOD can reach the state-of-
the-art FSOD performance while achieving instant-response.
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Fig. 3. Comparisons of the motivation, learnability, and generalization ability
among three classifiers.

Especially under the extremely-low-shot and class-incomplete
setting, it promotes the current state-of-the-art by a large
margin even without fine-tuning. Beyond the satisfying result
of getting rid of fine-tuning, IRA-FSOD motivates us to
reflect on the inference mechanism that we need in few-shot
learning. In brief, our main contributions can be summarized
as follows:

1) We propose IRA-FSOD to get detection of object in-
stances from novel categories without fine-tuning.

2) We optimize the components in Faster R-CNN, including
the box classifier, the RPN and the localization module.
The optimized model equips both generalization and
learnability to handle the open-world detection tasks.

3) By applying the improvements, IRA-FSOD successfully
achieves state-of-the-art results in response time, preci-
sion, and recall.

II. RELATED WORK

General Object Detection is a fundamental task in computer
vision that has attracted lots of attention. Modern object
detectors can be divided into two kinds: one-stage detectors
and two-stage detectors. One-stage detectors directly predict
categories and locations of objects, e.g., YOLO series [1, 24–
26], SSD [21], etc. Two-stage detectors, pioneered by R-CNN
[12], first generate class-agnostic region proposals, then further
refine and classify the proposals [11, 13, 27]. These works
heavily rely on a huge amount of annotated data and are
invalidated on the data from unseen categories, thus they can
not be directly used to solve the FSOD problem.
Few-shot learning aims to recognize novel classes with
limited labeled data. Meta-learning methods [9, 22, 23, 30,
31, 48], also named as ”learning to learn”, are proposed
to learn a meta-learner that can adapt to new tasks with
a few labeled samples. Distance metric learning methods
[18, 28, 34, 35, 41, 46, 55] focus on designing a distance
formulation between the samples in an embedding space
generated by deep neural networks. Popular metrics include
cosine similarity [4, 32, 37], Euclidean distance [28] and graph
distance [10].
Few-shot Object Detection is proposed to handle the object
detection with only a few annotated samples. There are mainly
two types of methods aiming to address the few-shot object
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Fig. 4. IRA-FSOD: Given a query image and a support set, the weight-shared backbone first process them into feature maps. Then the RoI module extracts
the region features from the region proposals predicted by the semi-supervised RPN, and extracts support features from the bounding boxes in the support set.
Finally, the box classifier and box regressor predict whether the region proposal contains the object belonging to the support category and the offset between
the region proposal and the ground truth bounding box by comparing the region and support features.

detection problem, i.e., meta-learning-based methods and fine-
tuning-based methods:

Meta-learning-based methods attempt to build their few-shot
detectors by employing various meta-learning techniques to
extract the class-agnostic knowledge or transfer the knowledge
from base categories to novel categories. Despite they are
called “meta-learning-based”, these methods still require a
fine-tuning process. Otherwise, they are either invalidated
[15, 16, 20, 39, 45, 47, 51] or lagging behind other methods
[3, 7, 17, 33, 40, 43, 53, 54]. FSRW [16] extracts generic
meta-features from base categories, then adjusts them using
the re-weighting features for novel categories. Meta R-CNN
[51] and FSIW [47] propose to use the re-weighting features
over RoI features instead of the image feature. MetaDet [39]
and GenDet [20] propose to estimate the new parameters in the
detector for detecting novel category instances. RepMet [17]
incorporates distance metric learning into few-shot detection to
help classify the proposals. A-RPN [7] and Meta-RCNN [45]
propose attention-RPN to generate the class-specific region
proposal. A-RPN also proposes a multi-relation detector and
a contrastive training strategy. DCNet [15] fully exploits local
information to benefit the detection process and alleviates the
scale variation problem by context-aware feature aggregation.
OSWF [53] focuses on building a stronger connection between
the novel and base category data. AirDet [40] proposes to
extract the class-agnostic relation with the support images.
QA-FewDet [33] applies GCNs to model the class-class, class-
proposal, and proposal-proposal graph relationships.

Fine-tuning-based methods focus on improving the fine-
tuning process on the support data to effectively transfer
the category-specific model to the novel category. They are
once suffered from poor performance, but recent works set
the new state-of-the-art. TFA [38] simply fine-tunes the last
layer of Faster R-CNN [27] but substantially improves the
performance. MPSR [44] handles the scale variance issue by
multi-scale positive sample refinement, but it needs a manual
selection. MI-FSOD [42] focuses on making the model adapt
to the unseen categories while avoiding forgetting to detection
knowledge from base categories. FSCE [29] builds a strong

baseline upon TFA [38] and boosts the performance by large
margins. DeFRCN [52] decouples the gradients from the RPN
and RCNN, which achieves impressive performance.

III. METHODOLOGY

A. Problem Definition

Given a base dataset Db with annotated instances of the base
(seen) category Cb, the objective of few-shot object detection
is to train a robust model on Db which can be generalized
on the novel dataset Dn with instances of the novel (unseen)
category Cn (Cn ∩ Cb = ϕ). For each novel category, there is
also a support set S with a few annotated instances. In the
previous works, they are used in fine-tuning, but in our work
they only need to be used in inference. In more detail, N-
way K-shot object detection means Cn contains N categories
and each support set contains K annotated instances (usually
less than 10), i.e., Sc = {(Ii, bi), i = 1, ...,K} where I and b
denote the support image and the bounding box of the support
instances. The novel dataset is also called the query set.

B. IRA-FSOD Framework

The overview of IRA-FSOD is shown in Figure 4, which
is based on Faster R-CNN [27]. The general process is as
follows: Given a query image and a support set, the goal is
to detect the objects belonging to the support category in the
query image. Firstly, the backbone extracts the feature maps of
the query image and all support images. Then the RPN module
predicts the region proposals in the query image. After that, the
RoI module, including RoI-pooling and RoI-extractor, extracts
the feature maps of region proposals and the feature maps of
all the support instances. Finally, the box classifier and box
regressor further predict the category and the box regression
of the region proposals, by comparing the region features and
the support feature. The support feature is the average of all
support instance feature maps.

In particular, we first propose semi-supervised RPN (SS-
RPN, Sec. III-C) and switch classifier (Sec. III-D) to adapt to
the FSOD task without fine-tuning. Then, we present a novel
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explicit localization module (Sec. III-E) to alleviate the over-
fitting to base categories. As shown in Figure 4, we mark the
corresponding position of these modules in yellow.
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Fig. 5. The detail of components in the IRA-FSOD. The input of the
comparison-classifier and semi-explicit box regressor are the feature map of a
region proposal (blue) and the support feature map of a category (red). GAP,
FC, and Conv mean the global average pooling, fully-connected layer, and
convolutional layer. ⊕ means to concatenate the input features.

