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Abstract

3D dense captioning aims to describe individual objects
in 3D scenes by natural language, where 3D scenes are usu-
ally represented as RGB-D scans or point clouds. However,
only exploiting single modal information, e.g., point cloud,
previous approaches fail to produce faithful descriptions.
Though aggregating 2D features into point clouds may be
beneficial, it introduces an extra computational burden, es-
pecially in the inference phase. In this study, we investigate
a cross-modal knowledge transfer using Transformer for
3D dense captioning, namely X-Trans2Cap. Our proposed
X-Trans2Cap effectively boost the performance of single-
modal 3D captioning through the knowledge distillation en-
abled by a teacher-student framework. In practice, during
the training phase, the teacher network exploits auxiliary
2D modality and guides the student network that only takes
point clouds as input through the feature consistency con-
straints. Owing to the well-designed cross-modal feature fu-
sion module and the feature alignment in the training phase,
X-Trans2Cap acquires rich appearance information embed-
ded in 2D images with ease. Thus, a more faithful caption
can be generated only using point clouds during the infer-
ence. Qualitative and quantitative results confirm that X-
Trans2Cap outperforms previous state-of-the-art by a large
margin, i.e., about +21 and +16 CIDEr points on ScanRefer
and Nr3D datasets, respectively.

1. Introduction
Hitherto, the computer vision community has witnessed

significant progress in image captioning [3, 25, 33, 46, 50]
and dense captioning [24–26, 30] under the success of deep
learning techniques. Unlike image captioning describing a
2D image with a single sentence, dense captioning (DC)
better interprets “A picture is worth a thousand words”.
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Figure 1. The motivation of cross-modal knowledge transfer.
(a) Previous methods use the extra 2D modality as the input in
both training and inference phases. (b) In contrast, we exploit a
teacher-student framework with multi-modal data during training.
For inference, the student network only takes 3D modality input.

That is to say, for DC task, each object in an image is first
perceived, then is provided more customized and detailed
descriptions according to its nature and context.

Most recently, 3D cross-modal learning in vision and
language has gained an increasing amount of interest as
well. Several datasets [1, 6, 15] and downstream applica-
tions [20, 56] are proposed and investigated. Unlike 2D
images with regular grids and dense pixels, 3D data rep-
resented by a set of points are unordered and scattered in
the 3D space, impeding the direct extension of 2D-based
methods to 3D scenarios. To perform dense captioning
on 3D point clouds, [9] proposes the first method, namely
Scan2Cap, by directly combining 3D object detection with
natural language generation. Specifically, Scan2Cap first
employs a detection backbone to obtain object proposals,
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and then applies a relational graph and a context-aware
attention captioning module to learn object relations and
generate tokens. Besides, multi-view features extracted by
the pre-trained E-Net [36] are further projected onto the
input point cloud to enhance final captioning. However,
Scan2Cap still has several issues: 1) The object representa-
tions in Scan2Cap are defective since they are solely learned
from sparse 3D point clouds, thus failing to provide strong
texture and color information compared with the ones gen-
erated from 2D images. 2) It requires the extra 2D input in
both training and inference phases, as shown in Figure 1 (a).
However, the extra 2D information is usually computation-
intensive and unavailable during inference. For instance, a
model training with both 2D and 3D inputs cannot apply to
LiDAR scenarios that only contains 3D point cloud.

To address the above issues, we explore how to ease the
barrier of cross-modal learning on 2D and 3D data, and
investigate how to effectively combine the merits of both
modalities for 3D dense captioning in this paper. To this
end, we first time present a flexible and novel cross-modal
framework, namely X-Trans2Cap1, which transfers color
and texture-aware information from 2D image into 3D ob-
ject representation using Transformer [44]. Concretely, all
the instances in a given scene can be firstly extracted by
3D object detection. Subsequently, the 3D features of each
instance and its 2D counterpart are processed by a teacher-
student framework. Within this framework, the teacher net-
work takes the multi-modal inputs, while the student one
only leverages the 3D inputs. Considering different modali-
ties for teacher and student streams, we innovatively design
a Transformer-based knowledge transfer framework with
more flexible input control and better representation. More-
over, to further enhance the knowledge transfer, a modified
knowledge distillation operation with cross-modal fusion
(CMF) module and cross-modal feature alignment objec-
tive is proposed for knowledge generalization. Owing to
the end-to-end training scheme, the priors in the 2D modal-
ity can inherently improve the teacher network and the stu-
dent as well, i.e., our model takes advantage of the color
and texture aware 2D representation and reduces the ex-
tra computational cost. Therefore, in the inference phase,
X-Trans2Cap can perform superior captioning performance
with only 3D inputs, as shown in Figure 1 (b).

Sufficient experiments evaluated on the ScanRefer [6]
and Nr3D [1] datasets have demonstrated the effectiveness
of our proposed X-Trans2Cap. In specific, with the extra
2D priors and the novel framework design, X-Trans2Cap
can effectively learn a better 3D object representation and
boost the performance over the model without 2D priors,
i.e., improving the CIDEr points on ScanRefer from 75.75
to 87.09. This result also exceeds the previous state-of-the-
art Scan2Cap by about 21 CIDEr.

1https://github.com/CurryYuan/X-Trans2Cap

In summary, our main contributions are threefold:

• We first time propose X-Trans2Cap, a simple but ef-
fective cross-modal knowledge transfer framework for
3D dense captioning, in which an enhanced 3D repre-
sentation with 2D priors is achieved.

