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Abstract— Land remote-sensing analysis is a crucial research
in earth science. In this work, we focus on a challenging
task of land analysis, i.e., automatic extraction of traffic roads
from remote-sensing data, which has widespread applications
in urban development and expansion estimation. Nevertheless,
conventional methods either only utilized the limited infor-
mation of aerial images, or simply fused multimodal infor-
mation (e.g., vehicle trajectories), thus cannot well recognize
unconstrained roads. To facilitate this problem, we introduce
a novel neural network framework termed cross-modal mes-
sage propagation network (CMMPNet), which fully benefits the
complementary different modal data (i.e., aerial images and
crowdsourced trajectories). Specifically, CMMPNet is composed
of two deep autoencoders for modality-specific representation
learning and a tailor-designed dual enhancement module for
cross-modal representation refinement. In particular, the com-
plementary information of each modality is comprehensively
extracted and dynamically propagated to enhance the repre-
sentation of another modality. Extensive experiments on three
real-world benchmarks demonstrate the effectiveness of our
CMMPNet for robust road extraction benefiting from blend-
ing different modal data, either using image and trajectory
data or image and light detection and ranging (LiDAR) data.
From the experimental results, we observe that the proposed
approach outperforms current state-of-the-art methods by large
margins. Our source code is resealed on the project page
http://lingboliu.com/multimodal_road_extraction.html.

Index Terms— Aerial images, crowdsourced trajectories, land
remote sensing, road network extraction.

I. INTRODUCTION

EARTH science [1], [2] is a complex and huge subject
that has been researched for decades or even centuries.

As a subbranch of geoscience, geoinformatics [3] recently has
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received increasing interests with the rapid development of
satellite and computer technologies. Accurately obtaining land
surface information (e.g., trees, lakes, buildings, roads, and so
on) from remote-sensing data can help us to better understand
our earth. Among these objects, traffic roads are very difficult
to recognize, since they are threadlike and unimpressive in
aerial images. To promote land analysis, in this work we aim
to recognize traffic roads automatically from remote-sensing
data. Such a geoinformatics task not only facilitates a series
of practical applications [4]–[6] for urban development, but
also helps to estimate the urban expansion trend to analyze
potential impacts of human activities on earth lands.

In literature, numerous algorithms have been proposed to
extract traffic roads from aerial images. Most early works
[7]–[9] extracted handcrafted features (e.g., texture and
contour) and applied shallow models (e.g., support vector
machine [10] and Markov random field [11]) to recognize road
regions. Recently, deep convolutional networks have become
the mainstream in this field and achieved remarkable pro-
gresses [12]–[14] due to their great capacities of representation
learning. However, aerial image-based traffic road extraction
remains a very challenging problem, especially in the face of
the following circumstances. First, some roads are extremely
occluded by trees, as shown in Fig. 1(a). Relying solely on
visual information, these roads are hard to be detected from
aerial images. Second, some infrastructures (e.g., train tracks,
building tops, and river walls) have similar appearances of
traffic roads, as shown in Fig. 1(b). Without extra information,
it is hard to distinguish roads from these structures, which may
result in false negatives and false positives. Third, in some bad
meteorological conditions (e.g., thick fog/haze), it’s very diffi-
cult to recognize traffic roads due to poor visibility, as shown
in Fig. 1(c). Nevertheless, road maps have low tolerance
for errors, since incorrect routes would seriously affect the
transportation’s operation efficiency. Therefore, some robust
methods are desired to accurately extract traffic roads.

Fortunately, we observe that some data for nonvisual modal-
ities, such as vehicle trajectories, can also help discover traffic
roads. Intuitively, a region with a large number of trajectories
is likely to be a road segment [15]–[17]. In recent years,
vehicle ownership has grown dramatically and most vehicles
have been equipped with GPS devices, which greatly increases
the availability of large-scale trajectory datasets and boosts
the feasibility of trajectory-based road extraction. Despite sub-
stantial progress [18], [19], this research direction still suffers
from many challenges. First, crowdsourced trajectories have
excessive noises (e.g., positioning drift) caused by the uneven
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Fig. 1. (a) Traffic roads are usually occluded by trees. Although crowdsourced
trajectories can help discover roads, excessive noises are also introduced.
(b) Train tracks and traffic roads have similar appearances, thus it is hard
to distinguish them only using visual cues. When only using trajectories,
some parking lots are easily mistaken for roads. (c) It’s difficult to directly
recognize roads from aerial images when the studied city has poor visibility in
fog/haze weather. (d) Only using local information, we may fail to recognize
some road regions that are heavily occluded and have very few trajectories,
as shown in the yellow box. (a) Occlusion. (b) Similar appearance. (c) Poor
visibility. (d) Limitation of local information.

quality of GPS devices, as shown in Fig. 1(a). Although var-
ious preprocessing techniques (e.g., clustering and K-nearest
neighbors) were used Wang et al. [20], Shan et al. [21], and
Karagiorgou et al. [22], the noise problem has not been well
solved. Second, some nonroad areas, such as the parking
lot in Fig. 1(b), also have lots of trajectories and they are
easily mistaken for roads without auxiliary information. Most
conventional works [23]–[26] have not explicitly distinguished
these areas. Third, previous trajectory-based methods mainly
extracted the topologies of road networks. Because of mass
erratic trajectories, it is difficult to obtain the accurate width of
roads, which can be easily computed in high-resolution aerial
images.

In general, image-based methods and trajectory-based meth-
ods have individual strengths and weaknesses. It is very
natural to incorporate aerial images and crowdsourced tra-
jectories to extract traffic roads robustly. However, there are
very limited works [27], [28] that simultaneously utilized
the two modalities mentioned above. Moreover, these works
directly fed the concatenation of aerial images and rendered
maps of trajectories or their features into convolutional neural
networks (CNNs), which is a suboptimal strategy for mul-
timodal fusion. Recently, Wu et al. [29] designed a gated
fusion module to fuse multimodal features, but not refine
features mutually, thus the complementarities of images and
trajectories have not been fully exploited. Furthermore, all
above-mentioned methods performed road extraction only with
local features/information, thus may fail to recognize some
road regions that are heavily occluded and meanwhile have
very few trajectories, such as the yellow box in Fig. 1(d).

When considering all information of the whole image and
trajectories, we can correctly infer that this region is a road
segment. Therefore, both the local and global information
should be explored for traffic road extraction.

