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Abstract

Unsupervised video anomaly detection, a task that requires
no labeled normal/abnormal training data in any form, is chal-
lenging yet of great importance to both industrial applications
and academic research. Existing methods typically follow an
iterative pseudo label generation process. However, they lack
a principled analysis of the impact of such pseudo label gen-
eration on training. Furthermore, the long-range temporal de-
pendencies also has been overlooked, which is unreasonable
since the definition of an abnormal event depends on the long-
range temporal context. To this end, first, we propose a causal
graph to analyze the confounding effect of the pseudo la-
bel generation process. Then, we introduce a simple yet ef-
fective causal inference based framework to disentangle the
noisy pseudo label’s impact. Finally, we perform counterfac-
tual based model ensemble that blends long-range temporal
context with local image context in inference to make final
anomaly detection. Extensive experiments on six standard
benchmark datasets show that our proposed method signifi-
cantly outperforms previous state-of-the-art methods, demon-
strating our framework’s effectiveness.

Introduction
Video anomaly detection (VAD) refers to the task of de-
tecting anomalous events, such as unusual pedestrian mo-
tion patterns, traffic accidents, and thrown objects, etc., in
frames of a video, that divert significantly from the observed
normal routine. The practical importance of the task has at-
tracted extensive research both from industry and academia.
The majority of such research share a typical setting that ei-
ther a set of labeled abnormal events in the dataset is avail-
able or the training dataset must contain normal videos only,
limiting the wide application of such research. Instead, an-
other line of research focuses on designing algorithms fol-
lowing a completely unsupervised setting where no labeled
normal/abnormal training data is provided in any form. In
this paper, we focus on such unsupervised video anomaly
detection (UVAD). To supervise the training, self-training
with iterative pseudo label generation is usually adopted,
a technique that has been extensively studied and used in
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unsupervised learning (Giorno, Bagnell, and Hebert 2016;
Ionescu et al. 2017; Wang et al. 2018; Pang et al. 2020). The
key working principle behind such a pipeline is two-fold:
First, the learned representations are biased towards normal
events since abnormal events in real world are rare, mak-
ing the representations of abnormal events more discrimi-
native; Second, the majority of the pseudo labels generated
by heuristic designs are accurate enough, for example auto-
encoder based reconstruction in (Wang et al. 2018) and
Sp+iForest in (Pang et al. 2020) etc.
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𝐄𝐄: Feature Extractor
X: Input Video Frame Feature
S: Noisy Pseudo Label Feature
L: Noisy Pseudo Label
M: Anomaly Specific Feature
Y: Prediction

Figure 1: The proposed causal graph explaining the causal
effect of noisy pseudo label.

Although an anomaly detection model trained with the
aforementioned pseudo labels exhibits competitive perfor-
mance, its performance gain primarily comes from the cor-
rect pseudo labels. Without a principled analysis of the neg-
ative impact introduced by the incorrect pseudo labels, fur-
ther performance improvement is limited. To better under-
stand the noisy pseudo label’s impact and obtain insights
about this phenomenon, we approach this problem from a
causal inference perspective. According to Fig.1, the UVAD
task is to learn a model that could estimate P (Y |X,M).
The pseudo label generation process (E → S → L) pro-
duces noisy pseudo label set L that supervises the training of
anomaly specific feature representation M in P (Y |X,M).
On the one hand, the correct pseudo labels benefit the
anomaly specific feature representation learning M , lead-
ing to a significant performance gain. This is denoted as the
mediation causal path (X → M → Y ) in Fig. 1. On the
other hand, the incorrect pseudo labels confound X and Y
via the backdoor path (X ← E → S → L → M → Y ). A
backdoor path is defined as one end of the path has an arrow
into X and the other end into Y , making X and Y spuri-
ously dependent. In other words, this causal path has a detri-
mental effect that spuriously correlates some abnormal/nor-
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mal events with normal/abnormal labels, which misleads the
classifier biased towards making false predictions. There-
fore, we conjecture that the mixed causal effects from the
above mentioned two causal paths are one of the main causes
of the performance bottleneck. Furthermore, the interactions
between the long-range temporal context and image frame
appearance itself are essential to discriminate anomalous
video frames. Existing methods perform such interactions
by collecting a small range of neighboring video frames as
inputs, which lack sufficient abilities to exploit long-range
temporal context in video activities since a short range of
temporal context involves inconsistent temporal context in-
formation (Yu et al. 2020; Pang et al. 2020; Ionescu et al.
2017; Giorno, Bagnell, and Hebert 2016; Wang et al. 2018).