• X-Trans2Cap leverages a modified knowledge distilla-
tion method through a novel cross-modal fusion mod-
ule and feature alignment techniques merged in Trans-
former, eliminating extra computation burdens during
inference while achieving superior knowledge transfer.

• Our X-Trans2Cap gains significant performance boost
on the ScanRefer [6] (+21.0 CIDEr) and Nr3D [1]
(+16.7 CIDEr) datasets.

2. Related Work
2.1. Image Captioning and Dense Captioning

A broad collection of methods have been proposed in
the field of image captioning in the last few years [13, 29,
33, 46, 50]. Recently, many methods focus on utilizing the
attention mechanism to capture meaningful information in
the image, e.g., over grid regions [33, 50] and detected ob-
jects [3, 34]. Furthermore, some works attempt to com-
bine attention with graph neural networks [14, 23, 52, 54]
or Transformer [10] to boost performance.

For the dense captioning task, it needs to generate cap-
tions for all the detected objects. Johnson et al. [24] is
the pioneer in this challenging field. Along this line, [51]
considers the context outside the salient image regions and
takes advantage of global image features. [26] further intro-
duces the object relations among detected regions. How-
ever, due to the limited views of a single image, the perfor-
mance of image-based dense captioning methods is signifi-
cantly degraded when directly transferred to 3D scenarios.

2.2. 3D Vision and Language

Compared to image and language comprehension, 3D vi-
sion and language understanding is a relatively emerging
research field. Existed works focus on using language to
confine individual objects, e.g., detecting referred 3D ob-
jects [8] or distinguishing objects according to language
phrases [2]. Recently, ScanRefer [6] and ReferIt3D [1]
introduce a task of localizing objects within a 3D scene
given the linguistic descriptions, namely 3D visual ground-
ing. TGNN [20] and InstanceRefer [56] follow the above
settings and exploit panoptic segmentation to reduce the
number of proposals. 3D dense captioning is proposed
very lately in Scan2Cap [9]. It focuses on decomposing
3D scenes and describing the chromatic and spatial infor-
mation of the objects. Very recently, [61] combines the
above task of 3D grounding and caption to mutually en-
hance the performance of two tasks. Though promising, it

https://github.com/CurryYuan/X-Trans2Cap
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Figure 2. X-Trans2Cap. Part (a) describes the object representation, where the 3D proposals are utilized in the generation of pure 3D
modal inputs. By integrating their 2D counterparts, multi-modal inputs are obtained. Part (b) illustrates the architecture of X-Trans2Cap,
where the framework adheres to a teacher-student design. Both the teacher and student networks consist of several Transformer encoder
layers and a decoder layer.

only takes point clouds as input to generate instance fea-
tures. Compared with the well-organized 2D images con-
taining stronger texture and color information, such repre-
sentation inherently challenges the learning process.

2.3. Cross-modal Knowledge Transferring

Previous studies apply 2D images as the extra inputs to
3D tasks, e.g., 3D object detection [28, 37, 39, 49], seman-
tic segmentation [12, 19, 22] and object tracking [59, 60].
However, they require extra 2D information in both the
training and inference phases. Thus, it inevitably augments
computational burdens during evaluation and severely lim-
its the efficiency in real-world applications. The concept
of knowledge distillation was first shown by Hinton et
al. [18]. Subsequent research [4, 7] enhanced distillation
by matching intermediate representations in the networks
along with outputs using different approaches. Zagoruyko
et al. [57] proposed to align attentional activation maps be-
tween networks. Srinivas and Fleuret [43] improved it by
applying Jacobian matching to networks. In recent years,
cross-modal knowledge distillation [16,47,55,58] extended
knowledge distillation by applying it to transferring knowl-
edge across different modalities. Very recently, there are
works attempting to only utilize 2D images during training
phase to address the above problems. Among them, the 2D-
assisted pre-training [32], inflating 2D convolution kernels
to 3D [48] and joint training with mask attention [53] are
proposed. Unlike those, we adopt a well-designed teacher-

student framework with cross-modal fusion for more effi-
cacious knowledge transfer, and the experiment results also
demonstrate that our approach is much better than previous
knowledge transferring.

3. Method

Our X -Trans2Cap is developed upon a teacher-student
framework [18], which is widely exploited in the knowl-
edge distillation research field. The detailed architecture
of X -Trans2Caps is presented in Figure 2. X -Trans2Cap
takes two types of features as input, i.e., pure 3D modal
input for student and multi-modal input for teacher respec-
tively. We first introduce the details of the above feature
representation in Section. 3.1. Then we propose a baseline
model for 3D dense captioning through Transformers [44]
in Section. 3.2, named TransCap. In Section 3.3, we il-
lustrate how X -Trans2Cap transfers the 2D priors to the 3D
representations, in which a cross-modal fusion (CMF) mod-
ule is proposed. The details of training objectives are pre-
sented in Section 3.4. Finally, by incorporating the above
components in a whole architecture, we illustrate the data
flow of X -Trans2Cap in training and inference phases in
Section 3.5.