To facilitate road extraction, we propose a novel framework
termed cross-modal message propagation network (CMMP-
Net), which fully explores the complementarities between
aerial images and vehicle crowdsourced trajectories. Specif-
ically, our CMMPNet is composed of: 1) two deep autoen-
coders for modality-specific feature learning, in which one
takes an aerial image as input and the other one uses the
rendered trajectory heat-map and 2) a dual enhancement
module (DEM) that refines the features of different modalities
mutually with a message passing mechanism. In particular,
our DEM propagates both the local detail information and
global structural information dynamically with two progress
propagators. First, a nonlocal message (NLM) propagator
extracts the local and global messages embedded in the
features of each modality, which are utilized to refine the
features of another modality. Thereby, image features and
trajectories features can be enhanced mutually. Moreover,
the limitation of local information is also well eliminated.
Second, a gated message propagator employs gate functions to
dynamically determine the final propagated messages, so that
the beneficial messages are transmitted and the interferential
messages (e.g., visual cues of train tracks and the noises of
trajectories) are abandoned. For further improving the robust-
ness, our DEM is integrated into different layers of CMMPNet
to enhance the image features and trajectory features hier-
archically. Finally, the last outputs of two autoencoders are
concatenated to accurately predict the high-resolution traffic
road maps.

The proposed CMMPNet has three appealing properties.
First, through refining modality-specific features mutually,
our method can better explore the complementarities of aerial
images and crowdsourced trajectories, compared with previous
works that directly taken their concatenation as input or simply
fused their features. Second, thanks to the tailor-designed
DEM, our method is more robust to extract traffic roads.
With the aid of visual information, some useless and noisy
trajectories can be effectively eliminated, while occluded roads
are easily discovered with the trajectory information and
some delusive nonroad regions are also well distinguished.
Third, it is worth noting that our method is very general
for robust road extraction by utilizing multimodal information.
Furthermore, CMMPNet can also be generalized to combine
image and light detection and ranging (LiDAR) data for
road extraction. Extensive comparisons on three real-world
benchmarks two for image and trajectory data and the other
for image and LiDAR data) demonstrate the advantage of our
proposed method. In summary, this article makes the following
contributions.

1) It proposes a novel CMMPNet for land remote-sensing
analysis, which extracts traffic roads robustly by explic-
itly capturing the complementarities among different
modal data.

2) It introduces a dual refinement module for multimodal
representation learning, where the complementary infor-
mation of each modality is dynamically propagated to
effectively enhance other modal features based on the
message passing mechanism.
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3) It presents sufficient experiments and comparisons on
three multimodal benchmarks for showing the superior-
ity and generalization of our approach against existing
state-of-the-art methods.

The rest of this article is organized as follows. First,
we review some related works of earth science research
and traffic road extraction in Section II. We then provide
some preliminaries in Section III and introduce the proposed
CMMPNet in Section IV. Extensive evaluations and general-
ization analysis are conducted in Section V and in Section VI.
Finally, we conclude this article and discuss future works in
Section VII.

II. RELATED WORKS

A. Earth Science Research

Earth science [1], [2] is a crucial subject that studies the
physical, chemical, and biological characterizations of our
earth for better understanding various physical phenomena
and natural systems. Earth science is also a complex subject
and it contains a lot of research branches [30]. For instance,
meteorologists [31] study the atmosphere for dangerous storm
warnings and hydrologists [32] examine hydrosphere for flood
warnings. Seismologists [33] study earthquakes and forecast
where they will strike, while geologists [34] study rocks and
help to locate useful minerals. Among all the subbranches
of geoscience, geoinformatics [3] recently has attracted wide-
spread interests with the rapid development of satellite and
computer technologies, since it can greatly facilitate other
research branches, e.g., monitoring storm/flood from remote-
sensing data and forecasting their evolutionary trend. In this
work, we inherit the research content of geoinformatics and
apply computer technologies to land remote-sensing analysis,
e.g., extracting the traffic road network from aerial images and
some complementary modalities. This problem has important
applications in transportation navigation and public manage-
ment. Moreover, we can also compare the road networks at
different times and estimate the urban expansion tendency,
thereby analyzing the potential impacts of human activities
on earth lands.

B. Traffic Road Extraction

As a crucial foundation in intelligent transportation systems,
automatic road extraction has been studied for decades [35].
On the basis of the modality of input data, previous approaches
can be divided into four categories and we would investigate
the related works of each category.

1) Aerial Image-Based Road Extraction: In industrial com-
munities, a large number of high-quality aerial images can be
accessed easily, with the rapid development of remote-sensing
imaging technologies equipped in artificial satellites [36], [37].
Numerous methods were proposed to extract traffic roads
from these aerial images. Early works [38]–[41] usually fed
hand-crafted features (e.g., texture and contour) into shal-
low models (e.g., deformable model and Markov Random
Field) to recognize road regions. However, most of them
only worked in constraint scenarios. In recent years, due to
the great capacity for representation learning, deep neural
networks [42] have become the mainstream in this field. For
instance, Cheng et al. [12] proposed a cascaded end-to-end

CNN to cope with the road detection and centerline extraction
simultaneously with two cascaded CNN. Zhang et al. [43]
developed a semantic segmentation neural network, which
combined the residual learning and U-Net to extract road
areas. Zhou et al. [44] utilized dilation convolutions to enlarge
the receptive field of Linknet [45] and then employed this
enhanced model to extract road regions from high-resolution
aerial images. Fu et al. [46] predicted the category of each
pixel with a multiscale fully convolutional network and refined
the output density map with a conditional random fields’
postprocessing. Despite substantial progress, they may still
fail in complex scenarios, especially in the face of extreme
occlusions. As analyzed above, it is very difficult to perfectly
extract traffic roads only with the visual information of aerial
images. Therefore, more complementary information should
be delved from other modalities for facilitating road extraction.

2) Trajectory-Based Road Extraction: Intuitively, a geo-
graphical region with mass vehicle trajectories is likely to
be a road area. Based on this observation, some researchers
have attempted to recognize traffic roads from crowdsourced
trajectories. Since trajectory data has excessive noise, most
previous works focused on how to eliminate the GPS noises
and uncertainties. Conventional methods can be divided into
three categories. The first category is clustering-based mod-
els [24], [47], [48]. In these works, the task of road extraction
is formulated as a network alignment optimization problem
where both the nodes and edges of road networks have to be
inferred. Specifically, nodes or short edges are first identified
from raw GPS points with spatial clustering algorithms and
then connected to form the final road networks. The second
category is trace-merging-based models [49], [50], which
either merge each trajectory to an existing road segment or
generate a new segment if no existing segment is matching.
The third category is kernel density estimation (KDE)-based
methods [19], [51], which first apply KDE [52] to convert
trajectories into a density map for reducing the influences
of noise, and then employs image processing techniques to
extract road centerlines. Recently, deep neural networks have
also been applied to this task. For instance, Ruan et al. [26]
proposed a deep learning-based map generation framework,
which extracts features from trajectories in both spatial view
and transition view to infer road centerlines. Although various
techniques are used, GPS noises still cannot be well eliminated
and the extracted road networks are far from satisfactory, due
to the limited information of crowdsourced trajectories.

