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Abstract

Multi-task learning has emerged as a powerful paradigm
to solve a range of tasks simultaneously with good efficiency
in both computation resources and inference time. However,
these algorithms are designed for different tasks mostly not
within the scope of autonomous driving, thus making it
hard to compare multi-task methods in autonomous driving.
Aiming to enable the comprehensive evaluation of present
multi-task learning methods in autonomous driving, we ex-
tensively investigate the performance of popular multi-task
methods on the large-scale driving dataset, which covers
four common perception tasks, i.e., object detection, seman-
tic segmentation, drivable area segmentation, and lane de-
tection. We provide an in-depth analysis of current multi-
task learning methods under different common settings and
find out that the existing methods make progress but there
is still a large performance gap compared with single-task
baselines. To alleviate this dilemma in autonomous driving,
we present an effective multi-task framework, VE-Prompt,
which introduces visual exemplars via task-specific prompt-
ing to guide the model toward learning high-quality task-
specific representations. Specifically, we generate visual
exemplars based on bounding boxes and color-based mark-
ers, which provide accurate visual appearances of target
categories and further mitigate the performance gap. Fur-
thermore, we bridge transformer-based encoders and con-
volutional layers for efficient and accurate unified percep-
tion in autonomous driving. Comprehensive experimental
results on the diverse self-driving dataset BDD100K show
that the VE-Prompt improves the multi-task baseline and
further surpasses single-task models.

1. Introduction
Multi-task learning (MTL) has been the source of a num-

ber of breakthroughs in autonomous driving over the last
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Figure 1. Comparison of different prompts in computer vi-
sion. (a) Extracting textual prompts from a text encoder to per-
form image-text alignment [64]. (b) Prepend learnable prompts
to the embeddings of image patches [22]. (c) Visual exemplar
driven prompts for multi-task learning (ours). The generated task
prompts encode high-quality task-specific knowledge for down-
stream tasks.

few years [25, 52, 58] and general vision tasks recently
[2, 13, 28, 36, 57]. As the foundation of autonomous driv-
ing, a robust vision perception system is required to pro-
vide critical information, including the position of traffic
participants, traffic signals like lights, signs, lanes, and ob-
stacles that influence the drivable space, to ensure driving
safety and comfort. These tasks gain knowledge from the
same data source and present prominent relationships be-
tween each other, like traffic participants, are more likely to
appear within drivable spaces and traffic signs may appear
near traffic lights, etc. Training these tasks independently is
time costing and fails to mine the latent relationship among
them. Therefore, it is crucial to solve these multiple tasks
simultaneously, which can improve data efficiency and re-
duce training and inference time.

Some recent works have attempted to apply unified train-
ing on multiple tasks in autonomous training. Uncertainty
[23] trains per-pixel depth prediction, semantic segmenta-
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tion, and instance segmentation in a single model. CIL [21]
introduces an extra traffic light classifier to learn different
traffic patterns following traffic light changes. CP-MTL
[4] learns object detection and depth prediction together to
identify dangerous traffic scenes. However, these works dif-
fer in task types, evaluation matrix, and dataset, making it
hard to compare their performances. For example, most of
them are developed upon dense prediction [2, 57] and natu-
ral language understanding [8,49], rather than being tailored
for more common perception tasks for autonomous driving,
thus these methods may produce poor results when applied
to a self-driving system. As a result, there is an emerg-
ing demand for a thorough evaluation of existing multi-task
learning methods covering common tasks in autonomous
driving.

In this paper, we focus on heterogeneous multi-task
learning in common scenarios of autonomous driving and
cover popular self-driving tasks, i.e., object detection, se-
mantic segmentation, drivable area segmentation, and lane
detection. We provide a systematic study of present MTL
methods on large-scale driving dataset BDD100K [60].
Specifically, we find that task scheduling [28] is better than
zeroing loss [53], but worse than pseudo labeling [16] on
most tasks. Interestingly, in task-balancing methods, Un-
certainty [23] produces satisfactory results on most tasks,
while MGDA [43] only performs well on lane detection.
This indicates that negative transfer [9], which is a phe-
nomenon that increasing the performance of a model on one
task will hurt the performance on another task with different
needs, is common among these approaches.

To mitigate the negative transfer problem, we introduce
the visual exemplar-driven task-prompting (shorten as VE-
Prompt) based on the following motivations: (1) Given the
visual clues of each task, the model can extract task-related
information from the pre-trained model. Different from cur-
rent prompting methods which introduce textual prompts
[6, 40, 64, 65] or learnable context [22], we leverage exem-
plars containing information of target objects to generate
task-specific prompts by considering that the visual clues
should represent the specific task to some extent, and give
hints for learning task-specific information; (2) Transformer
has achieved competitive performance on many vision tasks
but usually requires long training time, thus tackling four
tasks simultaneously on a pure transformer is resource-
intensive. To overcome this challenge, we efficiently bridge
transformer encoders and convolutional layers to build the
hybrid multi-task architecture. Extensive experiments show
that VE-Prompt surpasses multi-task baselines by a large
margin.

We summarize the main contributions of our work be-
low:

• We provide an in-depth analysis of current multi-task
learning approaches under multiple settings that comply

with real-world scenarios, consisting of three common
multi-task data split settings, two partial-label learning
approaches, three task scheduling techniques, and three
task balancing strategies.