According to the above analysis, we propose a new two-
stage causal inference based pipeline that aims to disentan-
gle the noisy pseudo label’s impact and incorporate long-
range temporal context. Concretely, at the first stage, we
conduct de-confounded training by keeping the beneficial
mediation path while removing the backdoor path as shown
in Fig. 3. Then, we perform a counterfactual based model en-
semble by summing up predictions from the model trained
in the first stage and from the same model with inputs re-
placed by a long-range sliding window based context fea-
ture while keeping the mediator M unchanged as shown in
Fig. 4. It is important to note that the second stage does not
require extra training, meaning that we just need to perform
inference twice to obtain the counterfactual model ensemble
prediction, which is lightweight and cost-free. The pipeline
is shown in Fig. 5.

To sum up, this paper has the following contributions:
• To our best knowledge, we are the first to investigate the

impact of the noisy pseudo label in UVAD from the per-
spective of causal inference and identify that the pseudo
label generation contains a confounding effect that limits
further performance improvement.

• We introduce an iterative two-stage causal inference
based framework to disentangle the noisy pseudo label’s
impact. Specifically, we adopt de-confounded training
with causal intervention to remove the detrimental back-
door causal path and perform counterfactual based long-
range temporal context ensemble with the trained model.

• Our method outperforms all previous methods by a clear
margin, achieving new state-of-the-art performance on
six standard datasets.

Related Works
Unsupervised Video Anomaly Detection. Giorno et
al. (Giorno, Bagnell, and Hebert 2016) introduced the
UVAD problem and proposed to use permutation tests to
detect changes on a frame sequence to see which frames
are distinguishable from all the previous frames. Ionescu
et al. (Ionescu et al. 2017) removed the permutation tests
and instead applied unmasking to measure the abnormal-
ity according to the changes of the classification accuracy.
Wang et al. (Wang et al. 2018) approached the problem from
an auto-encoder perspective to solve the UVAD task. The
most similar work to ours is (Pang et al. 2020) where it first

adopted Sp+iForest (Liu, Ting, and Zhou 2012) to gener-
ate pseudo labels of video frames and then trained a self-
supervised deep ordinal regression model iteratively in an
end-to-end manner. However, our work differs in the fol-
lowing aspect: (1) We analyze the role of the pseudo la-
bel generation in (Pang et al. 2020) from a causal inference
perspective and identified that it has a confounding effect
on P (Y |X,M). (2) We propose to utilize the backdoor ad-
justment approach to eliminate the confounding effect ex-
plicitly by stratifying (intervening) the pseudo label feature
S and blocking the X ← E → S → L → M → Y .
(3) We inject long-range temporal context prior information
to the model prediction through counterfactual based model
ensemble with negligible computational cost.

Causal Inference. It is a statistical tool that empowers the
model to reason the casual effect between variables of inter-
est. It has been extensively studied and applied in statistics,
psychology, economics, and sociology (Morgan and Win-
ship 2014; Chernozhukov, Fernández-Val, and Melly 2009;
Rubin 2005; Petersen, Sinisi, and van der Laan 2006; Pearl
2001). Recent years have witnessed an increasing number of
active research in applying causal inference to many com-
puter related problems, including natural language process-
ing (Liu et al. 2021; Keith, Jensen, and O’Connor 2020),
computer vision (Tang et al. 2020; Zhang et al. 2020; Wang
et al. 2020), Robotics (Ahmed et al. 2021), etc. We follow
the same graphical notation in Pearl’s graphical model (Pearl
2009). However, we proposed a tailored causal graph for the
UVAD task, which, to our best knowledge, is the first at-
tempt to investigate the confounding effect of the pseudo
label generation process in UVAD. Moreover, we model the
interactions between long-range temporal context and local
image frame appearance via counterfactual based feature re-
placement.

Method
Problem Formulation

General Settings. Given a set of video frames I = {Ii}Ki=1
where K is the total number of video frames, the extracted
feature set is represented as X = {xi}Ki=1, where xi ∈
RDb . We define the overall noisy pseudo label set as L =

A ∪ N = {li|li = c, c ∈ C = {0, 1}}Ki=1, where the pseudo
anomaly label set toA and the pseudo normal label set toN .
C represents the label set, 0 for the normal event and 1 for
the abnormal event. We formulate the UVAD task as,

F = arg min
Θ

∑
I∈I
Lfoc(ŷ = φ(m = ϕ(x = f(I))), l) (1)

where we aim to learn an anomaly detector F via a convolu-
tional neural network which consists of a backbone network
f(·; Θb) : RH×W×3 7→ RDb that transforms an input video
frame I to feature x, an anomaly representation learning
block ϕ(·; Θa) : RDb 7→ RDs that converts x to an anomaly
specific representation m, and an anomaly score regression
layer φ(·; Θs) : RDs 7→ R that learns to predict m to an
anomaly score y. The overall parameters Θ = {Θb,Θa,Θs}



are optimized by the focal loss (Lin et al. 2017) Lfoc,

Lfoc(ŷ, l) = α1l(1− σ(ŷ))2 log σ(ŷ)

+α2(1− l)σ(ŷ)2 log (1− σ(ŷ))
(2)

where σ(·) is the standard sigmoid function. α1 and α2 are
hyperparameters.