3) LiDAR-Based Road Extraction: Compared with aerial
images, LiDAR data have two specialties. First, LiDAR
data contains depth or distance information. Second, dif-
ferent objects (e.g., buildings, trees, and roads) have dif-
ferent reflectivity to the laser. Because of these specialties,
roads are mostly defined by flatness in the aerial viewpoint,
which can help to distinguish the road proposals from build-
ings and trees. In literature, there also exist some algo-
rithms [53]–[55] that identified traffic road from LiDAR data.
For instance, Hu et al. [56] first filtered the nonground LiDAR
points and then detected road centerlines from the remaining
ground points. After obtaining the ground intensity images,
Hu et al. [56] designed structure templates to search for roads
and determined road widths and orientations with a subsequent
voting scheme. Despite some progress, LiDAR-based road
extraction remains a very challenging problem and existing
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Fig. 2. Illustration of trajectory heat-map generation. Given an aerial image, we first query all trajectory samples in the corresponding geographical region
and then generate a 2-D trajectory heat-map by counting the number of samples projected at every pixel. Finally, a logarithm-based normalized function and
a Gaussian kernel filter are applied to refine the trajectory heat-map.

methods perform poorly in complex scenarios, suffering from
the sparsity of LiDAR data and the noise points [57].

4) Multimodal Road Extraction: As analyzed above, each
modality has individual benefits and drawbacks, so it’s wise
to aggregate their complementary information for extracting
traffic roads effectively. In literature, numerous methods have
been proposed to identify road areas using both aerial images
and LiDAR data, because of the accessibility of these data.
For instance, Hu et al. [58] first segmented the primitives
of roads from both optical images and LiDAR data, and
then detected road stripes with an iterative Hough transform
algorithm to form the final road network by topology analysis.
Parajuli et al. [59] developed a modular deep convolution
network called TriSeg, in which two SegNet [60] were used to
extract features, respectively, from aerial images and LiDAR
data, and another SegNet fused modular features to estimate
the final road maps. However, neither of aerial images and
LiDAR data can provide sufficient information to discover
the traffic roads heavily occluded by trees, thus some recent
works incorporated aerial images and vehicle trajectories to
identify road areas. For instance, Sun et al. [27] fed the
concatenation of rendered trajectory heat-maps and aerial
images into different backbone networks (e.g., UNet [61],
Res-UNet [43], LinkNet [45] and D-LinkNet [44]) to esti-
mate those traffic roads. In [29], trajectory maps and aerial
images were first fed into different networks, respectively,
for feature extraction, and then the modular features at dif-
ferent layers were fused to predict the final roads. Despite
progress, such a concatenation or fusion manner cannot
fully exploit the complementarities of different modalities,
and more effective methods are desired for multimodal road
extraction.

C. Message Passing Mechanism

In the field of machine learning, message passing [62], [63]
refers to information interactions between different entities.
A large number of works have shown that such a mechanism
can effectively facilitate deep representation learning. For
instance, Wang et al. [64] introduced an interview message
passing module to enhance the view-specific features for
action recognition, while Liu et al. [65] propagated informa-
tion among multiscale features to model the scale variations of
people. In graph convolution networks, the message passing
mechanism is usually embedded to aggregate information
from neighboring nodes [66]–[70]. Recently, this mechanism

has also been adopted for cross-modal representation learn-
ing. For instance, Wang et al. [71] addressed the text-image
retrieval problem by transferring multimodal features and
computing their matching scores. Nevertheless, most of these
previous methods propagated information in a local manner
(e.g., at short range). Without capturing global information,
these methods may fail to discover the occluded roads that
meanwhile have very few trajectories, as shown in Fig. 1(d).
Therefore, more effective approaches are desired to fully
exploit the complementary information of aerial images and
crowdsourced trajectories for traffic road extraction.

III. PRELIMINARIES

In this section, we first introduce how to generate trajectory
heat-maps from raw GPS data and then formally define the
problem of image + trajectory-based road extraction.

A. Raw Trajectory Samples

With the rapid growth of vehicle ownership, we can easily
collect a mass of vehicles’ GPS trajectories to construct
a large-scale trajectory database [72]–[74]. In this data-
base, each trajectory sample can be represented as a tuple
{vid, lon, lat, t, sp, si}, where vid is the ID of a vehicle, lon
and lat are the longitude and latitude at timestamp t . Term
sp denotes the vehicle’s speed. si is the trajectory sampling
interval and different vehicles have different sampling settings.
We notice that some early works [18] manually generated
some virtual samples on the line segment between two
consecutive real samples to augment the trajectory quantity.
Nevertheless, this would cause a lot of noise in complex
scenarios, since the real-world vehicles may have large sam-
pling intervals (such as si is mainly set to 10, 60, 180,
and 300 s in Beijing [27]) and it is difficult to accurately
infer the virtual trajectories under these settings. Thanks to the
crowdsourcing mechanism, adequate trajectories can be easily
collected nowadays. Therefore, we only use the real trajectory
samples in this work.

B. Trajectory Heat-Map Generation

For deep neural networks, matrix or tensor is one of the most
common formats of input. Thus we need to transform the raw
GPS data into 2-D trajectory heat-maps before feeding them
into networks. The whole transformation process is shown in
Fig. 2. Specifically, give an aerial image with a resolution
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Fig. 3. Architecture of the proposed CMMPNet for multimodal road extraction. Specifically, our CMMPNet is composed of 1) two deep autoencoders
that take an aerial image and a trajectory heat-map, respectively, to learn modality-specific features and 2) a DEM that dynamically propagates the NLMs
(i.e., local one and global one) of every modality with gated functions to enhance the representation of another modality. The final features of the image and
trajectory heat-map are concatenated to generate a traffic road map.

H × W , we first search out all trajectory samples in its
coordinate range [lonl, latl ]*[lonu, latu], where the subscripts
l and u denote the lower and upper bounds, respectively.
These samples are then projected into a H ×W greyscale map
by counting the number of samples projected at every pixel.
In this map, the pixels of road areas usually have high values,
while the pixel values in nonroad regions are very small,
even zero. This would facilitate the discovery of traffic roads.
However, we find that such a projected map has two minor
defects. First, some infrequently-traveled roads are so pale that
they are hard to be recognized. Second, this map is too coarse
and sharp. For example, two adjacent pixels in road areas
may have values of different scales, or even a road pixel does
not match any projected samples. Inspired by KDE frequently
used for trajectory processing [18], we normalize the projected
map with a logarithm function and apply a 3 × 3 Gaussian
kernel filter for smoothing. The involved Gaussian filter can
also eliminate trajectory noises to a certain degree [75]. In this
way, the final trajectory heat-map becomes smooth and traffic
roads are more distinct from backgrounds.

C. Image + Trajectory-Based Road Extraction

Given a H × W aerial image I and the corresponding
trajectory heat-map T , our goal is to automatically predict
a H × W binary road map

M = F({I, T }, θ) (1)

where F(·) is a mapping function with learnable parameters
θ . Specifically, the pixels within road areas are supposed to
have high-response value (i.e.. 1), while the response values
of background pixels should be 0.