• We propose an effective framework VE-Prompt, which
utilizes visual exemplars to provide task-specific visual
clues and guide the model toward learning high-quality
task-specific representations.

• The VE-Prompt framework is constructed in a computa-
tionally efficient way and outperforms competitive multi-
task methods on all tasks.

2. Related Work

Multi-task Learning Multi-task learning jointly trains
shared parameters on multiple tasks, mining latent infor-
mation among them to improve efficiency and accuracy.
Famous multi-task learning models include Mask R-CNN
[17], which applies Faster R-CNN [41] as the backbone and
conducts instance segmentation and object detection at the
same time. Other methods like Eigen et al. [12] address
depth prediction, surface normal estimation, semantic la-
beling tasks, and MultiNet [46] provide prediction on clas-
sification, detection, semantic segmentation tasks within a
single model. YOLOP [52] leverages CSPDarknet as the
backbone, which branches out three task-specific heads for
object detection, drivable area segmentation, and lane de-
tection prediction. Standley et al. [44] and Christopher et
al. [13] improves previous multi-task training schema by
grouping proper tasks together rather than naively training
all tasks together. In this paper, we focus on developing
general and effective approaches for multi-task learning in
autonomous driving scenarios.

Visual Perception for Autonomous Driving Au-
tonomous driving relies on a perception system to gather
information and understand the environment. Visual per-
ception, as the most similar sensing modality to humans,
provides high-resolution images that satisfy almost all tasks
required for autonomous driving. Some of the tasks have
long been studied beyond autonomous driving scenarios.
Chen et al. [3] predicts 2D object detection from images
while Semantic FPN [24] performs semantic segmentation
and Lanenet [50] implements lane detection respectively us-
ing visual inputs. Though these models are designed for
different tasks, they all adopt the backbone-header architec-
ture, some of which even share the same backbone structure
like ResNet [18] or transformer [11]. Running independent
models for perception tasks separately is a waste of time and
computation resources, making an emerging call for the de-
velopment of a unified perception system.

Prompt-based Learning Prompt-based learning [19,32,
51] is put forward to bridge the gap between pre-training
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Figure 2. The multi-task architecture and settings in our investigation. We follow the common multi-task architecture where each task
shares the same encoder and has its specific head. The multi-task settings focus on three types of task scheduling, four task balancing
methods, and two partial-label learning techniques and cover three common data split settings.

and model tuning in the field of natural language process-
ing. GPT-3 [1] first designs various text prompts according
to the property of tasks and treats the downstream task as a
masked language modeling problem. Meanwhile, other ap-
proaches like [26,34,63] train learnable continuous prompts
in the embedding space of the model and achieve competi-
tive performance compared with finetuning. Recently, CLIP
[39], which is trained on multi-modality vision-language
pairs data, achieved impressive performance on zero-shot
image classification by injecting visual categories into the
text input as prompts. Subsequent works [14,59,64] further
tune CLIP with learnable soft prompts by few-shot super-
visions in the field of computer vision, or leverage text fea-
tures from CLIP to enhance visual representations [6, 40].
Prompt tuning without textual information is introduced by
injecting learnable vectors in the input space [22] or in-
serting lightweight blocks to learn prompts [38]. However,
these approaches are tailored for solving downstream tasks
independently and are inapplicable to heterogeneous multi-
task learning. In this work, we design the visual exemplar-
driven task-prompting to inject task-specific knowledge for
heterogeneous multi-task learning.

3. Empirical Study

Multi-task Architectures Multi-task learning (MTL) ar-
chitectures apply parameter sharing to learn shared infor-
mation between different tasks. MTL architectures can be
divided into encoder-focused architectures [15, 33, 37, 42]
and decoder-focused ones [47, 56, 62] according to param-
eter sharing scope. Encoder-focused architectures can be
further categorized into hard and soft parameter sharing. In
this paper, we select the hard parameter-sharing structure as
our backbone due to its simplicity and stability. Parameters
are only shared in the encoder part of the model followed
by task-specific heads. As Figure 2 shows, the image inputs
first go through the shared encoder, and then the feature map
is fed into different heads to produce corresponding predic-
tions.
Task Scheduling Task scheduling is the process of choos-