3.1. Object Representation

As shown in Figure 2 (a), our framework takes object-
level representation as input, and each object feature is de-



noted as a token. Given that there are M objects in the
3D scene, in the remaining section, the objects set is rep-
resented as O = {Om}Mm=1, in which Om and Oatt

m are
depicted as the m-th object and the attribute of them-th ob-
ject, respectively. In each iteration, we randomly choose an
object as the target object (O∗) to be described as in [9]. The
other M − 1 objects, i.e., {Om ∈ O} ∩ {Om 6= O∗}, are
treated as the reference objects, and only provide the cues
of locations or relations to the target object.

For the 3D modal input, each object is considered from
the perspective of its 3D feature, semantic, size as well as
relative position to the target object. Specifically, the object
representation is computed as follows:

F 3d
m = T1([Of3d

m ; Ocls
m ; W1O

b3d
m ; W2O

pe
m ]), (1)

where [· ; ·] indicates the concatenation operation. Of3d
m is

the output feature extracted by a 3D network, e.g., Point-
Net++ [40], and Ocls

m is a one-hot vector for their predicted
semantic class. Ob3d

m is the 3D bounding box of the ob-
ject, consisting of the bounding box center (x, y, z) and size
(w, h, l). To a better object representation, we further de-
sign a positional encoding Ope

m for the m-th object as:

Ope
m = [Ox

m −Ox
∗ ;O

y
m −Oy

∗ ;O
z
m −Oz

∗;

Ow
m/O

w
∗ ; O

h
m/O

h
∗ ; O

l
m/O

l
∗].

(2)

The first three elements in the positional encoding calculate
the center offset between the target object and m-th object,
and the others denote their relative size. Two learnable pro-
jection matrices W1 and W2 in Eqn. (1) then transform the
dimensions of Ob3d

m and Ope
m to d. Finally, a transformation

function T1 generates the final object feature F 3d
m for the

m-th object.
Apart from 3D information in the multi-modal input, the

corresponding 2D feature Of2d
m and 2D bounding box Ob2d

m

are introduced for the m-th object as follows:

Fmulti
m = T2([Of3d

m ; Ocls
m ;W1O

b3d
m ; W2O

pe
m ;

Of2d
m ; W3O

b2d
m ]).

(3)

Concretely, for each object, its ground truth of the 3D
bounding box is projected onto the original ScanNet
videos [11] to obtain the corresponding 2D boxes. In each
training step, an image is randomly selected from the video
sequences to generate an extra input. Features in the 2D
box area are extracted by the Faster-RCNN detector [41]
pre-trained on the Visual Genome [27] dataset, which are
regarded as 2D features for them-th instance, i.e.,Of2d

m . Fi-
nally, as shown in Eqn. (3), by applying linear and nonlinear
transformations W3 and T2, a d-dimensional multi-modal
representation Fmulti

m is generated for the m-th object.
As shown in Figure 2 (a), the multi-modal and 3D modal

inputs have the same format, and each of them is a set of

object features with the shape of RM×d, in which the fea-
tures of the target object andM−1 reference objects are en-
tailed. For convenience, we denote the multi-modal input as
Fmulti = {Fmulti

m }Mm=1, and the 3D one as F3d = {F 3d
m }Mm=1.

Then, these two inputs are fed to the teacher and student
networks for the cross-modal knowledge transfer.

3.2. Baseline Model: TransCap

To apply the 3D and multi-modal object representation to
our framework, we first introduce a baseline model, named
TransCap, which employs Transformer [44] structure to
generate the descriptions of the target object. The student
network in Figure 2 (b) displays the architecture of Tran-
sCap. It containsL encoder layers and one decoder layer. In
each encoder layer, a self-attention mechanism is exploited
to obtain a permutation invariant encoding for the input fea-
ture. Inspired by [10], we design the self-attention operator
SA(·) as follows:

SA(X) = Attention(Q, K, V),

Q =WqX, K = [WkX; Mk], V = [WvX; Mv],
(4)

where X ∈ RM×D is a D-dimensional sequence, and Wq ,
Wk and Wv are matrices of learnable weights. Different
from the traditional attention mechanism [44], the two per-
sistent memory vectors Mk and Mv are appended to learn
the prior knowledge.

The captioning decoder is conditioned on previously
generated words and features from the encoder layers to
generate the next token. Specifically, it integrates the fea-
tures from different encoder layers and performs the cross-
attention on the generated tokens.

Decoder(X̂l,Y) =

L∑
l=1

αl � CA(X̂l,Y), (5)

where CA(·, ·) stands for the encoder-decoder cross-
attention [44], computed using queries from the decoder
output Y, and keys and values from the l-th layer encoder
output X̂l. α are learnable weights having the same size as
the cross-attention results. In this manner, TransCap takes
a sequence of object features as the input, and generates the
description for the target object.

3.3. Cross-Modal Fusion Module

The Cross-modal fusion (CMF) module enables cross-
modal feature interaction between pure 3D and multi-modal
feature representations. As shown in Figure 3, it is designed
to construct interaction from the student network to the
teacher at the same encoder level, thus building a bridge to
fuse features between single and multiple modalities. More-
over, to further enhance the ability of the student network to
learn the multi-modal representation, we exploit a random
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Figure 3. Cross-Modal Fusion (CMF) Module. It is designed
to construct the interactionon from the student to the teacher net-
work at the same encoder level, interacting the features of differ-
ent modalities. During the training phrase, the features from the
teacher network are randomly masked with a specific probability.

mask on the features from the teacher network. Owing to
this framework, the strengths of multi-modal representation
can be assimilated to reinforce the student network via an
end-to-end training protocol. Specifically, we element-wise
add the student features with the masked teacher features.