A Strong Baseline. We then introduce the training of a
strong baseline anomaly detector F following the same log-
ics in (Pang et al. 2020).

Round 0: Initial pseudo label set generation L0. We use
a ResNet-50 CNN (He et al. 2016) pre-trained on Ima-
geNet (Krizhevsky, Sutskever, and Hinton 2012) as f(·) to
extract X . Then, an unsupervised algorithm is adopted to
perform initial pseudo labels generation for L0. It is true
that many algorithms can be chosen for this task, such as
auto-encoder network (Wang et al. 2018). However, for fair
comparisons with (Pang et al. 2020), isolation forest algo-
rithm (Liu, Ting, and Zhou 2012) is adopted. It isolates
anomalous events by randomly selecting a feature and then
randomly selecting a split value between the maximum and
minimum values of the selected feature. This is equivalent
to building up a forest of random trees where the feature and
cut-point at each tree node are randomly selected. The num-
ber of splittings required to isolate a sample equals to the
path length from the root node to the terminating node. This
path length, averaged over a forest of such random trees, is
a measure of normality. Concretely, given a random subset
R ⊂X and x ∈ R, the anomaly score of x is defined as,

z = PCA(x)

score(z) = 2−
E(h(z))
τ(|R|)

τ(n) = 2Har(n− 1)− (2(n− 1)/n)

(3)

where PCA(·) is principle component analysis function that
retains 99% of the amount of explained variance. h(z) rep-
resents the path length of z that is measured by the number
of edges it traverses an isolation tree from the root to a leaf
node by z. E(h(z)) is the average of h(z) from a collection
of isolation trees. |R| denotes the total samples in R.Har(·)
is the harmonic number. τ(·) is a normalization term.

Round 1: Learning with L0. With L0 computed at previ-
ous Round, we perform learning with equation (1) to obtain
F1. Then, we re-sample the pseudo label set L1 with F1.

Round 2 to T : Self-supervised pseudo label learning pro-
cess. Self-training with iterative pseudo label generation is
performed to gradually refine the quality of L. Specifically,
new pseudo label setLt generated with the trainedFt is used
to train a new Ft+1. This process is iterated for T Rounds
until the performance plateaus.

A Causal Inference Look At UVAD
Analysis. We propose a causal graph shown in Fig. 1 to ana-
lyze the problem of the aforementioned training of F . Here,
we briefly introduce the definition of the causal graph. The
causal graph in Fig. 1 consists of six variables of interest:
feature extractor (E), noisy pseudo label feature (S), noisy
pseudo label (L), input video frame feature (X), anomaly
specific feature representation (M ), and model prediction

(Y ). It basically contains two parts: (1) the pseudo label
generation part via Link E → S → L, which represents
the pseudo label generation in the Round 0 and following
Rounds; (2) the model training part via Link E → X denot-
ing x = f(I) in equation (1), Link X →M → Y denoting
ŷ = φ(m = ϕ(x = f(I))), and Link L → M ← X de-
noting Lfoc(ŷ, l). Besides, Link X → Y is the direct causal
effect between X and Y which we aim to achieve.

As discussed in previous section, the performance of the
learned model F cannot imply the direct causal effect be-
tween X and Y because an apparent backdoor path X ←
E → S → L → M → Y makes X and Y spuriously de-
pendent. Correct pseudo labels help F learn better anomaly
specific representation space via X → M → Y while in-
correct pseudo labels distort the space through the backdoor
path. Therefore, this provides a potential to further improve
the performance.

De-confounded Training with Causal Intervention. To
address the aforementioned problem, we propose an inter-
vened causal graph to solve the confounding bias of the
pseudo label generation process as shown in Fig. 3. The ad-
justed causal graph blocks the confounding path by block-
ing the causal link the X ← E → S → L → M → Y ,
which makes the pseudo label generation process not spu-
riously correlated with the model learning. Thus, learn-
ing with this causal graph produces the direct causal ef-
fect between X and Y denoted as P (Y |do(X),M) =∑

s P (Y |X,M,S = s)P (s). This technique is termed as
backdoor adjustment (Pearl 2001), which amounts to parti-
tioning the population into groups that are homogeneously
relative to S, assessing the effect of X on Y in each homo-
geneous group, and then averaging the results. Note that we
choose S here because it is the only feasible variable that
can be partitioned to perform backdoor adjustment, while
the feature extractor E and noisy pseudo label L are in-
tractable to be partitioned. To this end, we define the learned
model with P (Y |do(X),M) as F∗ and the implementation
of P (Y |do(X),M) is