ing which task or tasks to train on at each training step.
Some scheduling methods arrange the task orders during
the training process in a fixed order like Round-Robin [60],
while others may sample tasks following specific distribu-
tions [29], like Uniform sampler and Weighted sampler.
Specifically, Uniform sampler samples tasks from a uni-
form distribution and Weighted sampler samples tasks with
weight proportional to the number of training epochs of
each task. We test the above three task scheduling meth-
ods in our investigation and compare their performances.
Task Balancing Task balancing is designed to deal with
the gradients between tasks for the shared parameters in the
network. When dealing with multiple tasks, the shared pa-
rameters are likely to be dominated by the one with a large
gradient magnitude or confused by conflict gradients. It is
intuitive to apply weights over these gradients to balance
among tasks, and several methods have been proposed, in-
cluding 1) Fixed weighting, which fixes all loss weights dur-
ing training; 2) Uncertainty weighting [23], introducing the
task-dependent Homoscedastic uncertainty as the basis for
weighting losses by maximizing the Gaussian likelihood of
the uncertainty; 3) GradNorm [5], calculating the product
of L2 norm of task gradient and the relative inverse learn-
ing rate as the indicator of the task learning pace, and then
setting task weights to minimize the learning pace differ-
ence among tasks to balance the training process; 4) MGDA
[43], treating the Multi-Task Learning problem as a multi-
objective optimization problem by using multiple gradient
descent algorithm [10]; 5) ParetoMTL [31], which finds a
solution called Pareto optimal solution where all task losses
can decrease without increasing the loss on other tasks.
Learning on Partial Labels Image segmentation task re-
quires annotations of labels to every pixel of the image,
which costs a great time, and as a result hard to get enough
annotations. To process the missing annotation problem,
two different methods are introduced, including Zeroing
loss [25,54] and Pseudo labeling [16]. Zeroing loss [25,54]
simply zero losses for a particular task if the input image
does not have the corresponding annotation. Pseudo label-
ing [16] first trains a teacher model on fully labeled data.
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Figure 3. The architecture of the proposed VE-Prompt. VE-Prompt consists of (1) the image encoder to extract image features; (2) a
shared transformer encoder for feature enhancement; (3) task-specific prompts generated by the prompt generator with visual exemplars;
(4) a task-prompting block to integrate the visual representation with task-specific prompts; and (5) task-specific heads for different tasks.

Then the teacher model is used to label the missing annota-
tions to create a multitask pseudo-labeled dataset.

We focus on four major tasks in autonomous driving, i.e.,
object detection, semantic segmentation, drivable area seg-
mentation, and lane detection. The in-depth analysis of cur-
rent multi-task methods is shown in Section 5.3.

4. VE-Prompt

The key to multi-task learning is to learn high-quality
task-specific representations among tasks, which can ex-
plore relationships between tasks. Therefore, a good multi-
task learning framework should take full advantage of task-
specific priors, and guide the model to learn better represen-
tations. To this end, we introduce our proposed multi-task
framework with VE-Prompt, which consists of five compo-
nents: (1) an image feature encoder to extract image fea-
tures; (2) a lightweight shared transformer encoder for fea-
ture enhancement; (3) task-specific prompts which encodes
task-specific information from visual exemplars; (4) a vi-
sual exemplar driven task-prompting block to integrate the
visual representation with task-specific prompts; (5) task-
specific heads for predicting results simultaneously.

The whole pipeline of the proposed multi-task frame-
work is shown in Figure 3. In the following sections, we
first delve into the overall multi-task framework in Section
4.1 and elaborate on the visual exemplar-driven prompt in
Section 4.2 and the task-prompting module in Section 4.3
respectively.

4.1. Bridging CNN and Transformer

The multi-task framework aims to learn more effective
representations for all tasks via bridging CNN and Trans-
former efficiently. The neck of the image encoder and seg-
mentation heads of the framework are CNN-based, reduc-
ing the overall training time. The shared transformer en-
coder is built upon the transformer architecture to capture
the long-range dependency [55].
Image Encoder The image encoder consists of a back-
bone network and a neck network. We choose the Swin
transformer [35] as the backbone to extract features of the

input image. The output of the backbone is denoted as
{C2, C3, C4, C5}. Then we adopt Feature Pyramid Net-
work (FPN) [30] module for the neck network to fuse
features generated by the backbone. The pyramidal fea-
tures are of 5 scales, and the detection head only pro-
cesses the last four-scale features for reducing the com-
putation cost. Here we denote the output of the neck as
{P2, P3, P4, P5, P6}, which have strides of {4, 8, 16, 32,
64} pixels.
Shared Transformer Encoder The shared transformer
encoder TransEncoder receives multi-scale outputs from
the neck and enhances features for following task-
specific heads. We first flatten the feature maps from
{P3, P4, P5, P6} and concatenate them to obtain a 1D se-
quence P . Since flattening the features leads to losing the
spatial information critical for segmentation, we supple-
ment positional embeddings pl to the flattened features. For
the model not considering prompts, we obtain the enhanced
feature as follows:

O = TransEncoder(P + pl). (1)

After feature enhancement, O is passed to the detection
head directly, while unflattened to multi-scale features
{z3, z4, z5, z6} for segmentation heads.
Detection Head The detection head consists of 4 multi-
scale deformable decoder layers which are elaborated in
DINO [61]. Following DINO, we adopt the mixed query
selection strategy to initialize anchors as positional queries
for the decoder and use the contrastive denoising training
approach by taking into account hard negative samples.
Segmentation Head For segmentation-based tasks, we
choose Semantic FPN [24] as the segmentation head. In the
model without considering prompts, segmentation heads
take in multi-layer features from both the neck and shared
transformer encoder {P2, z3, z4, z5}. The resolution of P2

is larger and thus provides more image information for
the following heads. Then the multi-layer features are up-
sampled and summed element-wisely. This merged feature
map is again upsampled 4× followed by softmax to pro-
duce the classification score for every pixel at the original
resolution.
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4.2. Prompt Generation with Visual Exemplar

In order to motivate the model to learn more high-quality
task-specific knowledge and handle all tasks better, VE-
Prompt is introduced to provide more task-specific infor-
mation with visual clues. The process of generating visual
exemplar-driven prompts is shown in Figure 4. The key idea
of task-specific prompts is to let the model know how to
solve different tasks and what categories to focus on in ad-
vance of each task. Therefore, task-specific prompts should
contain object-level information which helps the model un-
derstand tasks better, and we leverage visual exemplars to
generate prompts.