X̂
∗
l = X̂

student
l ⊕ I(p)X̂

teacher
l , (6)

where the X̂
student
l and X̂

teacher
l denote features from l-th en-

coder layer of student and teacher networks, respectively.
The notation⊕means element-wise addition. The mask in-
dicator I(p) is initialized with 1 and has the probability of
p change to 0. After that, we feed the fused features into
the next encoder layer of the teacher network. It should be
highlighted that, since our CMF module employs the single-
directional connection from the student to the teacher, the
teacher network can be discarded during inference, i.e., it
introduces no extra computation for the student network.
Moreover, various designs for the CMF module, including
ablations, are shown in Section. 4.4.

3.4. Objective Function

Feature alignment loss. Following a standard practice
in knowledge transfer, we use Huber loss Lalign (i.e.,
Smooth-L1 regression loss) to align decoder features be-
tween teacher and student networks.
Captioning loss. As in the previous work [9], we apply
a conventional cross entropy loss function Lce on the gen-
erated token probabilities in both teacher and student net-
works. Furthermore, to further boost the performance, we
propose an enhanced version model X -Trans2Cap (C) by
applying the CIDEr-D score [3] LCIDEr as reward. Follow-
ing the previous work [10], we baseline the reward using the

mean of the rewards rather than greedy decoding following
previous methods [3, 42].
Total objective loss. We combine all three loss terms lin-
early as our final objective loss function:

L = αLalign + βLce + γLCIDEr, (7)

where α, β and γ are the weights for each individual loss.
To guarantee the loss terms are roughly of the same mag-
nitude, we fine-tune weights on the validation split, and set
those to α = 1, β = 1, and γ = 0.1 empirically in the
experiments.

3.5. Training and Inference Schemes

The black and red arrows in the Figure 2 (b) illustrate the
information flow of the X -Trans2Cap for training and infer-
ence. It is noteworthy that teacher and student networks are
trained from scratch. In the training phase, both networks
are exploited (see the black and red arrows in Figure 2 (b)),
and CMF modules between corresponding encoder layers
and feature alignment are conducted to enhance mutual rep-
resentation. During the inference, if only the 3D modality
exists, we only apply the student network (see the red arrow
in Figure 2 (b)). However, if the auxiliary 2D information
is available as well, the stronger teacher framework will be
exploited. In our experiment, we demonstrate that our ar-
chitecture can both enhance the performance of teacher and
student networks with and without additional modality.

4. Experiment
We compare our method with Scan2Cap and 2D base-

lines proposed in their paper. Extending from [9], we fur-
ther compare all methods on Nr3D dataset [1]. More exper-
iment results including subjective evaluation and ablations
are in the supplementary material.

4.1. Datasets

ScanRefer. The ScanRefer dataset [6] annotates 800 3D
indoor scenes in the ScanNet [11] dataset with 51,583 lan-
guage queries. It follows the official ScanNet splits and
contains 36,665, 9,508, and 5,410 samples in train/val/test
sets, respectively. Since the dataset is initially used in visual
grounding and the labels of the test set are inaccessible, we
follow the same setting as in [9] to form the train and val
sets for training and testing.
Nr3D. The Natural Reference in 3D (Nr3D) [1] has the
same train/val split as ScanRefer. It contains 41,503 queries
annotated by Amazon Mechanical Turk (AMT) workers.
Compared with ScanRefer dataset, Nr3D is more challeng-
ing since it does not contain the fixed or redundant sentence
patterns, i.e., declarative sentences starting with “this is” or
“that is”. We do not compare our method on its counter-
part, the Spatial Reference in 3D (Sr3D) dataset, since it is
totally generated by the machine templates.



Table 1. Comparison of 3D dense captioning results obtained by X -Trans2Cap and previous methods using ground truth instances on
ScanRefer and Nr3D datasets. We introduce the conventional captioning metrics, i.e., CIDEr (C), BLEU-4 (B-4), METEOR (M) and
ROUGE (R) for evaluation. The column ‘Extra 2D’ means whether using extra 2D modality in the inference phase. X -Trans2Cap (C)
denotes the original model exploiting extra LCIDEr loss in the final objective function.

Method Extra 2D
ScanRefer Nr3D

C B-4 M R C B-4 M R
Scan2Cap [9] 7 65.79 38.54 28.81 61.93 63.36 32.07 28.92 64.56
Scan2Cap (Inst) 7 64.44 36.89 28.42 60.42 61.89 32.02 28.88 64.17
TransCap 7 75.75 42.06 28.82 62.62 70.60 35.99 29.04 66.00
X -Trans2Cap 7 87.09 44.12 30.67 64.37 80.02 37.90 30.48 67.64
X -Trans2Cap (C) 7 97.17 45.70 31.23 64.23 81.44 39.08 30.79 68.15
Scan2Cap [9] 3 67.95 41.49 29.23 63.66 64.13 32.98 29.75 65.24
Scan2Cap (Inst) 3 70.04 41.57 29.67 64.10 64.00 33.19 29.53 65.29
TransCap 3 88.72 44.24 30.95 64.70 77.55 37.25 30.63 67.43
X -Trans2Cap 3 89.73 44.25 31.00 64.50 85.38 39.52 31.23 68.18
X -Trans2Cap (C) 3 106.11 49.07 32.25 65.54 85.40 40.51 31.36 68.84

4.2. Tasks and Metrics

Tasks. In our experiment, we follow [9] and design two
protocols to evaluate the generated caption:

• Dense captioning with ground truth instances (Oracle
DC): In this setting, the point cloud of each instance
is given. Then one needs to generate faithful captions
based on their attribute information and spatial rela-
tionships.