P (Y = c|do(X = x),M = m) = Es [σ(F∗(x,m, s))]

≈ σ(Es [F∗(x,m, s)])
(4)

whereF∗ outputs the unbiased prediction logit of x for class
c. Since Es [·] requires computationally expensive sampling,
we thus perform approximation shown in equation (7).

d=0 d=8 d=16 d=256 d=1024

d=0 d=8 d=16 d=256 d=1024

Figure 2: Temporal Context of UCSD Ped2 (first row) and
Avenue (second row) from short-range (d=0) to long-range
(d=1024).

Counterfactual Based Long-range Temporal Context
Ensemble. With the model trained in aforementioned de-



confounded training, we further increase the model capacity
by injecting long-range temporal context prior to the model
prediction. In VAD, extracting robust temporal context is
critical for the determination of an abnormal event. Existing
methods typically model temporal context as a short-range
of neighboring video frames while ignoring long-range tem-
poral context. Different short-range temporal context repre-
sentations may differ significantly from each other and have
large variations, which is not conducive to capture robust
temporal context representation. On the contrary, long-range
temporal context representations are more stable and change
slightly as the video plays. This phenomenon is illustrated
in Fig. 2, where we plot the change of temporal context fea-
tures as the neighboring frames are increased: (1) the left
most column denotes short-range (0 neighboring frames)
temporal context feature projected to 2D image plane and
(2) the right most column shows long-range (1024 neighbor-
ing frames) temporal context feature projected to 2D image
plane. It is clear that short-range temporal context feature
representation is much noisier than the long-range counter-
part and the long-range temporal context shows smoother
and clearer pattern. To this end, we propose to model the
long-range temporal context via counterfactual feature re-
placement shown in the second part of Fig 4. Due to the fact
that the magnitude of normal prediction logit and that of the
long-range temporal context prediction logit are different,
we normalize the prediction logits from F∗ for normal pre-
diction and long-range prediction before summing up them
together for model ensemble. The final anomaly prediction
score O(·) for class c is defined as follows:

O(Y = c) = σ(Norm(Es [F∗(x,m, s))] +

Norm(Es [F∗(xa,m, s)]))
(5)

where xa =
(∑d

i=−d xi

)
/2d is the mean feature of

a sliding window centered at x with window size d.
Norm(logit) = (logit−µ)/δ where µ is the mean value of
all logits of all frames and δ is the standard deviation of all
logits of all frames.

Overall Formulation. The overall formulation of the
anomaly prediction problem is defined as the measurement
of the O(·) score.

arg max
c∈C

O(Y = c) (6)

De-confounded Training
As discussed in the previous subsection, we propose to use
backdoor adjustment to derive the de-confounded model.
The key idea is to stratify (intervene) one of the variables
E, S or L to block the backdoor path. However, the stratifi-
cation of the pseudo label generation process can be imple-
mented as stratifying the pseudo label feature S because L
is determined by the feature set S generated by E only and
stratifying L or E is intractable. Therefore, we define the
stratification of S as S = {si}Nsi=1 where si ∈ RDb and Ns

is a hyperparameter representing the size of the confounder
set S. Since the number of the noisy pseudo label features is
large in reality, in the implementation, we utilize K-Means
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Figure 3: Overview of the proposed de-confounded train-
ing. (a) represents the intervened causal graph. The detailed
implementation is illustrated in (b). In particular, the pseudo
label setL and the confounder set S are iteratively generated
via the red lines; then, the de-confounded training process is
performed following the orange lines. The DCFD Block is
the de-confound process illustrated in equation (8).

with PCA(·) to learn the confounder set S. Therefore, the
overall formulation for equation (4) is,

P (Y |do (X)) =
∑
s

P (Y |X = x,M = m, S = s)P (s)

≈ P

(
Y |X,m =

∑
s

g (x = f(I), s)P (s)

)
(7)

where the approximation is achieved by the Normalized
Weighted Geometric Mean (Xu et al. 2015b)(See Supple-
mentary Document). Blocking the backdoor path makes X
have a fair opportunity to incorporate every s into Y ’s pre-
diction, subject to a prior P (s). g(·) is defined as follows,

m = g(x,S)P (S) =
∑
s

g(x, s)P (s)

= softmax(
(W 1x)T (W 2S)√

Dh

)S

(8)

where P (si) = |si|∑
j |sj |

and |si| is the number of samples in

cluster si. W 1, W 2 ∈ RDh×Db are learnable parameters to
project x and si into a joint space.