We first sample a few examples from the training set
to generate object-level image regions and segmentation
masks as in Figure 4. There are a few generated exemplars
for each category in each task, thus the generated prompts
cover all classes. Then we adopt CLIP [39] to generate task-
specific prompts since it is a robust feature extractor pre-
trained with a huge amount of image-text data pairs. For
visual perception, the ground-truth annotations can provide
hints of the shapes and sizes of different objects, motivat-
ing the model to learn high-quality task-specific representa-
tions. The task-specific prompt is object-level for object de-
tection and aims to represent relevant image regions. Only
the generated prompts are used during training and infer-
ence, and no new exemplars will be included, thus it will
not lead to training data leakage.

For the box-wise task (object detection), we use the an-
notated bounding boxes to crop sampled images and obtain
raw object-level image regions for generating prompts. We
choose the image encoder with ViT [11] backbone and pass
n image regions {rki } of K classes to get the initial prompt

as follows:

ˆ{pki } = L2 NORM(IE({rki })) ∈ RK×n×D,

p =
1

n

n∑
i

ˆ{pki } ∈ RK×D, i = 1, 2, ..., n,
(2)

where IE and D represent the image encoder of CLIP and
the feature dimension respectively. n stands for the number
of visual exemplars for each category. ˆ{pki } and p indicate
all prompts from image regions and the averaged version
respectively. Specifically, class numbers for detection, se-
mantic segmentation, drivable area segmentation, and lane
detection are denoted as K1, K2, K3, and K4. The number
of visual exemplars for different tasks is further denoted as
n1, n2, n3, and n4.

For pixel-wise tasks (i.e., semantic segmentation, driv-
able area segmentation, and lane detection), image regions
of specific classes are marked with colored segmentation
masks, and different colors indicate different object cate-
gories of different tasks. Similar to object detection, after
obtaining n images with colored segmentation masks of K
classes, we adopt CLIP to extract features by Equation 2. In
this way, we get task-specific prompts pdet, psem, pdriv, plane
for object detection, semantic segmentation, drivable area
segmentation, and lane detection, respectively.

4.3. Visual Exemplar Driven Task Prompting

Task prompting aims to integrate the image features with
task-specific prompts to obtain high-quality task-specific
representations. It receives additional task-specific prompts
as inputs and generates task-specific features for following
task-specific heads.

Here we design two prompting methods to improve
task-specific representations. The first strategy is pre-head
prompting. The last feature map P6 from the neck and task-
specific prompt p are fused via a transformer decoder:

fpre = TransDecoder(q = P6, k = p, v = p), (3)

where q, k and v stand for query, key and value. In this
way, we get task-specific features fdetpre, fsempre , fdrivpre , and
f lanepre for object detection, semantic segmentation, drivable
area segmentation, and lane detection, respectively. For
object detection, we flatten {P3, P4, P5, f

det
pre} to a 1D se-

quence and combine it with positional embeddings. Fol-
lowing Equation 1, we obtain features for the detection
head Odet. For segmentation-based tasks, we first flatten
{P3, P4, P5} to a 1D sequence and get the enhanced fea-
tures through Equation 1. Then unflatten the output fea-
tures as {z′3, z′4, z′5}, and pass {P2, z

′
3, z
′
4, z
′
5, fpre] to spe-

cific segmentation-based heads. Note that fpre is marked as
fsempre , fdrivpre , or f lanepre according to the task type.
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Another choice is to refine predicted results with task-
specific prompts, namely post-head prompting. In this vari-
ant, we obtain class-related features (RK×D) similar as fol-
lows:

fpost = TransDecoder(q = p, k = P6, v = P6). (4)

Here class-related outputs from task-specific heads are de-
noted as v. Then the final output is calculated as:

v′ = MLP(v · fpost). (5)

Empirical results of these two strategies are presented
in Section 5.5 and show that pre-head prompting performs
better than post-head prompting.

4.4. Optimization

Since there are four different perception tasks in our net-
work, our multi-task loss contains four parts. For object
detection, we adopt the same objective as in DINO [61].
For segmentation-based tasks, i.e., semantic segmentation,
drivable area segmentation, and lane detection, we employ
the same loss as in Semantic FPN [24]. Therefore, the total
loss for the multi-task model is formulated as follows:

Ltotal = λdetLdet+λsemLsem+λdrivLdriv+λlaneLlane, (6)

where Ldet, Lsem, Ldriv, Llane represent objectives for object
detection, semantic segmentation, drivable area segmenta-
tion, and lane detection, respectively. λdet, λsem, λdriv and
λlane stand for different loss weights.

5. Experiments

5.1. Dataset Settings

Our experiments are tested on the BDD100K dataset.
BDD100K dataset has ∼74k training images and covers
both object detection (OD), semantic segmentation (SS),
drivable area segmentation (DA), and lane detection (LD).
We follow [27] to consider three dataset split settings com-
plying with real-world scenarios, i.e., Disjoint-normal set-
ting, Disjoint-balance setting, and Full setting:
Disjoint-normal Setting The number of labeled images for
each task is as follows: object detection (10k), semantic
segmentation (7k), drivable area segmentation (20k), and
lane detection (20k).
Disjoint-balance Setting There are 21k images in this set
and each task has 7k labeled images that are not overlapped
with other tasks.
Full Setting Full-setting refers to experimenting on all
available annotations on ∼74k images in BDD100K and
can be used to analyze the upper bound of different meth-
ods.