• Dense captioning with 3D scans (Scan DC): This set-
ting is more challenging. One needs to detect objects
from the 3D scans first and then generate captions for
each object according to the detection results.

Metrics. In Oracle DC, we directly apply CIDEr [45],
BLEU-4 [35], METEOR [5] and ROUGE [31] averagely
on all instances as metrics. For brevity, we simplify them as
C, B-4, M and R, correspondingly.

In Scan DC, to jointly measure the quality of generated
captions and detected bounding boxes, we evaluate them
by combining above metrics with Intersection-over-Union
(IoU) scores between predicted bounding boxes and GT
bounding boxes. Specifically, we follow [9] and define
the combined metrics as m@kIoU= 1

N

∑N
i=1miui, where

ui ∈ {0, 1} is set to 1 if the IoU score for the i-th box ex-
ceeds k, otherwise 0. We use m to represent the above cap-
tioning metrics, e.g., CIDEr. N is the number of detected
object bounding boxes. We also use mean average precision
(mAP) thresholded by IoU as the object detection metric.

4.3. 3D Dense Captioning Results

Oracle dense captioning. The results of Oracle DC task are
displayed in Table 1. In the upper part, we compare results
without the extra 2D input for inference. Scan2Cap and
Scan2Cap (Inst) denote the methods that exploit ground-
truth (GT) boxes and GT instances as input, respectively.

Merely using the baseline model TransCap, we improve the
captioning result by a large margin compared to Scan2Cap
(+9.96 and +7.24 CIDEr points on ScanRefer and Nr3D).
Utilizing our cross-modal knowledge transfer training strat-
egy further boost the performance on all the captioning met-
rics. Specifically, after using our teacher student frame-
work, X -Trans2Cap achieves 11.04 and 9.42 CIDEr im-
provement over TransCap on the ScanRefer and Nr3D
datasets, where the performance on both datasets are about
20 CIDEr scores higher than those of Scan2Cap. The bot-
tom part of Table 1 illustrates the result using extra 2D input
in both the training and inference phases. Though using the
extra 2D input for inference, the performance of Scan2Cap
is still inferior to that of our propsed X -Trans2Cap only ex-
ploiting 3D modal input, let alone using multi-modal. Be-
sides, X -Trans2Cap is better than TransCap when both us-
ing the extra 2D input, especially on Nr3D (85.38 vs 77.55
CIDEr), which illustrates that training with student network
can even improve the result of teacher network. Further-
more, with CIDEr-D score optimization, i.e., X -Trans2Cap
(C) model, the performance of captioning can be further im-
proved.

Scan dense captioning. In Table 2, we compare the result
of Scan DC, which shows results without and with extra 2D
input in the inference phase. The method for proposal gen-
eration is listed in the third column. Among these methods,
2D-3D Proj. and 3D-2D Proj. are two baseline methods
proposed in [9]. 2D-3D Proj. applies Mask R-CNN [17]
to generate 2D proposals in images, where the correspond-
ing 2D bounding boxes and features are fed into the de-
scription generation module [9]. On the contrary, 3D-2D
Proj. exploits VoteNet [38] to extract 3D proposals, which
are projected back to 2D images. Then the projected 2D
proposals are finally adopted [50] to generate captions. As
shown in Table 2, 2D-based methods obtain lowest caption-



Table 2. Comparison of 3D dense captioning obtained by X -Trans2Cap and previous methods, taking 3D Scans as the input on ScanRefer
dataset. We average the scores of the above captioning metrics, which are with the IoU percentage between the predicted bounding box
and the ground truth over 0.25 and 0.5, respectively. The ‘Extra 2D’ means that whether using the extra 2D modality as above. 2D-3D
Proj. and 3D-2D Proj. represent the method in [9], i.e., 2D proposal mapped to 3D and 3D proposal projected to 2D images, respectively.
‘Proposals’ shows the methods exploited to obtain 2D or 3D proposals.

Method Extra 2D Proposals C@0.25 B-4@0.25 M@0.25 R@0.25 C@0.5 B-4@0.5 M@0.5 R@0.5 mAP@0.5
Scan2cap [9] 7 VoteNet 50.71 33.01 25.47 53.60 33.53 21.58 21.04 43.03 32.46
TransCap 7 VoteNet 55.36 32.46 25.64 53.19 40.08 22.86 21.72 44.04 33.34
X -Trans2Cap 7 VoteNet 58.81 34.17 25.81 54.10 41.52 23.83 21.90 44.97 34.68
2D-3D Proj. [50] 3 Mask R-CNN 18.29 10.27 16.67 33.63 8.31 2.31 12.54 25.93 10.50
3D-2D Proj. [50] 3 VoteNet 19.73 17.86 19.83 40.68 11.47 8.56 15.73 31.65 31.83
Scan2cap [9] 3 VoteNet 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78 32.21
TransCap 3 VoteNet 60.04 35.04 26.27 54.46 43.12 24.25 22.15 44.72 34.34
X -Trans2Cap 3 VoteNet 61.83 35.65 26.61 54.70 43.87 25.05 22.46 45.28 35.31

Scan2Cap
This is a white towel. It is to the left of 
another towel.