√
Dh is a constant scaling

factor for feature normalization. In the implementation, to
better represent the anomaly specific feature, we further set
M = m⊕ where m⊕ = concat(x,m).

Finally, the model F∗ defined in this section is trained
with the Lfoc.

Counterfactual Temporal Context Ensemble
With the model F∗ trained in previous subsection, we aim
to inject long-range temporal context prior to the model pre-
diction. Given an input video frame I , the first term in equa-
tion (5) is obtained via a normal inference taking as input
x = f(I) and thus m⊕ = concat(x,m). The second term
in equation (5) is implemented as a counterfactual feature
replacement. In other words, we set m⊕a = concat(xa,m)
followed by later fusion layers. That is setting the input to
the mean feature xa of a sliding window centered at I and
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Figure 4: The counterfactual long-range temporal context
model ensemble to calculate final output anomaly prediction
logits. The left part is P (Y = c|do(X = x),M = m⊕) and
the right represents P (Y = c|do(X = xa),M = m⊕a ).

at the same time keeping everything else unchanged. This
implementation mimics the interactions between a long-
range temporal context xa and local image context m. With
such a disentangled design, the first term maintains the de-
confounded anomaly prediction and the second term incor-
porates interactions between long-range temporal context
and local image context. Summing up them together resem-
bles a model ensemble. The implementation of equation (5)
is defined as,

O(Y = c) = σ(Norm(Es

[
F∗(x,m⊕, s))

]
+

Norm(Es

[
F∗(xa,m

⊕
a , s)

]
))

(9)

Self-supervised Pseudo Label Learning

DCFD
Training CTCE

X
𝓕𝓕𝒕𝒕
∗

𝑳𝑳𝒕𝒕+𝟏𝟏,
𝑳𝑳 and 𝑺𝑺 Update
De-confounded Training 𝑺𝑺𝒕𝒕+𝟏𝟏

Figure 5: Overall pipeline of the two-stage iteration. DCFD
Training is illustrated in Fig. 3 and CTCE is the counterfac-
tual Temporal Context Ensemble shown in Fig. 4.

To this end, we have presented the de-confounded train-
ing module and the counterfactual based long-range tempo-
ral context ensemble module. Following (Pang et al. 2020),
we follow the same self-supervised pseudo label learning
setting as that of the strong baseline. Concretely, at Round
0, we use the aforementioned isolation forest algorithm to
initialize the pseudo labels L as L0. The confounder set S
is first initialized as S0 using the backbone f(·). Then, at
Round 1, we perform de-confounded training to obtain the
optimized model parameter F∗1 , which is then used to up-
date S to S1 and L0 to L1 via counterfactual temporal con-
text ensemble module. At Round 2 and onward, this self-
supervised pseudo label learning procedure is repeated for
T Rounds. In general, although our framework falls into the
self-supervised pseudo learning paradigm, our contributions
are that we explicitly removes the confounding bias caused
by pseudo label generation process and incorporates long-
range temporal context prior in a counterfactual manner. Ex-

periments in the later section further show that our model
performance surpasses previous SOTA significantly.

Experiments
Implementation Details
Training and Evaluation. Since anomalies are rare events
in real-world applications and it is violated if only the test set
of these datasets are used, following (Pang et al. 2020), we
merge the training and test sets to construct a full dataset.
We train the model on a sampled training set and eval-
uate our model on the full dataset with the ground truth
used in the evaluation only. To obtain reliable pseudo la-
bels for training, we construct the pseudo anomaly label
set A by keeping frames with top a% anomaly scores as
anomalous frames and build up the pseudo normal label
set N by selecting b% most normal frames based on the
anomaly scores. a and b are typically set to 5 and 20 re-
spectively. These two cutoff thresholds are used by default as
they consistently obtain substantially improved performance
on datasets with diverse anomaly rates. Setting b to a higher
value can always help to achieve a high-quality N because
of the overwhelming presence of normal frames in the real-
word datasets. For more implementation details, please re-
fer to the supplementary document.

Evaluation Datasets and Metric
We evaluate our method on four benchmark datasets, namely
UCSD dataset (Mahadevan et al. 2010), Subway surveil-
lance dataset (Adam et al. 2008), UMN dataset (Mehran,
Oyama, and Shah 2009), and Avenue dataset (Lu, Shi,
and Jia 2013). Following (Sugiyama and Borgwardt 2013;
Giorno, Bagnell, and Hebert 2016; Ionescu et al. 2017;
Luo, Liu, and Gao 2017; Sultani, Chen, and Shah 2018;
Wang et al. 2018; Liu, W. Luo, and Gao 2018; Pang
et al. 2020), we employ ROC curves and the correspond-
ing area under the curve (AUC) as the evaluation metric,
which is computed with respect to the ground truth frame-
level annotations. For more datasets’ details, please refer to
the supplementary document.