5.2. Evaluation and Implementation Details

Evaluation Metric In addition to reporting performance on
every individual task, we follow [48] to evaluate the whole
multi-task performance:

∆MTL =
1

T

T∑
i

(Mm,i −Mb,i)/Mb,i, (7)

where Mm,i is the performance of multi-task model on
task i, and Mb,i indicates the result of single-task baseline.
Since we choose Sparse R-CNN as the detection head for
re-implementing current multi-task methods, we regard it
as the baseline for object detection. For object detection,
we adopt mAP as the main metric. While for segmentation
tasks, we use mIoU to evaluate the model. We also compute
the average performance (Avg.) of all tasks to compare ex-
perimental results more intuitively.
Implementation Details The default training setting is that
epoch and batch size are fixed as 36 and 16, the learning rate
is set to 1× 10−5, and weight decay is 1× 10−4. We adopt
the AdamW optimizer, for which the warmup length is 1
epoch and the warmup factor is 0.001. We choose Swin-
Tiny [35] as the backbone by default. More details are pro-
vided in Appendix.

5.3. Comparison of Multi-task Methods

We study the performances of popular existing multi-
task methods under three settings on BDD100K. We adopt
Sparse R-CNN to construct the detection head for effi-
ciency.
Partial-label Learning As shown in Table 1, pseudo la-
beling [16] can improve performances, especially in object
detection and semantic segmentation compared with zero-
ing loss [53]. Pseudo-labeling achieves satisfactory perfor-
mance in all settings.
Task Scheduling As shown in Table 1, three task sam-
pling methods (i.e., Uniform sampler [28], Weighted sam-
pler [28] and Round-robin [28]) perform better than Zeroing
loss [53] by a large margin on segmentation-based tasks, but
get worse in object detection. We hypothesize that training
one task per step may lead to forgetting to some extent.
Task Balancing We choose pseudo labeling as the base-
line since task-balancing methods are more suitable in set-
tings with complete labels. Fixed denotes fixed loss weights
for all tasks during training. As shown in Table 2, Uncer-
tainty performs better than Fixed on semantic segmentation
and drivable area segmentation under the full and disjoint-
normal settings, while performances of other approaches
(i.e., GradNorm and MGDA) degrade significantly. Espe-
cially, GradNorm uses the last shared layer of weights to
compute gradient norm in its paper, thus we adopt the last
layer of P5 in the neck. When we use the full image en-
coder to compute the gradient norm, GradNorm achieves

6



Table 1. Comparisons of popular task scheduling strategies and partial-label learning methods.

Setting Methods mAP AP50 AP75 mIoU (SS) mIoU (DA) IoU (LD) Avg. ∆MTL(%)

Full
Zeroing loss [53] 36.2 61.6 35.9 58.6 89.3 23.8 52.0 -2.68

Pseudo labeling [16] 36.3 61.6 36.1 60.9 89.3 23.8 52.6 -1.65

VE-Prompt (Ours) 39.2 64.9 39.0 63.2 89.4 24.0 54.0 +1.52

Disjoint-normal

Zeroing loss [53] 31.1 54.3 30.2 55.7 88.0 22.2 49.3 -2.64
Uniform sampler [28] 30.1 52.8 29.0 60.6 88.6 23.4 50.7 -0.10
Weighted sampler [28] 29.3 51.9 28.7 58.5 88.9 23.8 50.1 -1.19

Round-robin [28] 30.2 53.1 29.7 61.0 88.7 23.5 50.9 +2.87
Pseudo labeling [16] 32.6 54.6 32.3 59.7 88.2 23.0 50.9 +1.19

VE-Prompt (Ours) 34.2 56.9 33.9 62.2 88.3 23.3 52.0 +3.95

Disjoint-balance

Zeroing loss [53] 29.7 52.3 29.2 57.5 86.7 21.4 48.8 -1.61
Uniform sampler [28] 28.1 50.2 27.5 60.4 87.1 22.6 50.0 -0.44

Round-robin [28] 28.4 50.8 27.8 60.0 87.1 22.6 49.5 -0.34
Pseudo labeling [16] 31.3 52.8 30.8 60.2 87.0 22.2 50.2 +1.87

VE-Prompt (Ours) 33.9 56.6 33.7 61.2 87.4 22.2 51.2 +4.72

Table 2. Comparisons of task balancing strategies with pseudo labels. ∗ means using the full image encoder to compute the gradient norm.