C. Semi-supervised RPN

Generating region proposals by the class-agnostic detector,
such as RPN, is a crucial idea in two-stage detection models,
but it has a fatal defect in FSOD. As shown in Figure 2,
the potential foreground proposals not belonging to the base
categories are easily regarded as background in the base
training phase. Thus the RPN module in the FSOD framework
is implicitly class-specific to the base categories, which is hard
to capture the anchors related to novel categories.

To address the problem, we adopt a semi-supervised al-
gorithm to train the RPN module, which gains satisfying
performance without fine-tuning. Concretely, all the positive
anchors are certain foreground instances. But the negative
anchors actually consist of background and potential object
instances from novel categories, so we remark them as unla-
beled data. In more detail, as shown at the top of Figure 5,
we first annotate the anchors whose Intersection over Union
(IoU) with the ground truth (GT) bounding box is less than
0.3 as negative, and the anchors whose IoU is greater than
0.7 as positive, following the standard RPN training process.
Then, we annotate the negative anchors with RPN prediction
probabilities greater than threshold τ as the hard one-hot
pseudo positive label and compute positive loss.

To calculate a balance loss, we keep the ratio of the positive
anchors, the negative anchors, and the pseudo positive anchors
as 1:1:1. The influence of different choices of threshold τ is
shown in Sec. IV-F.

Discussion: In the object detection task, it is unrealistic to
achieve both high recall and high precision. The RPN with
semi-supervised training inevitably leads to more background
proposals in the inference. However, we argue that this is
worthy because it is possible to eliminate these background
proposals by the following box classifier. On the contrary, the

TABLE I
ABLATION EXPERIMENTAL RESULTS FOR SWITCH CLASSIFIER AND
SEMI-SUPERVISED RPN ON MS COCO UNDER 10-SHOT SETTING.

Switch Classifier
AP AP50 AP75

(Training) (Inference)

Multi Multi invalidated
Comparison Comparison 4.71 8.79 4.41

Distance Distance 5.94 15.64 2.82
Multi Distance 6.89 15.28 5.44

Comparison Distance 8.69 17.38 7.78

+ Semi-supervised RPN 10.54 20.96 9.08

foreground anchors ignored by the RPN module are irrepara-
ble, which is an important reason why existing methods rely
so much on fine-tuning. As shown in Table I, experiments
also demonstrate that although this technique is simple, it
significantly boost the object detection performance for the
novel category without fine-tuning.

D. Switch Classifier

As analyzed in Sec. I, we argue that there are drawbacks
in three kinds of existing commonly used classifiers in the
FSOD task. Therefore, we adopt a switch classifier module.
Specifically, it switches different classifiers in training and
inference to improve both the generalization to novel cate-
gories and the learnability for feature space. In addition, since
the distance-classifier is non-parameter, it doesn’t require re-
training when replacing the trained classifier with the distance-
classifier during inference, so we can benefit a lot from
distance-classifier as well as not using fine-tuning. Table I
shows the ablation study of different classifier combinations
on the MS COCO dataset under the instant-response setting
and 10-shot one-time FSOD evaluation protocol. For a fair
comparison, both the multi-classifier and comparison-classifier
are single connection layers, and the distance-classifier is the
cosine distance between the region feature and the support
feature.

As shown in Table I, the multi-classifier is invalidated on the
novel category before re-training. The comparison-classifier
performs worse than the distance-classifier since its parameters
are still affected by the bias of the base categories. However,
the distance-classifier can significantly benefit from models
trained by the multi-classifier or comparison-classifier due to
their learnability. Based on the results, the IRA-FSOD adopts
the comparison-classifier to calculate the loss during training,
which can better balance the learnability and generalization on
the whole. During inference, it adopts the distance-classifier
to calculate the confidence, as shown in Figure 4. The details
of the two classifiers will be described in Sec. III-E.

E. Explicit Localization Module

In this section, we focus on the localization module in
the framework, including the localization score to evaluate
the localization accuracy and the box regression to predict
the offset between the region proposal and the ground truth
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bounding box. The original R-CNN model implements this
module by training the network to fit the localization result.
We call this method implicit since it lacks logical reflection
about the process of localization inference. The implicitly
implemented localization module will suffer from over-fitting
to the distribution of the base category, which is also one of
the reasons why existing methods rely on fine-tuning. There-
fore, we introduce class-agnostic logical inferences into the
localization module, which can mitigate the over-fitting even
without fine-tuning. We call it the explicit localization module.
In the end, we also provide specific cases in the Appendix
of the supplementary materials to intuitively illustrate the
following proposed approaches.
Explicit Localization Score: R-CNN based model implicitly
evaluates the localization score of the region proposal by the
classification score from the box classifier. However, the object
bounding box usually contains some low-confidence regions,
such as the background and the ambiguous parts of the target
object. In contrast, the classification score often only considers
the high-confidence region. For example, the classification
scores of the two region boxes in Figure 6 (a) are almost the
same. Thus the classification score isn’t correlated with the
localization score, i.e., it cannot reflect the localization result.
Although this irrelevancy can be alleviated by training on a
large amount of annotated data, it can not be generalized to
the novel category. Thus it is necessary to explore a training-
independent alleviating method.

To tackle the problem, we integrate the pixel-wise contrast
among feature maps into the box classification to explicitly
evaluate the localization confidence of the region proposal.
Specifically, the RoI module first extracts the feature maps
of the region proposal and the support feature with the
same shape. Then the core idea is to integrate the features
comparison on each pixel of the feature map, which can
compare the similarity between the instance distribution in
the region proposal and the standard distribution in the support
box. Obviously, the higher similarity between the instance dis-
tribution can often indicate better localization. As mentioned in
Sec. III-D, IRA-FSOD adopts a switch classifier module, thus
we design different integration methods for the comparison-
classifier and the distance-classifier.

The integration method for the comparison-classifier is
shown in the middle of Figure 5, which integrates a pixel-
wise contrast network as a localization evaluator. For the
distance-classifier, it can integrate the pixel-wise contrast by
the distance between the flattened feature maps to evaluate
the localization. Concretely, given a region proposal x and
a support set of category c, it firstly calculates the cosine
distance between global feature vectors, and the cosine dis-
tance between flattened feature maps. Two kinds of distances
evaluate the effect of classification and localization respec-
tively. Then their weighted sum is adopted to integrate the two
distances. Finally, the probability of x belonging to category
c is predicted as:

Pr(c;x) = σ [(1− α)D (fx, fc) + αD (vx, vc)] (1)

(a) Inconsistency between high 
confidence region and bounding box

(b) Two pairs of coordinates can provide 
a bounding box offset

: proposal

: GT box

Fig. 6. The motivations of explicit localization inferences. The yellow box
and the red box in (a) mean the bounding box and the local high confidence
region, respectively. (b) shows an explicit box regression mechanism.