Ablation Study
We conduct extensive experiments to verify the effective-
ness of our model in the following aspects: (1) Component
Effectiveness; (2) Variants of Counterfactual Ensemble; (3)
Loss Design; (4) Backbone Robustness; (5) Hyperparame-
ter Tuning. For fair comparisons, we choose the baseline
model that consists of a ResNet-50 as f(·) and two con-
secutive FC-BN-ReLU as ϕ(·) followed by a single FC as
φ(·) for all experiments. In (4), we further test C3D (Tran
et al. 2015), I3D (Carreira and Zisserman 2017) (taking
RGB image as input only), and VGG (Simonyan and Zis-
serman 2015) for f(·). All experiments are performed on
the challenging UCSD datasets and are conducted with self-
supervised pseudo label learning. We set the default set-
ting on the UCSD datasets to: Ns = 16, d = 1024,
(a%, b%) = (5%, 20%) to balance the computational cost
and performance. The ablations are performed by changing
each parameter at a time.



Table 1: Comparisons with state-of-the-art methods including 16 methods that require labeled normal data in the upper block
and 7 methods that require no labeled data in the bottom block. The numbers are Frame-level AUC performance. The best
performing result in each block is marked as bold.

Supervision Method Feature
Dimension ID UCSD Subway UMN AvenuePed1 Ped2 Entrance Exit Scene1 Scene2 Scene3 All Scenes

Labeled
Data

MPPCA (Kim and Grauman 2009) 3D 1 59.0% 69.3% - - - - - - -
SFM (Mehran, Oyama, and Shah 2009) 3D 2 67.5% 55.6% - - - - - 96.0% -

MDT (Mahadevan et al. 2010) 3D 3 81.8% 82.9% - - - - - - -
SRC (Cong, Yuan, and Liu 2011) 3D 4 - - 80.0% 83.0% 99.5% 97.5% 96.4% 97.8% -

AMDN (Xu et al. 2015a) 3D 5 92.1% 90.8% - - - - - - -
LSHF (Zhang et al. 2016) 3D 6 87.0% 91.0% - - 99.2% 98.3% 99.9% 99.7% -

GNG (Sun, Liu, and Harada 2017) 2D 7 93.8% 94.1% - - 99.8% 99.3% 99.9% 99.7% -
FFP (Liu, W. Luo, and Gao 2018) 3D 8 83.1% 95.4% - - - - - - -
AMC (Nguyen and Meunier 2019) 3D 9 - 96.2% - - - - - - -

MemAE (Gong et al. 2019) 3D 10 - 94.1% - - - - - - -
OCAA (Ionescu et al. 2019) 3D 11 - 97.8% - - - - - 99.6% -

DAE (R.T. et al. 2019) 3D 12 - - 93.5% 95.1% 99.9% 98.2% 99.8% 99.3% -
MLEP (Liu et al. 2019) 3D 13 - - - - - - - - 92.8%

PMem (Park, Noh, and Ham 2020) 2D 14 - 97.0% - - - - - - 88.5%
CDAE (Chang et al. 2020) 3D 15 - 96.5% - - - - - - 86.0%

CTH (Yu et al. 2020) 3D 16 - 97.3% - - - - - - 89.6%

No
Labeled

Data

ADF (Giorno, Bagnell, and Hebert 2016) 3D 17 59.6% 57.6% 74.6% 87.2% 80.2% 88.3% 77.1% 84.8% -
Unmask (Ionescu et al. 2017) 3D 18 68.4% 82.2% 70.6% 85.7% 99.3% 87.7% 98.2% 95.1% 80.6%

CTS (Liu, Li, and Póczos 2018) 2D 19 69.0% 87.5% 71.6% 93.1% - - - 95.2% 81.1%
DAW (Wang et al. 2018) 3D 20 77.8% 96.4% - 84.5% - - - - 85.3%

STDOR (Pang et al. 2020) 2D 21 71.7% 83.2% 88.1% 92.7% 99.9% 99.9% 99.7% 97.4% -
iForest(ResNet-50) (Liu, Ting, and Zhou 2012) 2D 22 64.5% 68.8% 80.5% 90.9% 87.7% 88.1% 90.9% 83.2% 76.9%

Strong Baseline(ResNet-50) 2D 23 70.7% 81.2% 81.9% 94.3% 98.8% 100% 98.4% 97.7% 84.7%
Ours(ResNet-50) + DCFD 2D 24 73.9% 97.9% 85.1% 96.1% 99.7% 100% 99.7% 99.5% 85.9%

Ours(ResNet-50) + DCFD + CTCE 2D 25 84.9% 99.4% 89.0% 97.2% 100% 100% 99.8% 100% 87.3%
Ours(I3D-RGB) + DCFD + CTCE 3D 26 84.9% 98.7% 91.3% 97.6% 99.9% 100% 99.8 % 99.2% 90.3%

Table 2: Ablation experiments to verify the effectiveness of
our method. The default setting is marked in bold.