Setting Method mAP AP50 AP75 mIoU (SS) mIoU (DA) IoU (LD) Avg. ∆MTL(%)

Full

Fixed [16] 36.3 61.6 36.1 60.9 89.3 23.8 52.6 -1.65
Uncertainty [23] 36.2 61.6 35.5 61.2 89.5 24.6 52.9 -0.76
GradNorm [5] 23.4 40.9 22.8 25.8 51.3 13.0 28.4 -46.24

VE-Prompt (Ours) 39.2 64.9 39.0 63.2 89.4 24.0 54.0 +1.52

Disjoint-normal

Fixed [16] 32.6 54.6 32.3 59.7 88.2 23.0 50.9 +1.19
Uncertainty [23] 32.2 54.1 31.5 59.8 88.6 23.8 51.1 +1.79
GradNorm [5] 25.9 43.2 26.1 39.2 39.6 3.7 27.1 -46.18
MGDA [43] 25.9 44.6 26.0 50.1 85.4 25.2 46.7 -7.26

VE-Prompt (Ours) 34.2 56.9 33.9 62.2 88.3 23.3 52.0 +3.95

Disjoint-balance

Fixed [16] 31.3 52.8 30.8 60.2 87.0 22.2 50.2 +1.87
Uncertainty [23] 31.2 53.1 30.9 59.9 87.0 22.2 50.1 +1.66
GradNorm [5] 28.9 49.0 28.7 46.8 57.4 19.6 38.2 -17.26
GradNorm∗ [5] 30.7 51.8 30.4 56.6 86.9 21.7 49.0 -0.73

MGDA [43] 21.0 38.0 20.3 45.5 82.7 24.3 43.4 -12.48

VE-Prompt (Ours) 33.9 56.6 33.7 61.2 87.4 22.2 51.2 +4.72

much better results but still lags behind the baseline. Inter-
estingly, MGDA achieves the best result on lane detection,
indicating that it suffers from heavy negative transfer.

For efficiency and effectiveness, we choose pseudo la-
beling with fixed loss weights as our baseline, which
achieves competitive performance compared with other
complicated multi-task methods, to verify the effectiveness
of VE-Prompt.

5.4. Compare VE-Prompt with Previous Methods

As shown in Table 3, our VE-Prompt surpasses the base-
line consistently on almost all metrics in all three settings
and achieves significant overall multi-task performance.
We conclude that VE-Prompt can learn high-quality task-

specific knowledge during training, and further improve
performance. VE-Prompt also achieves the best results on
three tasks compared with single-task models. We also
compare VE-Prompt with LV-Adapter [27] in Appendix.

5.5. Ablation Study

We conduct all ablation studies under the disjoint-
balance setting for efficiency.
Module Components We present detailed comparisons on
each module to validate our VE-Prompt as in Table 4. The
introduced shared transformer encoder alleviates this imbal-
ance to some extent (row 1 vs. row 2). Equipped with task-
specific prompts through task prompting, the model gets
better results on all tasks (row 2 vs. row 3), confirming
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Table 3. Comparison between single-task and multi-task learning baselines under different settings.

Setting Methods mAP AP50 AP75 mIoU (SS) mIoU (DA) IoU (LD) Avg. ∆MTL(%)

Full

Sparse R-CNN [45] 36.5 61.5 36.1 - - - - -
DINO [61] 38.6 64.2 38.2 - - - - -

Semantic FPN [24] - - - 59.8 - - - -
Semantic FPN [24] - - - - 89.1 - - -
Semantic FPN [24] - - - - - 25.9 - -

Sparse R-CNN based 36.3 61.6 36.1 60.9 89.3 23.8 52.6 -1.65
DINO based 39.4 64.5 39.8 61.5 84.9 22.0 52.0 -2.25

VE-Prompt (Ours) 39.2 64.9 39.0 63.2 89.4 24.0 54.0 +1.52

Disjoint-normal

Sparse R-CNN [45] 28.8 50.4 28.0 - - - - -
DINO [61] 31.2 53.0 30.5 - - - - -

Semantic FPN [24] - - - 59.8 - - - -
Semantic FPN [24] - - - - 87.8 - - -
Semantic FPN [24] - - - - - 25.2 - -

Sparse R-CNN based 32.6 54.6 32.3 59.7 88.2 23.0 50.9 +1.19
DINO based 33.1 55.9 32.2 59.2 87.2 22.7 50.6 +0.83

VE-Prompt (Ours) 34.2 56.9 33.9 62.2 88.3 23.3 52.0 +3.95

Disjoint-balance

Sparse R-CNN [45] 28.1 49.2 26.7 - - - - -
DINO [61] 29.4 50.8 28.1 - - - - -

Semantic FPN [24] - - - 59.8 - - - -
Semantic FPN [24] - - - - 85.5 - - -
Semantic FPN [24] - - - - - 23.7 - -

Sparse R-CNN based 31.3 52.8 30.8 60.2 87.0 22.2 50.2 +1.87
DINO based 33.5 55.6 33.1 58.1 85.2 21.4 50.0 +1.58

VE-Prompt (Ours) 33.9 56.6 33.7 61.2 87.4 22.2 51.2 +4.72

Table 4. Ablation study of modules in our proposed VE-Prompt.
TE means transformer encoder.

mAP mIoU (SS) mIoU (DA) IoU (LD)

DINO based 33.5 58.1 85.2 21.4
w/ shared TE 32.2 60.5 86.5 21.4

+ Prompt 33.9 61.2 87.4 22.2

Table 5. Ablation study of task-specific prompts. Post and Pre in-
dicate post-head prompting and pre-head prompting respectively.

# Prompt Post Pre mAP mIoU (SS) mIoU (DA)

1 7 7 7 32.2 60.5 86.5

2 3 3 7 33.2 58.9 86.4
3 3 7 3 33.9 61.2 87.4

Table 6. Ablation study of initialization for prompt vectors.