D(x, y) =
xT y

||x|| · ||y||
(2)

σ(x) =
1

1 + e−λx
(3)

where v and f represent the vectors obtained from the feature
map by global average pooling and flatten function. D and
σ mean the cosine distance and sharp sigmoid function. The
selections of α and λ are shown in Sec. IV-F. Additionally, the
operation of global average pooling (vector v) can gather and
mix the information from all locations in a united image, that
is, it can extract global semantic information. The flattened
feature maps contain abundant local contextual information,
which contributes to the localization. The combination of two
kinds of distance is actually similar to the multi-level image
information. They are complementary to each other and refine
the classification accuracy. On the whole, the original features
and flattened features are jointly considered.
Semi-explicit Box Regression: General object detectors [24,
27] often implicitly fit the mapping between the features
and the box regression by a network. These mappings are
dependent on the base category, thus the trained regressor is
hard to generalize to the novel category. To tackle the problem,
we propose a semi-explicit box regressor by introducing the
category-agnostic logical relation into the regression mapping.
It utilizes an explicit regression mechanism: any two pairs of
coordinates between the region proposal and the GT box can
provide two regression equations equivalent to a correct box
regression, as shown in Figure 6 (b). Despite the equivalence,
this explicit regression is invalidated since the GT box is
unavailable during inference. Therefore, we extract sufficient
possible coordinate pairs from the comparison between the
region proposal and the support box, and then predict the box
regression by these coordinate pairs.

Specifically, given the feature map of a region proposal
x and the average support feature map of category c (e.g.,
Fx, Fc ∈ Rd×r×r), we first reshape them as lists of feature
vectors (e.g., F̂x, F̂c ∈ Rr2×d), then compute the distance
matrix M between two lists, where

Mi,j = D(F̂ i
x,

ˆ
F j
c ). (4)
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Then, we flatten the distance matrix to a distance vector
dM ∈ Rr4 and concatenate it with the region proposal feature.
Finally, we feed the concatenated feature into a lightweight
network to predict the box regression, as shown at the bottom
of Figure 5.

Discussion: In dM , each index represents a coordinate
pair between two feature maps, and the corresponding value
indicates the confidence score of the coordinate pair. However,
these confidence scores may not be accurate due to the
difference between the support instance and the GT instance.
Explicitly calculating box regression by these coordinate pairs
will suffer from serious errors by inaccurate scores. Thus we
still predict the box regression by feeding all confidence scores
into a neural network to implicitly synthesize all the equations.
This regression method is between the implicit regression in
general object detectors and the explicit regression by the
regression equation, so we call it semi-explicit.

F. Training Details

Inspired by A-RPN [7], we train our model by the 2-way
10-shot contrastive training strategy. For each training image
as a query image, we first randomly select a positive category
c1 that appears in the image and a negative category c2 that
doesn’t appear in the image (c1, c2 ∈ Cb) and then collect their
support sets (Sc1 and Sc2 ) from Db, both containing ten object
instances. After the forward propogation process described in
III-B, we train the box comparison-classifier by the positive
loss that matches the same category and the negative loss that
distinguishes the different categories. For the box regressor, we
only calculate the box regression loss of the region proposal
belonging to c1. The training of the semi-supervised RPN is
the same as Faster R-CNN [27] except for the pseudo-label
described above. The final loss function is defined as:

L = Lrpn + Lcls + Lreg (5)

where Lrpn consists of the classification loss and regression
loss of proposals, Lcls is the binary cross-entropy loss for box
classification, Lreg is the smoothed L1 loss for box regression.

IV. EXPERIMENTS

A. Experimental Setup

Dataset: In this paper, we conduct experiments on two
large and challenging few-shot detection benchmark datasets,
MS COCO [19] and FSOD dataset [7], which contains 800K
objects belonging to 80 categories and 182K objects belonging
to 1000 categories respectively. For MS COCO, we set the
20 categories belonging to PASCAL VOC [6] as the novel
categories and the remaining 60 categories as the base cate-
gories, following the existing works [7, 16, 29, 38]. We use
the train2017 with only annotations of base categories for
training and evaluate the detection result of novel categories on
the val2017. FSOD dataset is specially designed for few-shot
object detection, whose training set and test set only contain
disjoint 800 base categories and 200 novel categories.
Implement Details: We use the commonly used ResNet-50
[14] as our backbone. Following the existing works [7, 29, 38],
the backbone is pre-trained on ImageNet [5]. The most of

network architectures and the hyper-parameters remain the
same as Faster R-CNN [27] except for the proposed box
classifier and box regressor. In addition, we halve the number
of sampled anchors in RPN and proposals in the RoI head
used for loss calculation, from (512, 256) for the positive
and negative anchors to (128, 128, 128) for the positive, the
negative, and the pseudo positive anchors during training. Our
model is trained by the SGD optimizer on 3 RTX 2080Ti
GPUs with a batch size of 9 (3 query images per GPU) for
120,000 iterations. The learning rate is initialized as 0.003
with the weight decay of factor 0.1 at 80,000th and 110,000th

iteration.
Evaluation protocol: We conduct experiments on the one-
time FSOD protocol proposed in [16] and the meta-testing
protocol commonly used in the few-shot learning [36]. Given
the support sets of all novel categories, the one-time FSOD
protocol directly evaluates the performance of detecting these
novel categories on the complete test set. The meta-testing
protocol requires evaluating the average performance of the
detector under numerous random episodes. Each episode ran-
domly collects a novel category subset and consists of the
corresponding support set and query set.

B. One-time FSOD evaluation

MS COCO result: In Table II, we compare our IRA-FSOD
with the previous state-of-the-art methods under the 10-shot
setting. For a fair comparison, we also report the backbone
used in the models and the time required for the tuning
process. As shown in the table, IRA-FSOD achieves new
state-of-the-art results in most settings. Under the instant-
response setting, it outperforms the latest method [40] on
all AP metrics and achieves similar performance against it
on AR metrics. Even compared with the fine-tuning-based
methods, the proposed IRA-FSOD can also outperform all of
them except DeFRCN[52]. Despite lagging behind DeFRCN
in AP , IRA-FSOD still significantly outperforms it in effi-
ciency since IRA-FSOD saves more than an hour of fine-
tuning time. Plus, IRA-FSOD also outperforms DeFRCN in
terms of AR metrics. It’s worth emphasizing that IRA-FSOD
achieves both high precision and recall, which is rare in the
existing methods. For example, A-RPN [7] and AirDet [40]
are competitive to our model on the recall, but their precisions
(AP ) are less than 66% of ours; DCNet [15] is competitive to
our model on the precision, but its recall (AR10) is only 80%
of ours. To sum up, IRA-FSOD achieves overall leadership
in response time, precision, and recall.