IV. METHODOLOGY

A. Framework Overview

As mentioned above, aerial images and vehicle crowd-
sourced trajectories are complementary for traffic road
extraction. To recognize unconstrained roads effectively and
robustly, we propose a CMMPNet, which mutually enhances

the hierarchical features of different modalities for better cap-
turing their complementary information. As shown in Fig. 3,
our CMMPNet is composed of 1) two deep autoencoders for
modality-specific feature learning and 2) a DEM for cross-
modal feature refinement. In this section, we mainly introduce
the architecture of CMMPNet, whose specific components are
described in Section IV-C.

Specifically, given an aerial imagery I and a trajectory heat-
map T with a resolution H × W , we first explicitly learn
modality-specific representations by feeding them into differ-
ent autoencoders, each of which consists of four encoding
blocks and four decoding blocks. As shown in Fig. 3, the first
autoencoder takes I as input and extracts a group of image
features

f I = {
f 1

I , f 2
I , f 3

I , f 4
I , f 5

I , f 6
I , f 7

I , f 8
I

}
(2)

where the first four features are the outputs of encoding blocks
and the remaining four features are the output of decoding
blocks. With the same architecture, the second autoencoder
extracts a group of trajectory features

fT = {
f 1
T , f 2

T , f 3
T , f 4

T , f 5
T , f 6

T , f 7
T , f 8

T

}
(3)

from the input trajectory heat-map T .
Rather than directly fuse image and trajectory features with

concatenation [28] or weighted addition [29], we fully capture
the multimodal complementary information through enhancing
their features mutually with a message passing mechanism.
For each pair of multimodal feature { f i

I , f i
T }, we employ the

proposed DEM to generate two enhanced features { f̂ i
I , f̂ i

T }
with their complementary information. This process can be
formulated as

f̂ i
I , f̂ i

T = DEM
(

f i
I , f i

T

)
, i = 1, 2, . . . , 8. (4)

These enhanced features are then fed into the next block of
individual autoencoder, respectively, for further representation
learning. For convenience, the final outputs of image autoen-
coder and trajectory autoencoder are denoted as f o

I and f o
T ,

and they have the same resolution H × W . Here, f o
I and f o

T
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TABLE I

CONFIGURATION OF OUR AUTOENCODER. IN THE FIRST CONVOLUTIONAL
LAYER, THE INPUT CHANNEL Ci IS SET TO 3 FOR AERIAL IMAGES

AND 1 FOR TRAJECTORY HEAT-MAPS, AND THE STRIDE IS SET

TO 2. IN EACH BLOCK, DR DENOTES THE DOWNSAMPLING

RATIO OF RESOLUTION AND Co IS THE CHANNEL NUMBER
OF OUTPUT. MP DENOTES A 2 × 2 MAX-POOLING

LAYER. Res, Up AND Inter REFER TO THE RESIDUAL

UNIT, UPSAMPLING UNIT AND INTERIM
UNIT DESCRIBED IN FIG. 4

are jointly utilized to predict a probability map M ∈ RH×W

for traffic roads with the following formulation:
M = Conv

(
f o

I ⊕ f o
T , W1∗1

)
(5)

where ⊕ denotes feature concatenation and W1∗1 refers to
the parameters of a 1*1 convolutional layer. For each position
(x, y), it can be regarded as a road region only when M(x, y)
is greater than a given threshold.

It’s worth noting that our method is universal for multimodal
road extraction. Except for image + trajectory data, the pro-
posed CMMPNet can also be directly employed to recognize
traffic roads with image + LiDAR data. The university of our
method would be verified in Sections V and VI.

B. Modality-Specific Feature Learning

In the previous work [27], aerial images and trajectory
heat-maps were directly concatenated to feed into the same
network, which caused that their features were over mixed
and their complementarities were missed to some extent.
To address this problem, we feed the given aerial image and
the corresponding trajectory heat-map into different networks
to learn modality-specific features. Optimized with individual
parameters, these features well preserve the specific informa-
tion of each modality, thus can be further utilized for mutual
refinement.

To maintain the high resolution of final outputs, two
autoencoders are adopted intentionally to extract modality-
specific features. Notice that various autoencoders (e.g., Res-
UNet [43], LinkNet [45], and D-LinkNet [44]) are suitable
to serve as the backbone network of our framework. Since
these networks have similar architectures, we take D-LinkNet-
based autoencoder as an example to demonstrate the details
of modality-specific feature learning. As shown in Table I,
both the image autoencoder and trajectory autoencoder are
mainly composed of four encoding blocks and four decoding
blocks. Specifically, we first use a convolutional layer to
extract initial features and then feed them into the following
four encoding blocks, each of which consists of a 2 × 2
max-pooling layer and multiple residual units. As shown in

Fig. 4. Architecture of residual unit, upsampling unit, and interim unit.
Conv(k, n, m) denotes a k × k standard convolution, whose input channel is
n and output channel is m. DConv(k, n, m, r) refers to a dilated convolution
with a dilated ratio r and T Conv(k, n, m, s) is a transposed convolution with
a stride s. (a) Residual unit. (b) Upsampling unit. (c) Interim unit.

Fig. 4(a), each residual unit contains two 3 × 3 convolutional
layers and a skip layer. After the encoding stage, an interim
unit is adopted to capture more spatial context by expanding
the receptive field with four dilated convolutional layers. At the
decoding stage, four decoding blocks are utilized to enlarge
the resolutions of features progressively. Specifically, each
decoding block is developed as an upsampling unit, which
consists of two convolutional layers for channel adjustment
and a transposed convolutional layer for feature upsampling,
as shown in Fig. 4(c). To simultaneously exploit the lower-
level information and high-level information, we incorporate
the features of encoding blocks and decoding blocks with
element-wise addition. Finally, we fully restore the resolution
of feature to H ×W with a transposed convolution and apply a
3×3 convolutional layer to generate the final modality-specific
feature f o ∈ RH×W×32. Note that our image autoencoder and
trajectory autoencoder have individual parameters, thus they
can effectively capture and preserve the specific information
of each modality.

C. Cross-Modal Feature Refinement

After modality-specific feature learning, we refine these
features mutually with a DEM based on the message passing
mechanism. In this module, a NLM propagator and a gated
message propagator are integrated to dynamically transmit
the local and global message of each unimodal feature to
complement the feature of another modality. Absorbing the
complementary information of other modalities, each uni-
modal feature becomes more reasonable and robust. In this
section, we take the refinement of features f i

I and f i
T ∈

Rh×w×c as an example to demonstrate the working mechanism
of the tailor-designed DEM. Note that h, w, and c are the
height, width, and channel number of these features.