CLIP Initialization mAP mIoU (SS) mIoU (DA) IoU (LD)

7 33.5 61.0 87.2 21.9
3 33.9 61.2 87.4 22.2

that task-specific prompts can motivate the model to learn
useful task-specific knowledge for specific tasks.
Task Prompting We conduct an ablation study to compare
the proposed two prompting strategies as in Table 5. We can
see that both post-head and pre-head prompting improve
the performance of object detection. However, post-head

prompting gets inferior results on segmentation-based tasks
(#1 vs. #2), indicating that the post-head process is not suit-
able for dense prediction tasks. On the contrary, pre-head
prompting helps the model make full use of task-specific
knowledge and improves all tasks consistently (#3).
Prompt Initialization The task-specific prompts are ini-
tialized with the pre-trained image encoder of CLIP. We
compare it with random initialization as in Table 6. Re-
sults show that prompts with CLIP initialization improve
the multi-task model on all metrics. More comparisons and
analyses on prompting are presented in Appendix.

6. Conclusion and Discussion
In this paper, we first provide an in-depth analysis of

popular multi-task learning methods under the realistic sce-
narios of self-driving, which covers four common percep-
tion tasks, i.e., object detection, semantic segmentation,
drivable area segmentation, and lane detection. We find
that existing methods cannot solve all tasks satisfactorily
due to the negative transfer. To mitigate the negative trans-
fer, we propose visual exemplar driven task-prompting (VE-
Prompt), which incorporates visual exemplars of different
tasks to provide high-quality task-specific knowledge. Be-
sides, the proposed framework bridges transformer and con-
volutional layers for efficient and accurate unified percep-
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tion in autonomous driving. Experimental results show
that VE-Prompt can achieve superior performance on large-
scale driving dataset BDD100K.
Limitations Although our method has achieved substantial
improvement in the overall multi-task metric, we find the
model gets worse results on lane detection compared with
the single-task model. We conjecture that it is because the
lane detection task is quite different from other tasks, thus
it is difficult for the multi-task model to solve all four tasks
satisfactorily. Our VE-Prompt gets better results on lane de-
tection compared with multi-task baselines, but there is still
room for improvement. We believe VE-Prompt can be fur-
ther improved by introducing more robust pseudo-labeling
methods or designing specific heads for lane detection. The
proposed prompt generation with visual exemplar is general
and can be applied to other applications in computer vision.
Our method does not directly involve societal issues.
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A. Experimental Setup

A.1. Implementation Details

Here we further provide detailed experimental settings
in our paper. Class numbers for object detection, semantic
segmentation, drivable area segmentation, and lane detec-
tion are 9, 19, 2, and 1 respectively. We remove the train
class as in [52] for object detection. For lane detection,
we follow [20] to preprocess lane line annotations. Loss
weights for object detection, semantic segmentation, driv-
able area segmentation, and lane detection are fixed as 1,
2, 2, and 2 respectively. All experiments are conducted on
servers with 8 Nvidia V100 GPUs and Intel Xeon Platinum
8168 CPU (2.70GHz).

A.2. More Details on Dataset

BDD100k dataset [60] contains multiple tasks. Here
we focus on object detection (OD), semantic segmentation
(SS), drivable area segmentation (DA), and lane detection
(LD). In BDD100K, 70k training images are labeled for ob-
ject detection, drivable area segmentation, and lane detec-
tion, and only 7k training images are labeled for semantic
segmentation.

B. More Investigations

In this section, we present more analyses of popular
multi-task learning methods.

B.1. Task Scheduling

Here we analyze task scheduling methods on disjoint-
balance settings, whose results are shown in Table 1 in the
main paper. Note that the full setting contains almost com-
plete annotations except semantic segmentation, thus it is
not suitable for task scheduling. Since the data of all tasks in
the disjoint-balance setting is balanced and non-overlapped,
Uniform sampler [28] and Weighted sampler [28] are equiv-
alent. As shown in Table 1 in the main paper, task sampling
methods (i.e., Uniform sampler [28] and Round-robin [28])
perform better than Zeroing loss [53] by a large margin
on segmentation-based tasks, but get worse in object de-
tection. We hypothesize that negative transfer still exists
among these approaches, and training one task per step may
lead to forgetting to some extent.

B.2. Partial-label Learning

As shown in Table 1 in the main paper, pseudo label-
ing [16] surpasses Zeroing loss [53] on almost all tasks, es-
pecially on semantic segmentation. However, the improve-
ment in drivable area segmentation and lane detection under
the full setting is not obvious, since there are less unlabeled
data on these tasks.
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Figure 5. We provide the loss changes of all tasks during training
under the disjoint-balance setting. From the curve, we find out that
our VE-Prompt can achieve faster and better convergence.

B.3. Task Balancing

We choose pseudo labeling as the baseline since task-
balancing methods are more suitable in settings with com-
plete labels. Fixed denotes fixed loss weights for all tasks
during training. As shown in Table 2 in the main paper, Un-
certainty [23] performs better than Fixed [16] under the full
settings overall, while the performance of GradNorm [5] de-
grades significantly. Interestingly, Fixed performs slightly
better than Uncertainty under the disjoint-balance setting,
which indicates that Uncertainty is not suitable for all data
split settings. GradNorm and MGDA [43] perform poorly
overall, showing that these task-balancing methods are not
suitable for autonomous driving. Especially, GradNorm
uses the last shared layer of weights to compute gradient
norm in its paper, thus we adopt the last layer of P5 in the
neck. We also choose the whole shared encoder to imple-
ment GradNorm, which is denoted as GradNorm∗, improv-
ing the original one by a large margin under the disjoint-
balance setting (+10.8 in Avg.). This indicates that the
selection of network weights for computing GradNorm is
important. Interestingly, MGDA consistently achieves the
best result on lane detection, indicating that it suffers from
the heavy negative transfer. Since it takes a long time to
train MGDA, we did not implement it under the full setting
for the time limit.