X-TransCap
This is a green towel. It is hanging on 
the wall.

Ground Truth
A dark green towel. It is hanged in a 
rod that is attached to the wall.

Scan2Cap: This is a white cabinet. It is to the right of the bed.

X-TransCap: This is a brown wooden cabinet. It is to the left of the bed.

Ground Truth: This cabinet is called a wardrobe. It is tall and wooden. It is 
between the window and the bed.

brown cabinet

brown cabinet

wooden cabinet

Scan2Cap
This is a white refrigerator. It is to the right 
of the refrigerator. 

X-TransCap
This is a white refrigerator. It is to the left of 
the stove.

Ground Truth
This is a white refrigerator. It is to the left of 
the stove.

Scan2Cap: The bathtub is brown . It is to the right of the toilet.

X-TransCap: This is a white bathtub. It is to the left of the toilet.

Ground Truth: This is a white bathtub. It is to the left of the toilet.

white bathtub

white bathtub

white bathtub
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Figure 4. Qualitative comparisons on ScanRefer dataset. The upper illustrates the results applying ground truth instances (i.e., Oracle
DC task), and the lower part presents the results using object detection (i.e., Scan DC task). Best viewed in color.

ing scores, which reveals that they cannot directly handle
the 3D dense captioning task. Though Scan2Cap achieves
better results than these 2D based methods, it is much in-
ferior to X -Trans2Cap without the assistance of appealing
2D priors and dedicated network structure. Surprisingly,
we observe that the detection performance of X -Trans2Cap
is improved as well, though there is no extra 2D input fed
into the detector during training and testing. It confirms
that ourX -Trans2Cap is not only capable of faithful caption
generation, but also acquires the knowledge mining capac-
ity within multi-modalities for more complex applications,
i.e., digging out the information embedded into language
description for 3D visual detection. The results of Scan DC
on Nr3D dataset are illustrated in the supplementary.
Visualization. Figure 4 presents the visualization results

of X -Trans2Cap, which demonstrates great improvements
upon Scan2Cap for more faithful captions. Furthermore, we
present the corresponding 2D counterparts within each 3D
scene. Regarding 2D images, they can provide stronger tex-
ture and color information obviously when compared with
sparse point cloud.
Comparison for knowledge transfer. To further verify the
effectiveness of our proposed method upon common teach-
student architecture and other cross-modal manners, we
compare X -Trans2Cap with typical approaches of knowl-
edge transfer in Table 3. Among all the methods, Hinton
et al. [18] and Huang et al. [21] are pure knowledge dis-
tillation designs, where the former is the pioneer for the
research filed and the latter is newly proposed. As shown
in the table, pure knowledge distillation manners cannot be



Table 3. Comparison for knowledge transfer. The results are ob-
tained in Oracal DC on the ScanRefer dataset, where we compare
both single-modal and cross-modal knowledge transfer methods.

Method (Year) C B-4 M R
Hinton et al. [18] (2015) 81.43 42.85 30.40 64.07
Huang et al. [21] (2021) 78.61 41.93 30.14 63.78
Pixel-to-point [32] (2021) 77.82 41.98 29.42 62.79
2D SAT [53] (2021) 80.13 41.13 30.00 63.16
TransCap (baseline) 75.75 42.06 28.82 62.62
X -Trans2Cap (pre-trained) 79.41 42.78 29.88 63.41
X -Trans2Cap 87.09 44.12 30.67 64.37

directly adopted on the 3D DC scenario, and their improve-
ment upon the baseline model is limited. Very recently, ap-
proaches [32] and [53] adopt cross-modal knowledge trans-
fer technique in the 3D tasks. The core idea of [32] is using
extra 2D input to conduct 3D pre-training. We modify it
by first training a TransCap with multi-modal input, then
use its pre-trained parameters as initialization weights for
pure 3D input training. For 2D semantic-assisted training
(SAT) [53], it treats 2D features as additional tokens in (i.e.,
concatenated in sequence dimension) the same model, and
then exploits an attention mask in Transformer layers. This
mask only ignores the attention from 3D to the 2D. How-
ever, both methods cannot boost the performance as no mu-
tual enhancement is introduced.

We also offer an offline distillation design, preparing
a pre-trained teacher network before training the student
network, called X -Trans2Cap (pre-trained) in the bottom
part of the Table 3. It can be noticed that using pre-
trained teacher network results in a performance drop of
7.38 CIDEr, which may result from the distribution gap
between multi-modality data. To the end, in the Table 3,
X -Trans2Cap significantly performs better, which illus-
trates the effectiveness of the teacher-student framework
and cross-modal fusion (CMF) module.