1) NLM Propagator: Unlike previous works [65], [77] that
only used local cues, our method explores both the local and
global information for feature enhancement. Here we mainly
introduce how to utilize the information of trajectory feature
f i
T to enhance the image feature f i

I . The refinement of f i
T is

performed with the same process.
As shown in Fig. 5, we first extract a local information

map Li
T ∈ Rh×w×c by feeding f i

T into a 3 × 3 convolutional
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Fig. 5. Architecture of DEM. This figure mainly illustrates how to enhance
the image feature f i

I with the information extracted from the trajectory
feature f i

T . The cross-modal information from f i
T to f i

I is obtained by
dynamically fusing the local information Li

T and global information Gi
T

with the learnable fused weights θ i
TL and θ i

TG. This architecture can also
be employed to enhance f i

T . SPP and FC are the abbreviations of spatial
pyramid pooling [76] and fully connected layer, respectively. + and ⊗
denote the element-wise addition and multiplication, and ⊕ refers to feature
concatenation.

layer. Then we aggregate the local information at different
locations to generate a global information map. Rather than
use the compute-intensive nonlocal module proposed in [78],
we employ a lightweight N-level spatial pyramid pooling
(SPP [76]) and a fully connected (FC) layer for global informa-
tion generation. Specifically, at the i th level (i = 1, 2 . . . , N),
Li

T is divided into 2i−1 × 2i−1 regions, each of which has
a dimension of (h/2i−1) × (w/2i−1) × c and is fed into a
(h/2i−1) × (w/2i−1) max-pooling layer to obtain a 1 × 1 × c
information vector. Further, the information vectors at all
levels are concatenated and fed into the FC layer with c output
neurons to generate a global information vector. This global
vector is copied h × w times and reshaped to form the global
information map Gi

T ∈ Rh×w×c. After obtaining the local map
Li

T and global map Gi
T , we can easily propagate them to refine

f i
I with the following formulation:

f̂ i
I = f i

I + Li
T + Gi

T (6)

where f̂ i
I is the enhanced image feature and the operator “+”

denotes a element-wise addition. In the same way, we can
compute the enhanced trajectory feature f̂ i

T as follows:
f̂ i
T = f i

T + Li
I + Gi

I (7)

where Li
I and Gi

I are the extracted local information map and
global information map of image feature f i

I .
2) Gated Message Propagator: In the previous propagator,

the local and global information is transmitted statically,
which is not optimal for cross-modal refinement and even
has disturbing effects at some locations. To alleviate this
issue, a gated message propagator is introduced to adaptively
determine and propagate the complementary information. With
multiple learnable gate functions, the beneficial information is
transmitted and the disturbing information (e.g., visual cues
of train tracks and the noises of trajectories) is suppressed.

Specifically, we first introduce the computation of the gated
weights of different information. As shown in Fig. 5, the

trajectory information Li
T and Gi

T is concatenated and fed
into two 1 × 1 convolutional layers

θ i
TL = Sigm

(
Conv

(
Li

T ⊕ Gi
T , W

i
TL

))
θ i

TG = Sigm
(
Conv

(
Li

T ⊕ Gi
T , W

i
TG

))
(8)

where θ i
TL, θ i

TG ∈ Rh×w×c are the gated weights of Li
T

and Gi
T , respectively. W

i
TL and W

i
TG are the parameters of

convolutional layers, and Sigm() is an element-wise sigmoid
function. In this same way, we can also compute the gated
weights θ i

IL, θ i
I G ∈ Rh×w×c for the information Li

I and Gi
I .

Finally, we reweight each information with individual gated
weight and then preform the dynamic message propagation.
Therefore, (6) and (7) have become

f̂ i
I = f i

I + θ i
TL ⊗ Li

T + θ i
TG ⊗ Gi

T

f̂ i
T = f i

T + θ i
IL ⊗ Li

I + θ i
I G ⊗ Gi

I (9)

where ⊗ denotes an element-wise multiplication.

D. Implementation Details

In this work, we implement the proposed CMMPNet on
the representative deep learning platform PyTorch [79]. First,
we perform data augmentation to alleviate the overfitting
issue. Specifically, all training samples including the satellite
images, trajectory heat-maps and ground-truth (GT) maps are
1) flipped horizontally or vertically; 2) rotated by 90◦, 180◦,
270◦; and 3) randomly cropped with a size range of [0.7, 0.9]
and resized to the original resolution. After augmentation,
the number of training samples is enlarged by seven times.
We then determine the hyperparameters of our framework.
The filter weights of all convolutional layers and FC layers
are uniformly initialized by Xavier [80]. The batch size is set
to 4 and the learning rate is set to 0.0002. Finally, we apply
the Adam [81] optimizer to train our CMMPNet for 30 epochs
by minimizing the binary cross-entropy loss between the
generated road maps and the corresponding GT maps.

V. EXPERIMENTS

In this section, we first introduce the experiment settings
of image + trajectory-based road extraction. We then com-
pare the proposed CMMPNet with existing state-of-the-art
approaches and finally conduct extensive ablation studies to
verify the effectiveness of each component in our network.

A. Settings

1) Datasets: In this work, our experiments are mainly
conducted on the BJRoad dataset [27], which is captured
in Beijing, China. Specifically, this benchmark consists
of 350 high-resolution aerial images that cover a large geo-
graphic area of about 100 km2 and around 50 million trajectory
records of 28 000 vehicles. The resolution of aerial images is
1024×1024 and each pixel denotes a 0.5 m × 0.5 m region in
the real world. For each aerial image, a 1024×1024 trajectory
heat-map is generated with the preprocessing described in
Section III, and the corresponding GT map is manually created
by masking out the pixel of traffic roads. Finally, this dataset
is officially divided into three partitions: 70% samples are
adopted for training, 10% for validation, and the rest 20%
for testing.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 17,2022 at 13:39:17 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Following the previous work [29], we also perform exper-
iments on the Porto dataset, which covers a geographic area
of about 209 km2 in Porto, Portugal. This dataset contains
a mass of crowdsourced trajectories generated by 442 taxis
from 2013 to 2014. On this dataset, we adopt a fivefold cross-
validation setting, since the details of training/testing sets are
not provided in [29]. Specifically, the aerial image of the
whole area is first cut into 6048 nonoverlapping subimages
with a resolution of 512 × 512. These subimages are then
randomly divided into five equal parts. For the i th validation,
the i th part is used for testing, and the remaining parts are used
for training. Finally, the mean and variance of five validations
are reported.

2) Evaluation Details: Given a probability map M , we need
to determine an estimated road map Me ∈ RH×W before
evaluation. Same to [27], a pixel (x, y) is predicted as a road
region in our work, if the response value of M(x, y) is greater
than 0.5. Following previous works [44], [82], we adopt
Intersection over Union1 (IoU) to evaluate the performance
for road extraction. Specifically, the IoU score between an
estimated map Me and its corresponding GT map Mg is
computed by

IoU(Me, Mg) = |Me∩Mg |
|Me∪Mg | (10)

where |Me∩Mg | denotes the pixel number in the intersection
set of Me and Mg , and |Me∪Mg | is the pixel number in their
union set. There are two manners for computing the IoU of
all testing samples. The first manner is to compute the IoU of
each sample and then average the IoU of all samples. Such a
metric is termed as average IoU (A_IoU). The second manner
is to stitch the estimated maps of all samples into a global
map and then compute an IoU score. This metric is termed as
global IoU (G_IoU). Since different IoU metrics were used in
previous works, we would report the results of both A_IoU
and G_IoU in the following sections.