Then, we conduct further comparison experiments under
different shot settings (K ∈ {1, 2, 3, 5, 10}). For a fair com-
parison, we evaluate all the methods over ten random runs.
In each run, all the methods adopt the same support set. The
support sets are generated from TFA [38]. As shown in Table
III, IRA-FSOD is superior to most of the fine-tuning-based
models and outperforms the no-fine-tuning models [7, 33, 40]
under most settings, especially under the high-shot settings.
Although [7, 33, 40] can also outperform other methods under
the low-shot settings, they become significantly behind the
method with fine-tuning as the shot number increases. On
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TABLE II
FEW-SHOT DETECTION RESULTS FOR 20 NOVEL CLASSES ON COCO DATASET. “IR” MEANS THE MODEL IS INSTANT-RESPONSE, I.E., WITHOUT TUNING
PROCESS. RED/BLUE INDICATE THE SOTA/SECOND BEST. + MEANS THE RESULT IS ESTIMATED BY THE DESCRIPTION IN THEIR PAPER.”FT” MEANS
FINE-TUNING. NOTE THAT OUR METHOD IS ONLY COMPARED WITH OTHER INSTANT-RESPONSE BASELINES, FOLLOWING THE ARRANGEMENT OF [54].

Model Backbone
Average Precision Average Recall Tuning

AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL time

MI-FSOD (SS) [42] Res-101 4.8 7.7 5.0 1.1 3.2 7.2 15.7 29.1 32.5 5.1 21.8 41.7 25+ min
MI-FSOD (MS) [42] Res-101 6.7 12.0 6.6 1.7 3.8 10.2 17.7 32.6 34.3 8.1 25.3 42.4 25+ min

Meta R-CNN [51] Res-50 8.7 19.1 6.6 2.3 7.7 14.0 12.6 17.8 17.9 7.8 15.6 27.2 5+ h
MPSR [44] FPN-101 9.8 17.9 9.7 3.3 9.2 16.1 15.7 21.2 21.2 4.6 19.6 34.3 40+ min
TFA [38] FPN-101 9.8 19.7 8.9 2.8 9.2 16.1 14.5 18.6 18.6 5.3 14.8 33.1 16 h

FSCE [29] FPN-101 11.9 22.3 11.6 2.9 11.1 17.6 17.0 26.6 26.5 6.7 26.3 42.3 3 h
A-RPN+FT[7] Res-50 12.0 22.4 11.8 2.9 12.2 20.7 18.8 26.4 26.4 3.6 23.6 45.6 15 min

FSIW [47] Res-50 12.5 27.3 9.8 2.5 13.8 19.9 20.0 25.5 25.7 7.5 27.6 38.9 5 h
DCNet [15] Res-101 12.8 23.4 11.2 4.3 13.8 21.0 18.1 26.7 25.6 7.9 24.5 36.7 40+ min

AirDet+FT [40] Res-101 13.0 23.9 12.4 4.5 15.2 22.8 20.5 33.7 34.4 9.6 36.4 55.0 -
DeFRCN [52] Res-101 16.8 30.8 15.6 6.4 17.1 25.7 19.2 29.1 - 11.1 29.6 43.9 1.2 h

A-RPN [7] Res-50 7.3 13.2 7.1 4.4 8.7 10.7 17.5 32.3 33.2 10.0 34.7 50.4 IR
AirDet [40] Res-101 8.7 15.3 8.8 4.3 9.7 14.8 19.1 33.8 34.8 13.0 37.4 52.9 IR
IRA-FSOD Res-50 13.1 24.5 12.3 5.9 16.2 22.0 19.1 33.5 35.6 11.4 39.4 54.9 IR

TABLE III
FEW-SHOT DETECTION RESULTS ON COCO DATASET UNDER DIFFERENT SHOT SETTINGS. * MEANS THE RESULT IS RE-IMPLEMENTED. RED/BLUE

INDICATE THE SOTA/SECOND BEST OF WHETHER TO USE FINETUNING. THE RESULTS ARE AVERAGED OVER TEN RANDOM RUNS. NOTE THAT RESULTS
OF FS-DETR [54] ARE JUST LISTED IN italic TYPE AND THEY AREN’T USED TO COMPARE WITH OURS SINCE THE BACKBONE IS DIFFERENT.

Model Backbone
1-shot 2-shot 3-shot 5-shot 10-shot Fine-

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 Tune

A-RPN+FT*[7] Res-50 - - - 4.8 9.2 3.9 5.9 11.6 5.7 8.1 15.5 7.4 10.9 20.5 9.4 ✓

TFA [38] FPN-101 1.9 3.8 1.7 3.9 7.8 3.6 5.1 9.9 4.8 7.0 13.3 6.5 9.1 17.1 8.8 ✓

FSIW [47] Res-50 3.2 8.9 1.4 4.9 13.3 2.3 6.7 18.6 2.9 8.1 20.1 4.4 10.7 25.6 6.5 ✓

FSCE* [29] FPN-101 2.0 4.9 1.3 4.2 9.5 3.4 5.7 12.0 4.7 7.6 15.6 6.5 11.2 22.3 9.8 ✓

AirDet+FT [40] Res-101 6.1 11.4 6.0 8.7 16.2 8.4 9.9 19.4 9.1 10.8 20.8 10.3 13.0 23.9 12.4 ✓

QA-FewDet[33] Res-101 4.9 10.3 4.4 7.6 16.1 6.2 8.4 18.0 7.3 9.7 20.3 8.6 11.6 23.9 9.8 ✓

DeFRCN [52] Res-101 4.8 - - 8.5 - - 10.7 - - 13.6 - - 16.8 - - ✓

FS-DETR[54] DETR+Res50 7.0 13.6 7.5 8.9 17.5 9.0 9.8 18.5 9.8 10.7 20.5 10.8 11.1 21.6 11.0 ✕

A-RPN* [7] Res-50 3.6 7.2 3.2 5.1 9.7 4.7 5.6 10.7 5.2 6.3 11.9 5.9 6.7 12.5 5.8 ✕

AirDet [40] Res-101 5.9 10.5 5.9 6.6 12.0 6.3 7.0 12.9 6.7 7.7 14.3 7.3 8.7 15.3 8.8 ✕

AirDet [40] Res-50 4.6 9.6 4.0 5.6 10.8 5.2 6.4 12.9 5.8 7.4 13.8 7.1 - - - ✕

QA-FewDet[33] Res-101 5.1 10.5 4.5 7.8 16.4 6.6 8.6 17.7 7.5 9.5 19.3 8.5 10.2 20.4 9.0 ✕

IRA-FSOD Res-50 5.1 10.8 4.3 7.7 15.7 6.6 8.9 17.6 7.9 10.5 20.8 9.1 12.0 23.5 10.8 ✕

the contrary, IRA-FSOD can always stay ahead (except for
DeFRCN [52]), demonstrating its generalized effectiveness
under various few-shot settings.