Ablation
Task Name ID Backbone DCFD

Training CTCE CTCE
V1

CTCE
V2 Lfoc Lmse Lbce

UCSD
Ped1 Ped2

Component
Effectiveness

1 ResNet-50
√

70.7% 81.2%
2 ResNet-50

√ √
73.9% 97.9%

3 ResNet-50
√ √ √

84.9% 99.4%

CTCE Design 4 ResNet-50
√ √ √

76.8% 96.4%
5 ResNet-50

√ √ √
73.3% 94.4%

Loss Design 6 ResNet-50
√ √ √

79.0% 97.3%
7 ResNet-50

√ √ √
82.5% 97.6%

Backbone
Robustness

8 I3D
√ √ √

84.9% 98.7%
9 VGG

√ √ √
82.0% 94.6%

10 C3D
√ √ √

82.7% 95.6%

Component Effectiveness. According to Tab. 2, we per-
form experiments 1,2,3 to verify the effectiveness of each
proposed component. Experiment 1 is the proposed strong
baseline model. With experiments 2, 3, by adding DCFD
Training only, it outperforms the strong baseline by 3.2% on
UCSD Ped1 and 16.7% on Ped2. By adding DCFD Training
and Counterfactual TCE, it further beats the DCFD Training
only model by 11% and 1.5% on UCSD Ped1 and Ped2.

Variants of Counterfactual Ensemble. We perform ex-
periments 3,4,5 in Tab. 2 to verify the design choice of
CTCE. Concretely, we construct two variants: (1) CTCE V1:
the overall effect ofX towards Y without further counterfac-
tual intervention on the mediator M . We abandon the coun-
terfactual feature replacement design and set the model in-
puts to xa. The mediator M in equation (5) is no longer
a fixed value and it is calculated on the fly with xa as in-
puts. (2) CTCE V2: change the sliding window mean fea-
ture design to zero feature design without sliding window.
We further verify the usage of xa as the counterfactual input
by replacing it with x0 ∈ RDb , a zero feature vector. The
results reveals that counterfactual feature replacement with
xa performs the best, showing the superiority of our design.

Loss Design. We use two other losses to verify the ef-
fectiveness of using focal loss Lfoc, namely Mean Squared
Error loss Lmse and Binary Cross Entropy loss Lbce, respec-
tively. The performance in experiments 3, 6, 7 in Tab. 2

Table 3: Ablation experiments of all hyperparameter set-
tings. The default setting is marked in bold.

Task Settings ID UCSD
Ped1 Ped2

Pseudo Label
Set (a%, b%)

(10%, 20%) 1 84.0% 96.7%
(5%, 15%) 2 84.1% 98.2%
(5%, 20%) 3 84.9% 99.4%
(5%, 25%) 4 85.9% 98.4%
(5%, 30%) 5 86.1% 99%

Confounder Set
Size Ns

4 6 82.4% 95.8%
16 7 84.9% 99.4%
64 8 85.4% 99.0%

128 9 82.0% 98.3%

Sliding Window
Size d

8 10 75.5% 93.5%
64 11 75.6% 93.6%

512 12 80.9% 98.5%
1024 13 84.9% 99.4%
2048 14 86.3% 97.4%

demonstrates that focal loss automatically penalizes the
well-learned samples and focuses on the hard ones, achiev-
ing the best performance among the three losses.

Backbone Robustness. Experiments 3,8,9,10 in Tab. 2
show that the performance of our method increases as more
advanced backbone network used, which indicates that our
method is not dependent on a careful choice of f(·).