B. Comparison With State-of-the-Art Methods

In this section, we compare our CMMPNet with seven deep
learning-based approaches, including DeepLab (v3+) [83],
UNet [61], Res-UNet [43], LinkNet [45], D-LinkNet [44],
Sun et al. [27], and DeepDualMapper [29]. Specifically, these
compared methods are reimplemented for multimodal road
extraction. In particular, DeepDualMapper feeds aerial images
and trajectory heat-maps into different backbone networks2

and then fuses their features with a gated fusion module, while
other methods directly take the concatenation of aerial images
and trajectory heat-maps as input. Moreover, all the compared
methods except DeepLab (v3+) and DeepDualMapper are
equipped with 1-D transpose convolution to better model
traffic roads [27]. Notice that the first six compared methods
were implemented by Sun et al. [27], and we utilize the
official code of [27] to implement DeepDualMapper and our
method with the same data partition. As mentioned above,

1https://en.wikipedia.org/wiki/Jaccard_index
2In DeepDualMapper, the original backbone network is UNet. However,

our reimplemented DeepDualMapper based on UNet performs poorly. Thus,
in this work, we adopt D-LinkNet as the backbone to reimplement Deep-
DualMapper and this model can obtain competitive performance on different
datasets.

TABLE II

PERFORMANCE OF DIFFERENT METHODS ON THE TESTING SET OF
BJROAD DATASET. OUR CMMPNET OUTPERFORMS ALL

EXISTING APPROACHES WITH LARGE MARGINS

TABLE III

PERFORMANCE OF DIFFERENT METHODS ON THE PORTO DATASET.
FIVEFOLD CROSS-VALIDATION IS CONDUCTED ON THIS

DATASET. THE MEAN AND VARIANCE OF FIVE
VALIDATIONS ARE REPORTED IN THIS TABLE

our CMMPNet can be developed with various autoencoders.
We hence evaluate multiple implementations of CMMPNet
based on different autoencoders, such as Res-UNet, LinkNet,
and D-LinkNet.

The performance of all methods on the BJRoad dataset is
summarized in Table II. We can observe that DeepLab (v3+)
obtains the worst A_IoU 50.81% probably because of para-
meter overfitting. Sun et al. [27] utilized various techniques
(e.g., different sampling intervals and GPS augmentation) to
obtain an improved A_IoU 59.18%. However, just directly
feeding the concatenation of aerial images and trajectory heat-
maps into networks, these methods have limited capabilities
to capture the multimodal information, thus none of them can
acquire an A_IoU above 60%. By fusing image and trajectory
features with a gated fusion module, DeepDualMapper obtains
a competitive A_IoU 60.91% and G_IoU 61.54%. Despite the
progress, DeepDualMapper only use a fusion strategy rather
than a mutual refinement strategy, thereby cannot address this
task well. In contrast, when learning modality-specific features
explicitly and enhancing cross-modal features mutually, our
method can fully exploit the complementary information of
aerial images and crowdsourced trajectories. For this reason,
the proposed CMMPNet outperforms all previous methods
with large margins. For instance, Res-UNet + CMMPNet
achieves a competitive A_IoU 62.58% and obtains a relative
improvement of 15.37%, compared with the original Res-
UNet. By improving the A_IoU from 57.96% to 62.85%, our
D-LinkNet + CMMPNet also obtains a substantial improve-
ment of 8.4%, compared with the baseline D-LinkNet. Finally,
with an impressive A_IoU 63.09% and a G_IoU 63.46%, our
LinkNet + CMMPNet becomes the best-performing model.
We notice that the performance of D-LinkNet + CMMPNet
is slightly lower than that of LinkNet + CMMPNet. This is
probably because D-LinkNet + CMMPNet contains two extra
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Fig. 6. Visualization of the feature maps and traffic road maps generated with/without global information on the testing set of BJRoad dataset. (a) Is the
input aerial image with trajectory points and (e) is the GT road map. (b) and (c) Are the average maps of image feature and trajectory feature after the
first/seventh DEM without the global message, while (d) is the generated road network without the global message. (f)–(h) Are the generated feature maps and
the road network using both the local message and global message. We can observe that our method can generate more discriminative features and recognize
the occluded/unimpressive traffic roads effectively when performing road extraction with global information. (a) Image and trajectories. (b) Average feature
after the first DEM W/O global message. (c) Average feature after the seventh DEM W/O global message. (d) Generated road network W/O global message.
(e) GT road map. (f) Average feature after the first DEM W/-global message. (g) Average feature after the seventh DEM W/-global message. (h) Generated
road network W/-global message.

interim units and suffers from certain overfitting, although data
augmentation has been performed.

Moreover, we compare the performance of our CMMPNet
with three competitive models including D-LinkNet [44],
Sun et al. [27], and DeepDualMapper [29] on the Porto
dataset. As shown in Table III, all methods obtain much
better results on this dataset, compared with their performance
on the BJRoad dataset. The main reason is that the aerial
images of Porto are clearer and the noises of trajectories are
smaller [29]. Despite the existing benchmarks are high, our
CMMPNet still can boost the IoU with substantial margins,
ranking first in performance on the Porto dataset. In summary,
these comparisons greatly demonstrate the effectiveness of
the proposed CMMPNet for image + trajectory-based road
extraction.

C. Component Analysis

After external comparison, we then perform extensive inter-
nal experiments to analyze the effectiveness of each module in
the proposed CMMPNet. In this section, D-LinkNet is adopted
as the backbone network and our implementation details have
been described in Section IV-D.

1) Effect of Global Message: In previous works [84], [85],
local information is widely adopted, but global information is
neglected. In this section, we implement several variants of
CMMPNet to verify the effectiveness of global information.
As shown in Table IV, when propagating the global infor-
mation extracted by SPP and FC layer, “Local + Global”
model obtains an A_IoU 61.98% and a G_IoU 62.43%, and
is better than “Local” model. With an A_IoU 62.85% and
a G_IoU 63.39%, “Local + Global + Gate” model also
outperforms “Local + Gate” model, whose A_IoU is 62.32%
and G_IoU is 62.78%. Except for quantitative results, we also
visualize some feature maps and traffic road maps generated
by “Local + Gate” model and “Local + Global + Gate”

TABLE IV

INFLUENCE OF NLM PROPAGATOR AND GATED MESSAGE PROPAGATOR

ON THE TESTING SET OF BJROAD DATASET

model in Fig. 6. Note that those visualized feature maps are
the channel-wise average of image features and trajectory
features after DEM. We can observe that incorporating global
information can generate more discriminative features and
better recognize traffic roads, especially when the roads are
occluded/unimpressive and the vehicle trajectories are rare in
local regions. These quantitative and qualitative experiments
show that global information is greatly effective for traffic road
extraction.