FSOD dataset result: Similar to MS COCO, we evaluate
all the methods over ten random runs, and all the methods
adopt the same support set in each run. The support sets are
generated from the code of TFA [38]. The average results
under the 1/3/5 shot setting are shown in Table IV. As shown
in the table, IRA-FSOD achieves state-of-the-art results on 1/3
shots and comparable results on 5-shots with instant-response,
demonstrating the strong generalization to the various novel
categories. It should be noted that the FSOD dataset has 200

novel classes, i.e., the support set in the 5-shot setting has 1000
object instances. It’s usually hard to obtain so many instances
in the practice scenario. Therefore, the detection performance
under the extremely-low-shot setting is more important, such
as 1-shot and 3-shot circumstances. In addition, IRA-FSOD
also performs both high precision and high recall on the FSOD
dataset, the same as the results on MS COCO, indicating that
it is not accidental on a particular dataset and is equipped with
persuasive generalization towards different domains.
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TABLE IV
FEW-SHOT DETECTION RESULTS FOR 200 NOVEL CLASSES ON FSOD

DATASET. “TIME” MEANS THE TUNING TIME. “IR” MEANS THE MODEL IS
INSTANT-RESPONSE, I.E., WITHOUT TUNING PROCESS. RED/BLUE

INDICATE THE SOTA/SECOND BEST. ALL RESULTS ARE RE-IMPLEMENTED
AND AVERAGED OVER TEN RANDOM RUNS.

Shot Method Backbone AP AP50 AP75 AR10 Time

1

A-RPN [7] Res-50 9.79 16.00 10.25 40.33 IR
TFA [38] FPN-101 7.43 12.07 7.79 14.42 2 h

FSCE [29] FPN-101 7.21 12.54 6.92 15.20 1.5 h
IRA-FSOD Res-50 10.66 18.41 10.65 38.47 IR

3

A-RPN [7] Res-50 14.94 23.68 15.91 50.01 IR
TFA [38] FPN-101 13.21 21.10 14.16 24.87 3 h

FSCE [29] FPN-101 14.96 25.85 14.73 29.21 3 h
IRA-FSOD Res-50 16.33 27.59 16.62 48.91 IR

5

A-RPN [7] Res-50 17.28 27.13 18.49 52.30 IR
TFA [38] FPN-101 15.85 24.89 17.31 27.74 3.5 h

FSCE [29] FPN-101 19.58 33.42 19.79 36.10 3.5 h
IRA-FSOD Res-50 19.24 32.08 19.75 52.69 IR

TABLE V
META-TESTING EVALUATION WITH 95% CONFIDENCE INTERVAL ON THE
MS-COCO DATASET UNDER 5-WAY AND 1,000 EPISODES SETTING. SPE

MEANS SECONDS-PER-EPISODE.

K Method AP AP50 AP75 SPE

5
DANA [3] 12.60±0.29 25.90±0.44 11.30±0.35 10
A-RPN [7] 14.27±0.27 26.61±0.45 13.58±0.31 9

IRA-FSOD 16.59±0.28 31.97±0.47 15.12±0.33 5

10
A-RPN [7] 15.12±0.29 27.74±0.47 14.61±0.32 10

IRA-FSOD 17.74±0.29 33.59±0.47 16.56±0.34 5

TABLE VI
META-TESTING EVALUATION WITH 95% CONFIDENCE INTERVAL ON THE

MS-COCO DATASET UNDER 10-WAY AND 1,000 EPISODES SETTING. SPE
MEANS SECONDS-PER-EPISODE.

K Method AP AP50 AP75 SPE

5
A-RPN [7] 11.32±0.19 20.84±0.28 10.87±0.20 28

IRA-FSOD 14.23±0.16 27.39±0.26 13.11±0.18 12

10
A-RPN [7] 12.11±0.15 22.05±0.27 11.78±0.19 30

IRA-FSOD 15.52±0.14 29.41±0.26 14.55±0.16 13

C. Meta-testing protocol

In this section, we perform the meta-testing protocol on the
MS COCO dataset. For an N -way K-shot few-shot object
detection, we collect 1,000 episodes and evaluate the average
object detection performance with 95% confidence interval.
Each episode consists of an N -way K-shot support set and
a query set containing ten images for each category. Since
the evaluation is performed on each episode independently,
including the fine-tuning process and the inference process,
the models with fine-tuning require unacceptable time. For
example, DCNet [15] requires more than a month to perform
the whole meta-testing. Therefore, we only compare our IRA-
FSOD with the models that support instant-response [3, 7].

Table V and VI report the average results with the 95 % con-

fidence interval and the detection time (seconds-per-episode)
under different few-shot settings, including K ∈ {5, 10}
and N ∈ {5, 10}. As shown in the table, our IRA-FSOD
achieves a significant lead in both performance and efficiency.
Specifically, it outperforms A-RPN by 2.3%-3.4% AP , 5.4%-
7.3% AP50, and 1.5%-2.8% AP75. In addition, IRA-FSOD
runs only half as long as A-RPN, since A-RPN introduces
many complex processes, such as generating the class-specific
proposals for each category and integrating multiple relation
modules. In contrast, the approaches in IRA-FSOD are simpler
but more effective.

TABLE VII
ABLATION FOR KEY COMPONENTS PROPOSED IN THIS PAPER: RESULTS

FROM ON THE COCO DATASET UNDER THE 10-SHOT SETTING.

Ablation AP AP50 AP75

Faster R-CNN
(baseline)

+ Multi-classifier invalidated
+ Comparison-classifier 4.71 8.79 4.41

+ Distance-classifier 5.94 15.64 2.82

+ Dyn-cls:
(Multi + Distance) 6.89 15.28 5.44
(Comparison + Distance) 8.69 17.38 7.78

+ SS-RPN 10.54 20.96 9.08
+ SE-Reg 10.64 20.59 9.58
+ Cls-PW 10.67 20.92 9.47
+ SS-RPN + Cls-PW 11.65 22.52 10.31
+ SS-RPN + SE-Reg 11.82 22.92 10.60
+ Cls-PW + SE-Reg 11.94 22.21 11.19
+ SS-RPN + Cls-PW + SE-Reg 13.05 24.50 12.33

D. Quantitative Ablation Studies

In this section, we evaluate the effects of the core compo-
nents in IRA-FSOD. All ablation studies are conducted on the
COCO dataset under the 10-shot setting and one-time FSOD
evaluation protocol. IRA-FSOD is built on top of Faster R-
CNN [12], which is designed for general object detection.
Thus we adopt it as the baseline and design the ablation
experiments in two stages in Table VII.