In summary, most existing multi-task learning methods
suffer from poor performances under the real-world scenar-
ios of autonomous driving since they are not designed to
handle unified perception in self-driving. Therefore, it is
extremely important and urgent to develop applicable multi-
task methods for autonomous driving.
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Table 7. Compare with LV-Adapter under the disjoint-balance setting.

Method mAP AP50 AP75 mIoU (SS) mIoU (DA) IoU (LD) GFLOPs Params

LV-Adapter [27] 24.6 47.4 21.9 61.8 80.6 - 415 200M
VE-Prompt (Ours) 26.8 51.2 23.8 58.3 86.8 22.1 401 60M

Table 8. Comparison of fixed and trainable task-specific prompts under the disjoint-balance setting.

Fixed mAP AP50 AP75 mIoU (SS) mIoU (DA) IoU (LD)

3 33.3 55.3 32.5 61.1 87.2 22.1
7 33.9 56.6 33.7 61.2 87.4 22.2

C. Compare with LV-Adapter
We conduct experiments to compare with recent LV-

Adapter [27], which tackles three tasks, as in Table 7. The
class number of object detection is 10 in LV-Adapter, and
the backbone is Res50 [18]. Here we use the same set-
ting as in LV-Adapter, and present results under the disjoint-
balance setting in Table 7. Note that data splits of object de-
tection, semantic segmentation, and drivable area segmen-
tation are the same as in LV-Adapter. Results show that
our proposed VE-Prompt performs better than LV-Adapter
on object detection and semantic segmentation by a large
margin (+2.2 in mAP and +6.2 in mIoU (DA)). Mean-
while, our method gets competitive results in lane detection
compared with the Swin-Tiny [35] backbone as in Table
3 in the main paper. LV-Adapter adopts MaskFormer [7],
which is a stronger baseline, to generate pseudo labels for
semantic segmentation, while VE-Prompt chooses Seman-
tic FPN [24] as the teacher model. Therefore, the improve-
ment of semantic segmentation for LV-Adapter may come
from high-quality pseudo labels. The number of parameters
in the proposed VE-Prompt is much less than that of LV-
Adapter as in Table 7. We also report GFLOPs on the same
V100 NVIDIA GPU for a fair comparison. Results show
that our method is more efficient and effective overall.

D. More Ablation Studies
D.1. Influence of Fixed Prompts

The task-specific prompts are not fixed during training
in VE-Prompt. We also conduct experiments to verify the
effectiveness of trainable task-specific prompts as in Table
8. Results show that the model with trainable task-specific
prompts performs better on all four tasks.

D.2. Number of Exemplars

Here we compare different configurations of the number
of visual exemplars. The number of visual exemplars for
different tasks is n1, n2, n3, and n4. We keep them equal for
simplification. As shown in Figure 6, the model performs

better when n1 = n2 = n3 = n5 = 5, thus we set the
number of visual exemplars as 5 in our final model.

D.3. Loss Analysis

We also analyze the loss changes of VE-Prompt and the
baseline under the disjoint-balance setting as in Figure 5.
From the loss curves, we conclude that our VE-Prompt
achieves consistent faster and better convergence during
training. Note that loss weights for all tasks in Fixed and
VE-Prompt here are set as 1 for a fair comparison.

D.4. Comparisons with Alternative Options

We present the results of VE-Prompt with some alterna-
tive options as in Table 9. Results show that VE-Prompt
with Uncertainty can improve Uncertainty on all tasks, and
VE-Prompt with Fixed performs better than VE-Prompt
with Uncertainty.

Table 9. Results of VE-Prompt with alternative options under the
disjoint-balance setting.

Model mAP mIoU (SS) mIoU (DA) IoU (LD) ∆MTL(%)

Uncertainty 31.2 59.9 87.0 22.2 +1.66
VE-Prompt (Uncertainty) 32.9 60.6 87.9 22.5 +4.04

Fixed 31.3 60.2 87.0 22.2 +1.87
VE-Prompt (Fixed) 33.9 61.2 87.4 22.2 +4.72

E. Experiments on NuImages Dataset
We also conduct experiments on nuImages dataset2,

which covers two tasks, object detection and semantic seg-
mentation. Results are shown in Table 10, indicating that
VE-Prompt performs much better than baselines.

2https://www.nuscenes.org/nuimages
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Figure 6. Ablation study of different numbers of visual exemplars under the disjoint-balance setting. The x-axis represents the number of
visual exemplars, and the y-axis indicates mAP or mIoU.

Table 10. Comparisons with multi-task baselines on nuImages.

Model mAP AP50 AP75 mIoU Avg.

Sparse R-CNN based 50.4 76.8 54.5 53.8 52.1
DINO based 55.5 81.6 60.6 56.7 56.1

VE-Prompt (Ours) 55.8 81.9 60.7 59.1 57.5
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