2) Effect of Gated Message Propagator: In this propa-
gator, multiple gate functions are employed to dynamically
propagate the complementary information. In this section,
we also implement several variants to verify the effectiveness
of this mechanism. As shown in Table IV, after applying gate
functions on “Local” model, A_IoU increases from 61.62% to
62.32% and G_IoU increases from 62.09% to 62.78%. Further,
we can obtain a more substantial improvement (around 1% on
both A_IoU and G_IoU), when performing gate functions on
“Local + Global” model. These comparisons show that this
proposed propagator can facilitate robust road extraction using
multimodal information.

3) Configuration of SPP: In NLM Propagator, we employ
a N-level SPP and an FC layer to extract global information.
In this section, we explore the effect of the level number for
road extraction using multimodal information. As shown in
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Fig. 7. Visualization of the traffic road networks generated by different methods on the testing set of BJRoad dataset. (a) and (b) Are the input aerial
images and trajectories heat-maps. (c) Are the results that only aerial images are taken as input, while (d) are the results that the concatenation of images and
heat-maps are taken as input. As shown in (e), results of our CMMPNet are more accurate and are very similar to the GT road networks. (a) Aerial image.
(b) Trajectories heat-map. (c) Image-based result. (d) Early fusion result. (e) Our result. (f) GT road map.

Fig. 8. Influence of the level number N of SPP layer in DEM on the testing
set of BJRoad dataset. Our method achieves the best performance when N is
set to 3.

Fig. 8, when applying a global max-pooling (N = 1), our
CMMPNet obtains an A_IoU 62.38% and is slightly better
than the “Local + Gate” model in Table IV, since global
pooling can only provide some coarse and limited information.
As the level number increases, the performance also gradually
increases, and our method achieves the best A_IoU 62.85%
and G_IoU 63.39% when N is equal to 3. When n increases
to 4, the performance slightly drops, probably because of
overfitting, i.e., the amount of parameters of the FC layer
in DEM increases sharply as the level number increase.
Therefore, the level number N of SPP is uniformly set to 3 for
road extraction.

D. More Discussion

1) Unimodal Data Versus Multimodal Data: We first
explore whether multimodal data is reliably useful for traffic
road extraction. As shown in Table V, when only feeding

trajectory heat-maps into a D-LinkNet, we obtain a poor
performance (A_IoU 52.38%, G_IoU 52.90%) on the BJRoad
dataset. When only utilizing aerial images, we obtain an
A_IoU 59.79% and a G_IoU 60.24%, which indicates that
image data is more crucial than trajectory data. In contrast,
when using the aerial images and trajectory heat-maps simul-
taneously, our CMMPNet and the early/late fusion models
described in the next paragraph outperform the unimodal
models consistently with an improvement of at least 1%
on IoU. This comparison demonstrates that multimodal data
is more effective for traffic road extraction, because aer-
ial images and vehicle crowdsourced trajectories have rich
complementarities.

2) Which Multimodal Learning Manner Is Better?: We
then explore the effects of different multimodal learning man-
ners. Except for the proposed CMMPNet, we also implement
another two commonly-used manners, i.e., early fusion model
and late fusion model. Specifically, the former feeds the
concatenation of aerial images and trajectory heat-maps into a
D-LinkNet. In the latter, aerial images and trajectory heat-
maps are, respectively, fed into individual D-LinkNet, and
their final features are concatenated to estimate the road maps.
As shown in Table V, the early fusion model obtains an
A_IoU 61.11% and a G_IoU 61.53%, slightly outperforming
the late fusion model (A_IoU 60.78%, G_IoU 61.24%). This
is because the multimodal information is utilized at different
layers in the former, but just utilized once in the latter.
Compared with these two models, our CMMPNet is more
reasonable to learn modality-specific features and propagate
cross-modal information hierarchically. For this reason, our
method achieves an impressive A_IoU 62.85% and G_IoU
63.39%, and outperforms early/late fusion models with a
large margin, as shown in Fig. 7. This comparison shows the
effectiveness of our CMMPNet for multimodal representation
learning.
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TABLE V

PERFORMANCE OF DIFFERENT INPUTS AND DIFFERENT REPRESENTATION
LEARNING MANNERS ON THE TESTING SET OF BJROAD DATASET

TABLE VI

PERFORMANCE OF TRAFFIC ROAD EXTRACTION BASED ON FOGGY

IMAGES AND VEHICLE TRAJECTORIES ON THE TESTING

SET OF THE FOGGY BJROAD DATASET

3) Significance of Crowdsourced Trajectories: Although the
IoU of aerial images is much better than that of trajecto-
ries, we argue that vehicle trajectories are crucial for the
robustness of road extraction, especially when some cities
(e.g., Chongqing and Chengdu, China) are greatly covered
by fog and mist in aerial images. So here we explore to
extract traffic roads from foggy images and crowdsourced
trajectories. Since there are no foggy images in the BJRoad
dataset, we need to generate some aerial images with heavy
fog in advance. Specifically, for each cloudless image in
BJRoad, we employ a fog effect renderer of Photoshop to
generate a foggy image. After augmenting the training samples
as described in Section IV-D, we reimplement the proposed
CMMPNet and three other compared methods, including
1) two unimodal models which feed foggy images or trajectory
heat-maps into D-LinkNet and 2) an early fusion D-LinkNet
model which takes the concatenation of foggy images and
trajectory heat-maps as input.

The results of all methods are summarized in Table VI.
We can observe that the unimodal D-LinkNet only obtains
an A_IoU 54.54% and a G_IoU 55.27% when only using
foggy images. Compared with the corresponding model using
cloudless images, this model has a dramatic drop in perfor-
mance, since traffic roads may be invisible in foggy images.
When utilizing foggy images and trajectories simultaneously,
the early fusion model obtains an A_IoU 57.98% and a
G_IoU 58.49%. Based on the same D-LinkNet, our CMMPNet
achieves a competitive A_IoU 60.45% and G_IoU 61.06%,
having a performance improvement of at least 3% compared
with other models. Moreover, the visualizations in Fig. 9
shows that our CMMPNet can still generate high-quality road
maps in foggy weather conditions. This is attributed to the
fact that the vehicle trajectories can provide rich information
to remedy the limitation of aerial images, and our method can
fully capture their complementary information. In summary,
crowdsourced trajectories are very crucial and beneficial for
robust road extraction.

VI. APPLY TO IMAGE + LIDAR-BASED EXTRACTION

As mentioned above, our method is general for road
extraction by exploiting multimodal information. In this

Fig. 9. First row shows some foggy images and mass vehicle trajectories
on the testing set of the foggy BJRoad dataset. Although traffic roads are
occluded extremely in these images, our CMMPNet can still generate high-
quality road network maps by fully exploiting the complementary information
of vehicle crowdsourced trajectories, as shown in the second row.