In the first stage, we evaluate the effect of the proposed
switch classifier module, which is a essential strategy to
transform the general object detector into a few-shot object
detector with instant-response. Without the switch classifier
module, the model suffers from low performance or even
invalidation due to low learnability or low generalization of
the classifier. Just by introducing the switch classifier module
into the Faster R-CNN, it is already comparable with some
methods requiring fine-tuning [39, 45, 51].

In the second stage, we evaluate the different combina-
tions of three proposed boosted modules, including the semi-
supervised RPN (SS-RPN), the box classifier with the pixel-
wise contrast (Cls-PW), and the semi-explicit box regressor
(SE-Reg). As shown in Table VII, their improvements for the
model performance are different and are all in line with our
expectations. Concretely, (a) The semi-supervised RPN mainly
achieves the performance improvement on the AP50 metric
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(a) The top-3 predicted boxes (No.1-red, No.2-green, No.3-blue) from the box classifier without / with the pixel-wise contrast.
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(b) The localization result from the semi-explicit box regressor (bottom) and the general box regressor (top).

G
en

er
al

 
Se

m
i-e

xp
lic

it

(c) The heat maps of the statistical results for all prediction boxes from different models

w/o semi-supervised RPN

Fig. 7. The qualitative ablation result: (a) and (b) are some detection results from different ablated models. (c) is heat maps of the statistical results for all
prediction boxes, in which the vertical axis means the confidence range of the prediction boxes and the horizontal axis means the max IoU range with the
ground truth of the predicted category. We mark the noteworthy parts with green borders.

(+1.4%-3.6%), indicating that it successfully captured more
potential region proposals belonging to the novel categories;
(b) The semi-explicit box regressor can significantly improve
the result on the AP75 metric (+1.6%-2.0%), which shows that
it can generate more accurate high-quality boxes by improving
the localization accuracy; (c) The pixel-wise contrast in the
box classifier mainly improves the confidence ranking of all
the predicted boxes, thus can achieve significant improvement
on all evaluation metrics, e.g., AP50 (+1.4%-3.6%) and AP75

(+1.3%-1.7%). In summary, the proposed components break-
through the limitations of fine-tuning and they gather into a
powerful inference mechanism which is suitable and robust to
few-shot object detection.

E. Qualitative Ablation Studies

In this section, we provide the qualitative ablation studies of
the three proposed boosted modules. In Figure 7, we compare
the detection result between the full model and the ablated
model: the left sub-figure shows the detection examples from
different ablated models; the right-top sub-figure statistics the
relevance between the predicted confidence and the local-
ization accuracy (i.e., the IOU between ground truth); the
right-bottom sub-figure statistics the overall distribution of
the localization accuracy. The specific analysis for the three
boosted modules is as follows:
Semi-supervised RPN: As shown in Figure 7 (c), the detec-
tion result from the model without the semi-supervised RPN
module contains significantly more irrelevant prediction boxes
(i.e., IoU < 0.1), indicating the semi-supervised RPN module
can capture more potential foreground proposals.
Pixel-wise contrast: As shown in Figure 7 (a), after intro-
ducing the classifier with the pixel contrast in our algorithm,
the confidence is basically correlated with the localization
accuracy (i.e., the IoU between ground truth). Without the
pixel contrast, the confidence of the predicted box is irrelevant
to localization, and the prediction with the highest confidence

usually only encloses the local position of the object. Figure
7 (c) also shows that the detection result from the model
without the pixel-wise contrast produces a large number of
high-confidence but poorly localized detection results.
Semi-explicit regressor: As shown in Figure 7 (b), the model
with the semi-explicit box regressor can significantly improve
the localization accuracy and generate higher-quality predicted
boxes. Figure 7 (c) also shows that the proportion of high-
quality boxes (i.e., IoU ≥ 0.7) in the detection result from the
model with the semi-explicit regressor is greatly increased.

F. Hyper-parameter Studies:

In this section, we study the effect and selection of the
hyper-parameters in IRA-FSOD, including the threshold τ in
the semi-supervised RPN, as well as the balance weight α and
the scaling factor λ in the distance-classifier. For each hyper-
parameter, we first select a candidate set by observation and
then evaluate their performance on the COCO dataset under
the 10-shot setting and one-time FSOD evaluation protocol.
The performances at different values of them in Table VIII.

The specific analysis is as follows:

TABLE VIII
HYPER-PARAMETER STUDIES OF τ AND α IN THE IRA-FSOD: RESULTS

FROM ON THE COCO DATASET UNDER THE 10-SHOT SETTING.

τ AP AP50 AP75 α AP AP50 AP75

- 11.94 22.21 11.19 0.0 11.82 22.92 10.60
0.75 12.38 22.98 11.73 1/3 12.96 24.39 12.16
0.50 12.66 23.97 11.79 1/2 13.05 24.50 12.33
0.25 13.05 24.50 12.33 2/3 12.92 24.20 12.18
0.10 12.87 24.05 12.03 1.0 12.01 22.24 11.49

Threshold τ : Traditional Semi-supervised learning algorithms
[2, 49, 50] usually requires high thresholds to reduce the
incorrect pseudo labels. However, in the two-stage detector,
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TABLE IX
THE STATISTICS RESULTS OF THE REGION PROPOSALS. ”FP” AND ”TP”
MEAN FALSE POSITIVE AND TRUE POSITIVE RESPECTIVELY. WE DEFINE

BACKGROUND PROPOSALS AND FOREGROUND PROPOSALS AS ONES
WHOSE IOU WITH GROUND TRUTH BOX IS LESS THAN 0.1 AND LARGER

THAN 0.5, RESPECTIVELY.

threshold FP filtered FP saved TP

w/o 133421 21173789 423011
0.75 133470 21179057 428241
0.50 133754 21180742 428696
0.25 133888 21181604 433442
0.10 141201 21637617 417326

we expect RPN to capture all the potential objects as much
as possible and then eliminate the incorrect proposals by the
box classifier. Therefore, the model performs better when τ is
lower and reaches the optimal performance at τ = 0.25.

Moreover, we also analyze the positive and negative impacts
of different thresholds. As shown in Table IX, when the
threshold is larger than 0.1, the actual number of incorrect
proposals (false positives) only marginally increases as the
threshold declines. Despite the marginal increment, thanks to
the contribution of the box classifier, more FP are filtered and
more TP are kept, which indicates that the negative impact of
increasing FP can be suppressed and the positive contribution
of a relatively low threshold can be kept as well. It should be
explained that each region proposal will be calculated once for
each category in the box classifier, so the numbers of filtered
FP and saved TP are much larger than the one of FP. Only
when the threshold decreases to 0.1 does the number of FP
begin to rise uncontrollably.
Balance weight α: Compared with α = 0.0 and α = 1.0,
the performances with other values are improved significantly,
indicating that the evaluation of localization and classification
are both valuable. It reaches the optimal integration perfor-
mance at α = 1

2 .
Scaling factor λ: In the IRA-FSOD, the performance is
not affected by the scaling factor since it doesn’t affect the
confidence ranking of the predicted box. Thus we empirically
choose λ = 20 to adjust the sharpness of the prediction
distribution.