Hyperparameter Tuning. In general, there are four types
of hyperparameters in our model: (1) a% and b% in the con-
struction of the pseudo label set; (2) the size Ns of the con-
founder set S; (3) the sliding window size d; (4) the training
Rounds T . Like most work in VAD, we report the evalua-
tion results of all hyperparameter settings. For (1), accord-
ing to Tab. 3, we set the abnormal:normal sampling ratio to
1 : 2, 1 : 3, 1 : 4, 1 : 5, 1 : 6 in experiments 1,2,3,4,5
and the evaluation results suggest that setting the ratio to a
smaller value produces better performance since abnormal
events in real world is rare. For (2), to justify the size of
the confounder set Ns, we set Ns to 4, 16, 64, and 128 in



experiments 6,7,8,9, the results of which suggest that the
granularity of the confounder set S matters. Setting Ns to
a value that could well represent the distribution of X ben-
efits the de-confounded training. For (3), we set the win-
dow size from short-range to long-range values and the re-
sults show that larger window size consistently outperforms
smaller counterparts, suggesting that long-range temporal
context is essential for robust context representation. For (4),
we plot the AUC performance in Fig. 6 to show the overall
trend of the self-supervised pseudo label learning process.
Concretely, the results suggest that the AUC progressively
improves from t = 0 − 8 and typically plateaus at t = 8.
We set T = 8 to balance the computational cost and per-
formance. Furthermore, the learning process from initializa-
tion to Round 1 represents learning from traditional unsu-
pervised method to deep neural network model. The sharp
performance improvement reveals the fact that deep neural
networks tend to learn simple patterns first before fitting the
pseudo label noise as proved in (Li, Socher, and Hoi 2020;
Arpit et al. 2017). From Round 2 onward, the learning pro-
cess turns to a representation refinement procedure since our
model fine-tunes from the trained model of previous Round,
resulting in the less sharp increase.
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Figure 6: The AUC performance of our model at each round.

Compared to previous state-of-the-art results
Quantitative results. According to Table 1, we compare
our method with 16 VAD methods that require labeled nor-
mal data in training and 7 UVAD methods that do not re-
quire labeled data in any form on four standard benchmark
datasets. We present five models with different configura-
tions: (1) iForest with image feature extracted from ResNet-
50 in experiment 22 that serves as a simple baseline; (2)
Strong Baseline F with f(·) set to ResNet-50, which is al-
most identical to (Pang et al. 2020) except that the training
loss is replaced with Lfoc; (3) Ours(ResNet-50) + DCFD
that differs from (2) by adding a de-confounded training
module; (4) Ours(ResNet-50) + DCFD + CTCE that differs
from (3) by adding a Counterfactual temporal context en-
semble module; (5) Ours(I3D) + DCFD + CTCE that differs
from (4) by changing f(·) to I3D. In general, our method
outperforms all previous UVAD methods significantly and
is even higher than some of the VAD methods. Concretely,
we analyze the performance gain in each dataset respec-
tively. UCSD: our method surpasses all previous UVAD
methods significantly, 7.1% higher than the top perform-

ing model (Wang et al. 2018) for Ped1 and 3.0% higher
than (Wang et al. 2018) for Ped2 by comparing experiments
25 and 20. For VAD, our method outperforms all VAD meth-
ods for Ped2 and reaches a high rank in Ped1, demonstrat-
ing the competitiveness of our d method. Subway: our re-
sult surpasses all previous UVAD methods in both Entrance
and Exit benchmarks. UMN: it is clear that the performance
of our method is higher than all previous UVAD methods
and is competitive to the supervised methods. Specifically,
we achieved 100% in All Scenes (2.6% higher than (Pang
et al. 2020)). Avenue: our method outperforms the previous
UVAD SOTA (Wang et al. 2018) by 5% by comparing ex-
periments 26 and 20. The performance is also higher than
most VAD methods, ranking the second.

Qualitative results. Fig. 7(a) shows the quantitative re-
sults of our model in 4 example benchmark datasets. Com-
pared to the iForest baseline, it is clear that our proposed
method can produce better anomaly score when the event
is anomalous. Extensive experiments demonstrate that our
method could progressively improve the pseudo label qual-
ity (calculated by dividing the number of correct normal/ab-
normal frames by the number of total normal/abnormal
frames) as in Fig. 7(b).
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UCSD Ped2

Subway Entrance

UMN

Figure 7: (a) The qualitative results of 4 example benchmark
datasets. The horizontal axis denotes the frame number of a
video snapshot and the vertical axis represents the anomaly
score generated by our model. (b) The progress of quality of
the pseudo labels sets A and N w.r.t GT.

Conclusion

We analyzed the impact of the noisy pseudo label and long-
range temporal context in unsupervised video anomaly de-
tection from a causal inference perspective. Then, we pro-
posed the de-confounded training and counterfactual tem-
poral context ensemble to enhance the commonly used self-
supervised pseudo label learning process in UVAD. The
overall framework is simple, computationally lightweight,
and robust to the noisy pseudo label. We extensively verified
the effectiveness of our proposed pipeline, and experiment
results on six benchmark datasets show that our method out-
performs all previous methods significantly, demonstrating
the superiority of our approach. Nevertheless, designing bet-
ter causal graphs or feature disentanglement methods may
further improve the model’s performance in UVAD.
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