Fig. 10. Performance of different methods on the TLCGIS dataset.
The proposed CMMPNet also outperforms all existing approaches for
image + LiDAR-based road extraction.

section, we employ the proposed CMMPNet to recognize
traffic roads from aerial images and LiDAR data. As shown
in Fig. 11(a) and (b), LiDAR data can help to discover
some occluded or inconspicuous roads in aerial images.
Here we conduct extensive experiments on the Tallahassee-
Leon County GIS (TLCGIS) [59] dataset, which consists
of 5860 pairs of aerial images and LiDAR images rendered
from raw LiDAR point cloud data. The resolution of these
images is 500×500 and the geographical length of each pixel
is 0.5 feet. This dataset is officially divided into training, test,
and validation sets with each having 2640, 2400, and 240 sam-
ples, respectively. On this dataset, we also take D-LinkNet
as the backbone to develop our CMMPNet and optimize this
model with the process described in Section IV-D.

A. Comparison With State-of-the-Art Metods

In this section, we compare our CMMPNet with six state-
of-the-art methods on the TLCGIS dataset. The details of these
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Fig. 11. Visualization of the generated traffic road maps on the TLCGIS dataset. (a) and (b) Are the input aerial images and LiDAR images. (c) Are the
results that only aerial images are taken as input. (d) Are the results of our CMMPNet that utilizes both aerial images and LiDAR data. (e) Are the GT road
maps. (a) Aerial images. (b) LiDAR data. (c) Image-based results. (d) Our results. (e) GT road maps.

compared methods are described as follows. SegNet [60]:
As a fully convolutional Autoencoder, SegNet takes the con-
catenation of aerial images and LiDAR images as input.
PreConv [59]: The LiDAR images are first fed into a depth
convolution unit (DepthCNN) implemented with two con-
volutional layers. The LiDAR features and aerial images
are then concatenated and fed into SegNet. RFNorm [59]:
Given aerial and LiDAR images, some Random Forest clas-
sifiers [86] are first trained to estimate the road probability
score at each location. The aerial-based and LiDAR-based
score maps are concatenated and fed into SegNet. ElePre-
Conv [59]: In this model, LiDAR images are first encoded
with two convolutions (eight and four filters), while aerial
images are extended with an extra zero-initialized channel.
The element-wise addition of four-channel images and LiDAR
features are fed into FuseNet [87]. TriSeg [59]: This model
consists of three SegNets. The first two SegNets, respec-
tively, take aerial or LiDAR images to generate the road
probability maps, which are concatenated and fed into the
third SegNet for final estimation. DeepDualMapper [29]:
This model has been described above and here we adopt
D-LinkNet as the backbone network to reimplement this
model.

The performance of all approaches is summarized in Fig. 10.
We can observe that the previous best-performing methods
are TriSeg and DeepDualMapper, whose G_IoU are 78.4%
and 81.1%, respectively. Thanks to the cross-modal mutual
refinement strategy, our CMMPNet achieves a new state-of-
the-art G_IoU 83.1% on the TLCGIS dataset and greatly
outperforms DeepDualMapper with an absolute improvement
of 2%. Moreover, we also visualize some results in Fig. 11.
As can be observed, the traffic road maps generated by our
method are more accurate in complex scenarios. In summary,
these quantitative and qualitative comparisons demonstrate that
our CMMPNet is universal and effective to extract traffic roads
from aerial images and LiDAR data.

TABLE VII

PERFORMANCE OF DIFFERENT INPUTS AND DIFFERENT REPRESENTATION

LEARNING MANNERS ON THE TESTING SET OF TLCGIS DATASET

B. Internal Analysis

In this section, we verify the effectiveness of each com-
ponent in the proposed CMMPNet for image + LiDAR-
based road extraction. We first explore which manner can
better exploit the information of these modalities. As shown
in Table VII, we can obtain a G_IoU of 69.12%, when
only feeding the rendered LiDAR images into D-LinkNet.
When only using aerial images, the G_IoU of D-LinkNet is
80.96%, which indicates that aerial images are more important.
Incorporating the information of aerial and LiDAR images
simultaneously, the early fusion model obtains a G_IoU of
81.62%, while the late fusion model has a comparable G_IoU
of 81.50%. When fully exploring their complementary infor-
mation with cross-modal message propagators, our CMMPNet
achieves an impressive G_IoU 83.10%, outperforming the
early/late fusion models with an absolute improvement of
1.5%. This demonstrates that the proposed CMMPNet can
also effectively capture the complementary information among
aerial images and LiDAR data.

We then explore the effect of global information and gate
functions. Similar to Section V-C, we implement several vari-
ants of CMMPNet. As shown in Table VIII, when only prop-
agating local information with gate functions, “Local + Gate”
model obtains a G_IoU 82.31%. When incorporating global
information, “Local + Global + Gate” model has a better
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TABLE VIII

INFLUENCE OF NLM PROPAGATOR AND GATED MESSAGE PROPAGATOR
ON THE TESTING SET OF TLCGIS DATASET

G_IoU 83.10%, which indicates that the global information
is also useful for image + LiDAR-based road extraction.
Moreover, by comparing the performance of “Local + Global”
model and “Local + Global + Gate” model, we can observe
that the gate functions help to make an absolute improvement
of 1.04% on G_IoU, which also demonstrates the effectiveness
of gated message propagator for image + LiDAR-based road
extraction.

VII. CONCLUSION

In this work, we investigate a challenging task for land
remote-sensing analysis, i.e., how to robustly extract traf-
fic roads using the complementary information of aerial
images and vehicle crowdsourced trajectories. To this end,
we introduce a novel CMMPNet, which learns modality-
specific features explicitly with two individual autoencoders
and enhances these features mutually with a tailor-designed
DEM. Specifically, we comprehensively extract and dynam-
ically propagate the complementary information of each
modality to enhance the representation of another modality.
Extensive experiments conducted on two real-world bench-
marks show that the proposed CMMPNet is not only effective
for image + trajectory-based road extraction, but also suitable
for image + LiDAR-based road extraction.

Nevertheless, there are still several issues worthy of further
study. First, the connectivity of traffic roads has not been
explicitly explored in conventional works. Intuitively, the
temporal information of vehicle trajectories could be utilized
to distinguish disconnected road regions (e.g., urban roads
are usually separated by fences and green belts). However,
existing image + trajectory datasets lack the road connec-
tivity annotation. To facilitate the researches in this field,
we will construct a large-scale multimodal road extraction
with rich connectivity annotation and propose a multimodal
spatial-temporal framework to explicitly estimate the road
connectivity in future work. Second, some elevated roads at
different heights are overlapped on aerial images. The height
information accessed with GPS devices is relatively coarse.
Thus in future work, we will also develop some advanced
approaches to effectively recognize the roads at different
heights with the coarse height information of crowdsourced
trajectories.
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