V. CONCLUSION

In the field of few-shot object detection, the existing meth-
ods tend to transfer their model to the task by employing a
fine-tuning process, resulting in many application drawbacks.
To tackle the problem, this paper studies in-depth how to get
rid of fine-tuning while maintaining the FSOD performance.
Through careful study of each module in a general object
detector (i.e., Faster R-CNN), this paper builds an instant-
response and accurate few-shot object detector (IRA-FSOD)
that can accurately detect the object of novel categories with-
out fine-tuning. To more solidly validate the proposed analysis,
we deliberately avoid introducing excessive extra-complexity
when designing the improved components. Despite its simplic-
ity, IRA-FSOD can reach state-of-the-art performance in both
efficiency, precision and recall. It is noteworthy that our works

are built on only Faster R-CNN without other prior methods,
so all the approaches are easily compatible with the existing
FSOD methods. We hope our studies can inspire future works
to explore more powerful few-shot object detectors.

VI. ACKNOWLEDGE

This work was supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 61876224,
61836012, and GuangDong Province Key Laboratory of In-
formation Security Technolog.

REFERENCES
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. 2020.

Yolov4: Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934 (2020).

[2] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Chun-Liang Li, Zizhao
Zhang, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin and Colin
Raffel. 2020. FixMatch: Simplifying Semi-Supervised Learning with
Consistency and Confidence. Advances in neural information processing
systems (2020).

[3] Tung-I Chen, Yueh-Cheng Liu, Hung-Ting Su, Yu-Cheng Chang, Yu-
Hsiang Lin, Jia-Fong Yeh, Wen-Chin Chen, and Winston Hsu. 2021.
Dual-Awareness Attention for Few-Shot Object Detection. IEEE Transac-
tions on Multimedia (2021). https://doi.org/10.1109/TMM.2021.3125195

[4] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and
Jia-Bin Huang. 2019. A closer look at few-shot classification. arXiv
preprint arXiv:1904.04232 (2019).

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition. Ieee, 248–255.

[6] Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and
Andrew Zisserman. 2010. The Pascal Visual Object Classes (VOC)
Challenge. In International Journal of Computer Vision. 303–338.

[7] Qi Fan, Wei Zhuo, Chi-Keung Tang, and Yu-Wing Tai. 2020. Few-
shot object detection with attention-RPN and multi-relation detector.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 4013–4022.

[8] Zhibo Fan, Yuchen Ma, Zeming Li, and Jian Sun. 2021. Generalized few-
shot object detection without forgetting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4527–4536.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In International
conference on machine learning. PMLR, 1126–1135.

[10] Victor Garcia and Joan Bruna. 2018. Few-shot learning with graph neu-
ral networks. In International Conference on Learning Representations.

[11] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision. 1440–1448.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014.
Rich feature hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 580–587.

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017.
Mask r-cnn. In Proceedings of the IEEE international conference on
computer vision. 2961–2969.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[15] Hanzhe Hu, Shuai Bai, Aoxue Li, Jinshi Cui, and Liwei Wang. 2021.
Dense relation distillation with context-aware aggregation for few-shot

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3272612

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 25,2023 at 09:19:45 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1109/TMM.2021.3125195


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 11

object detection. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 10185–10194.

[16] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, and Trevor
Darrell. 2019. Few-shot object detection via feature reweighting. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision. 8420–8429.

[17] Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz, Amit
Aides, Rogerio Feris, Raja Giryes, and Alex M Bronstein. 2019. Repmet:
Representative-based metric learning for classification and few-shot object
detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 5197–5206.

[18] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015.
Siamese neural networks for one-shot image recognition. In ICML deep
learning workshop.

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollar, and Larry Zitnick. 2014. Microsoft
COCO: Common Objects in Context. In ECCV (eccv ed.). European
Conference on Computer Vision. https://www.microsoft.com/en-us/
research/publication/microsoft-coco-common-objects-in-context/

[20] Liyang Liu, Bochao Wang, Zhanghui Kuang, Jing-Hao Xue, Yimin
Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. 2021. Gendet:
Meta learning to generate detectors from few shots. IEEE Transactions
on Neural Networks and Learning Systems (2021).

[21] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot
multibox detector. In European conference on computer vision. Springer,
21–37.

[22] Alex Nichol and John Schulman. 2018. Reptile: a scalable metalearning
algorithm. arXiv preprint arXiv:1803.02999 2, 3 (2018), 4.

[23] Sachin Ravi and Hugo Larochelle. 2016. Optimization as a model for
few-shot learning. (2016).

[24] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016.
You only look once: Unified, real-time object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 779–
788.

[25] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 7263–7271.

[26] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767 (2018).

[27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster
r-cnn: Towards real-time object detection with region proposal networks.
Advances in neural information processing systems 28 (2015).

[28] Jake Snell, Kevin Swersky, and Zemel Richard. 2017. Prototypical
networks for few-shot learning. In Advances in neural information
processing systems. 4077–4087.

[29] Bo Sun, Banghuai Li, Shengcai Cai, Ye Yuan, and Chi Zhang. 2021.
Fsce: Few-shot object detection via contrastive proposal encoding. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 7352–7362.

[30] Zhang Lei, Zuo Liyun, Du Yingjun, Zhen Xiantong. Learning to Adapt
With Memory for Probabilistic Few-Shot Learning. IEEE Transactions
on Circuits and Systems for Video Technology (TCSVT 2021).

[31] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Schiele Bernt. 2019.
Optimization as a model for few-shot learning. (2019), 403–412.

[32] Yi Sun, Xiaogang Wang, and Xiaoou Tang. 2014. Deep learning
face representation by joint identification-verification. arXiv preprint
arXiv:1406.4773 (2014).

[33] Yi Sun, Guangxing Han, Yicheng He, Shiyuan Huang, Jiawei Ma, Shih-
Fu Chang. Query adaptive few-shot object detection with heterogeneous
graph convolutional networks. Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (2021).

[34] Chi Ziqiu, Wang Zhe, Yang Mengping, Li Dongdong, Du Wenli.
Learning to Capture the Query Distribution for Few-Shot Learning. IEEE
Transactions on Circuits and Systems for Video Technology (TCSVT
2022).

[35] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and
Timothy M Hospedales. 2018. Learning to compare: Relation network for
few-shot learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1199–1208.

[36] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al.
2016. Matching networks for one shot learning. In Advances in neural
information processing systems. 3630–3638.

[37] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao
Zhou, Zhifeng Li, and Wei Liu. 2018. Cosface: Large margin cosine loss
for deep face recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 5265–5274.