4.4. Analysis and Ablation Studies

Does knowledge transfer help? As results shown in Ta-
ble 1 and 2, when we adopt 2D prior during the training
phase (X -Trans2Cap), it can greatly improve the perfor-
mance upon the baseline model (TransCap).
Does our proposed components help? To further verify
the effectiveness of different components, we conduct the
ablation studies in the Table 4. As shown in Table 4, model
A is our baseline model (TransCap), and model B is our
entire architecture of X -Trans2Cap. The model C is the
ablated architecture that discards the feature alignment loss
Lalign. It can be found out that there is a great performance
drop from 87.09 to 79.58 in terms of CIDEr metric. Fortu-
nately, due to the advantage of CMF module, it still has 3.83
improvement upon the baseline model. Similarly, the per-

Table 4. Ablation study for applying different knowledge transfer
designs. The results are obtained in Oracal DC on the ScanRe-
fer dataset. The upper part shows ablated results without specific
components, and the lower illustrates results of CMF designs.

Design C B-4 M R
A TransCap (baseline) 75.75 42.06 28.82 62.62
B X -Trans2Cap 87.09 44.12 30.67 64.37
C w/o Lalign 79.58 41.47 30.07 63.59
D w/o CMF 80.54 43.15 30.19 63.59
E Concatenation 79.87 43.28 30.22 64.88
F w/o Randon Mask 85.36 42.57 30.52 64.18
G Attention [44] 80.85 44.75 30.45 64.91

formance drop is appearing (-5.25 CIDEr) when removing
the CMF module (model D). This result demonstrates that
both framework architecture and CMF module play impor-
tant roles in X -Trans2Cap.
How to design cross-modal fusion? We illustrate the re-
sults from different designs of CMF module in the bottom
part of the Table 4. On the one hand, discarding the ran-
dom mask hampers the caption results, as shown in model F.
On the other hand, exploiting more complicated operations
such as concatenation and attention mechanism cannot ef-
fectively improve the performance. There is only a slight
improvement on the metrics of BLEU-4 and Rough for
adopting attention. However, it will greatly increase the
model complexity while make the CIDEr decline.

5. Conclusion
In this work, we propose an enhanced 3D dense cap-

tioning method via cross-modal knowledge transfer, named
X -Trans2Cap. By designing the network architecture and
knowledge distillation method carefully, our X -Trans2Cap
outperforms previous methods by a large margin on mul-
tiple datasets with more faithful captions. We believe that
our work can be applied to a wider range of 3D vision and
language scenarios, and provide a solution to the compre-
hension of 3D scenes with severe texture details missing,
i.e., leveraging the 2D priors and the cross-modal knowl-
edge transfer to improve the performance.
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Supplementary MaterialS

A. Overview
In this supplementary material, we illustrate the imple-

mentation details, the efficiency of the model and the re-
sults of subjective evaluation in Section B, Section C and
Section D, respectively. After that, we provide more ex-
periments of Scan Dense Captioning (DC) on Nr3D dataset
in Section E. Then we discuss the effectiveness of each at-
tribute in instance representation in Section F.

B. Implementation Details
In our experiment, we adopt the PointNet++ to generate

3D object features (Of3d
m ) in Oracle DC, and applies propos-

als’ features from VoteNet in the Scan DC. Furthermore, in
the test with Oracle DC, we use ground truth category as
Ocls

m while adopting the predicted results from detector in
Scan DC task. We train the network for 30 epochs by using
Adam optimizer with a batch size of 32. The probability of
random mask in CMF module is set as 0.2 when achieving
the best, and it does not greatly change the result. It should
be noted that both teacher and student networks are trained
from scratch. The learning rate is initialized as 0.0005 with
the decay as 0.1 for every 10 epochs. Experiments are con-
ducted on RTX2080Ti GPUs.

C. Running Time Evaluation
We investigate the running time of our model in this sec-

tion. Table 1 shows the number of parameters and inference
time of per scan in Oracle DC setting. X -Trans2Cap (3D)
can speed up more than 20× compared with its baseline and
X -Trans2Cap using extra 2D modality.

D. Subjective Evaluation
We conduct a subjective evaluation with three volun-

teers on randomly selected 100 descriptions generated by
Scan2Cap and X -Trans2Cap with Oracle DC setting on
ScanRefer datasets. The subjective evaluation results are
shown in Table 2. In practice, each volunteer is asked to
manually check whether the descriptions correctly reflect
two aspects of the object: object color attributes and spatial
relations in local environment. As observed from Table 2,
X -Trans2Cap can generate more faithful captions regarding
the attributes and spatial relationships.

E. Scan Dense Captioning on Nr3D
In Table 3, we compare the results of Scan DC on Nr3D,

including the results without and with extra 2D input in the
inference phase. All methods exploit the same network, i.e.,
VoteNet, to generate proposals. 3D-2D Proj. projects pro-
posals back to 2D images and captions in a 2D manner.

Table 1. The complexity analysis between X -Trans2Cap using
both 3D and 2D inputs and only 2D input. Here underline corre-
spond to the time and parameters for the 2D feature extractor.

Method 2D #Param (M) Inference (s)
TransCap 7 19.9 0.4
TransCap 3 60.0+19.9 8.1+0.4
X -Trans2Cap 7 19.9 0.4
X -Trans2Cap 3 60.0+38.8 8.1+0.9

Table 2. Subjective evaluation in Oracle DC setting. We measure
the accuracy of two aspects (object colors and spatial relations) in
the generated captions.