[38] Xin Wang, Thomas Huang, Joseph Gonzalez, Trevor Darrell, and
Fisher Yu. 2020. Frustratingly Simple Few-Shot Object Detection. In
International Conference on Machine Learning. PMLR, 9919–9928.

[39] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. 2019. Meta-
learning to detect rare objects. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 9925–9934.

[40] Bowen Li, Chen Wang, Pranay Reddy, Seungchan Kim, Sebastian
Scherer. Airdet: Few-shot detection without fine-tuning for autonomous
exploration. Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIX.

[41] Zeyuan Wang, Yifan Zhao, Jia Li, and Yonghong Tian. 2020. Cooper-
ative Bi-Path Metric for Few-Shot Learning. In Proceedings of the 28th
ACM International Conference on Multimedia. New York, NY, USA,
1524–1532.

[42] Cheng Meng, Wang Hanli, Yu Long. Meta-Learning-Based Incremental
Few-Shot Object Detection. IEEE Transactions on Circuits and Systems
for Video Technology (TCSVT 2022).

[43] Zhu Pengkai, Wang Hanxiao, Saligrama Venkatesh. Zero Shot Detection.
IEEE Transactions on Circuits and Systems for Video Technology (TCSVT
2022).

[44] Jiaxi Wu, Songtao Liu, Di Huang, and Yunhong Wang. 2020. Multi-
Scale Positive Sample Refinement for Few-Shot Object Detection. In
European Conference on Computer Vision. Springer, 456–472.

[45] Xiongwei Wu, Doyen Sahoo, and Steven Hoi. 2020. Meta-RCNN: Meta
Learning for Few-Shot Object Detection. In Proceedings of the 28th ACM
International Conference on Multimedia. 1679–1687.

[46] Zhang Jing, Zhang Xinzhou, Wang Zhe. Task Encoding With Distribu-
tion Calibration for Few-Shot Learning. IEEE Transactions on Circuits
and Systems for Video Technology (TCSVT 2022).

[47] Yang Xiao and Renaud Marlet. 2020. Few-Shot Object Detection and
Viewpoint Estimation for Objects in the Wild. In European Conference
on Computer Vision (ECCV).

[48] Jiliang Yan, Deming Zhai, Junjun Jiang, and Xianming Liu. 2021.
Target-Guided Adaptive Base Class Reweighting for Few-Shot Learning.
In Proceedings of the 29th ACM International Conference on Multimedia.
Association for Computing Machinery, New York, NY, USA, 5335–5343.
https://doi.org/10.1145/3474085.3475656

[49] Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A. &
Raffel, C. MixMatch: A Holistic Approach to Semi-Supervised Learning.
ArXiv Preprint ArXiv:1905.02249. (2019)

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3272612

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 25,2023 at 09:19:45 UTC from IEEE Xplore.  Restrictions apply. 

https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://doi.org/10.1145/3474085.3475656


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 12

[50] Xie, Q., Dai, Z., Hovy, E., Luong, M. & Le, Q. Unsupervised Data Aug-
mentation for Consistency Training. ArXiv Preprint ArXiv:1904.12848.
(2019)

[51] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xiaodan Liang,
and Liang Lin. 2019. Meta r-cnn: Towards general solver for instance-
level low-shot learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 9577–9586.

[52] Limeng Qiao, Yuxuan Zhao, Zhiyuan Li, Xi Qiu*, Jianan Wu, and
Chi Zhang. 2021. Defrcn: Decoupled faster r-cnn for few-shot object
detection. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 8681–8690.

[53] Xiang Li, Lin Zhang, Yau Pun Chen, Yu-Wing Tai, Chi-Keung
Tang. One-Shot Object Detection without Fine-Tuning. arXiv preprint
arXiv:2005.03819, 2020.

[54] Adrian Bulat, Ricardo Guerrero, Brais Martinez, Georgios Tzimiropou-
los. 2022. FS-DETR: Few-Shot DEtection TRansformer with prompting
and without re-training. In arXiv preprint arXiv:2210.04845.

[55] Jinhai Yang, Hua Yang, and Lin Chen. 2021. Towards Cross-
Granularity Few-Shot Learning: Coarse-to-Fine Pseudo-Labeling with
Visual-Semantic Meta-Embedding. In Proceedings of the 29th ACM
International Conference on Multimedia. 3005–3014.

Junying Huang received the B.Eng degree from
the School of Computer Science and Engineering,
Sun Yat-sen University, Guangzhou, China, in 2020.
He is currently a postgraduate student in the Human
Cyber Physical Intelligence Integration Lab, School
of Computer Science and Engineering, Sun Yat-sen
University. His research interests include computer
vision and machine learning, with a focus on few-
shot learning.

Junhao Cao received the B.Eng degree from the
School of Aeronautics and Astronautics, Sun Yat-
sen University, Guangzhou, China, in 2022. He
is currently a postgraduate student in the Human
Cyber Physical Intelligence Integration Lab, School
of Computer Science and Engineering, Sun Yat-
sen University. His research interests include semi-
supervised learning.

Liang Lin is a full professor of Computer Science
in Sun Yat-sen University and CEO of DarkerMat-
ter AI. He worked as the Executive Director of
the SenseTime Group from 2016 to 2018, leading
the R&D teams in developing cutting-edge, deliv-
erable solutions in computer vision, data analysis
and mining, and intelligent robotic systems. He has
authored or co-authored more than 200 papers in
leading academic journals and conferences. He is
an associate editor of IEEE Trans. Human-Machine
Systems and IET Computer Vision, and he served as

the area/session chair for numerous conferences such as CVPR, ICME, ICCV.
He was the recipient of Annual Best Paper Award by Pattern Recognition
(Elsevier) in 2018, Dimond Award for best paper in IEEE ICME in 2017,
ACM NPAR Best Paper Runners-Up Award in 2010, Google Faculty Award
in 2012, award for the best student paper in IEEE ICME in 2014, and Hong
Kong Scholars Award in 2014. He is a Fellow of IET.

Dongyu Zhang received the Ph. D. from Harbin
Institute of Technology in 2010. He is an associate
professor of School of Computer and Engineering
of Sun Yat-sen University. His research interests
include computer vision and machine learning.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3272612

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 25,2023 at 09:19:45 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Related Work
	METHODOLOGY
	Problem Definition
	IRA-FSOD Framework
	Semi-supervised RPN
	Switch Classifier
	Explicit Localization Module
	Training Details

	Experiments
	Experimental Setup
	One-time FSOD evaluation
	Meta-testing protocol
	Quantitative Ablation Studies
	Qualitative Ablation Studies
	Hyper-parameter Studies:

	Conclusion
	Acknowledge
	Biographies
	Junying Huang
	Junhao Cao
	Liang Lin
	Dongyu Zhang