Design Extra 2D Attribute Relation
Scan2Cap 7 61.82 66.86
X -Trans2Cap 7 68.73 (+6.91) 75.54 (+8.68)
Scan2Cap 3 64.21 69.00
X -Trans2Cap 3 70.12 (+5.91) 78.97 (+9.97)

However, it achieves the lowest captioning scores, which
reveals that it cannot directly handle the 3D dense caption-
ing task. Though Scan2Cap achieves better results than 3D-
2D Proj., it also cannot generate faithful captioning results.
Not surprisingly, X -Trans2Cap obtains the highest score in
all metrics. Specifically, it not only gains a +2.9 improve-
ment in CIDEr@0.25 score upon baseline TransCap, but
also achieves +5.5 boost over Scan2Cap. Finally, the ex-
periment also confirms that our X -Trans2Cap can improve
3D visual detection as well.

F. Analysis and Ablation Studies
We further conduct an ablation study on different in-

stance representation designs as shown in Table 4, where
the upper part and lower part show the specific designs in
teacher and student network, respectively.
Does object class help? From the results of model B in
Table 4, it can be found out that there is a dramatic drop in
metric of CIDEr, from 87.09 to 70.41, when we discard the
object class Ocls. Thus, it shows that Ocls is an important
attribute for instance representation. Note that the ablated
model B is still +6 CIDEr higher than that of Scan2Cap.
Does 3D bounding box help? As shown in results of model
C in Table 4, removing the 3D bounding box Ob3d will
not cause a large performance drop, only -4.1 CIDEr from
87.09 to 82.99. This result reflects that X -Trans2Cap uti-
lizes 3D object spatial coordinates to generate captions.
Does positional encoding help? The result of model D
demonstrates a tremendous performance decrease in metric
of CIDEr when positional encoding Ope is not exploited,
where the model can only obtain 33.52 in metric of CIDEr.
Since our model only chooses one object as the target ob-
ject and the remaining ones will be regarded as reference



Table 3. Comparison of 3D dense captioning obtained by X -Trans2Cap and previous methods, taking 3D Scans as the input on Nr3D
dataset. We average the scores of the above captioning metrics, which are with the IoU percentage between the predicted bounding box
and the ground truth over 0.25 and 0.5, respectively. The ‘Extra 2D’ means that whether using the extra 2D modality as above. 3D-2D
Proj. represents the method in Scan2Cap, i.e., 3D proposal projected to 2D images. ‘Proposals’ shows the methods exploited to obtain 2D
or 3D proposals.

Method Extra 2D Proposals C@0.25 B-4@0.25 M@0.25 R@0.25 C@0.5 B-4@0.5 M@0.5 R@0.5 mAP@0.5
Scan2cap 7 VoteNet 41.76 24.12 24.98 55.79 23.70 14.88 20.95 47.50 32.17
TransCap 7 VoteNet 44.32 25.63 25.25 55.69 27.24 17.76 21.60 49.16 34.09
X -Trans2Cap 7 VoteNet 47.26 27.38 25.45 56.28 30.96 18.70 22.15 49.92 34.13
3D-2D Proj. 3 VoteNet 8.57 8.49 18.83 44.95 3.93 4.21 16.68 41.24 31.83
Scan2cap 3 VoteNet 42.24 24.43 25.07 55.88 24.10 15.01 21.01 47.95 32.21
TransCap 3 VoteNet 45.06 25.79 25.22 55.55 33.45 19.09 22.24 50.00 33.71
X -Trans2Cap 3 VoteNet 51.43 27.62 25.75 56.46 33.62 19.29 22.27 50.00 34.38

Table 4. Ablation study for applying different instance representation designs. The results are obtained in Oracal DC on the ScanRefer
dataset. The upper part shows ablated results for different student input design, and the lower illustrates results using specific input for
teacher network.

Teacher Network Student Network Metrics
Model Of3d Ocls Ob3d Ope Of2d Ob2d Of3d Ocls Ob3d Ope C B-4 M R

A 3 3 3 3 3 3 3 3 3 3 87.09 44.12 30.67 64.37
B 3 3 3 3 3 3 3 7 3 3 70.41 39.98 28.70 62.09
C 3 3 3 3 3 3 3 3 7 3 82.99 43.39 30.22 64.57
D 3 3 3 3 3 3 3 3 3 7 33.52 35.67 26.33 61.78
E 7 3 3 3 3 3 3 3 3 3 86.71 43.92 30.54 64.32
F 3 3 3 3 7 3 3 3 3 3 84.23 43.43 30.24 64.33
G 3 3 3 3 3 7 3 3 3 3 83.85 43.12 30.24 64.52

objects, positional encoding helps the model to identify the
target one. Without its help, the network can hardly work.
Does 2D input help? The lower part of Table 4 describes
the effectiveness of different attributes in the teacher net-
work. There are three conclusions can be obtained: 1) Dis-
carding 3D features Of3d in teacher network barely ham-
pers the performance (model E). This is because the 3D
features also exist in the input of the student network. 2)
Utilizing the pre-trained network to extract 2D features is
not necessary (model F). The result of model F shows that
even if we only exploit the information of 2D bounding box,
there is only an about -2 CIDEr drop for the caption results.
3) The 2D bounding box information Ob2d seems to play a
more important role compared with 2D features Of2d (see
the model G). Without using Ob2d, the model only obtains
83.85 CIDEr, and this result is even 0.4 lower than that of
model F (without using Of2d). Such results also emphasize
the capability of X -Trans2Cap in real-world applications,
i.e., without pre-trained 2D network, only utilizing the 2D
bounding box information can still greatly boost the cap-
tioning performance.
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