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Abstract

Grounding referring expressions aims to locate in an im-

age an object referred to by a natural language expression.

The linguistic structure of a referring expression provides

a layout of reasoning over the visual contents, and it is of-

ten crucial to align and jointly understand the image and

the referring expression. In this paper, we propose a scene

graph guided modular network (SGMN), which performs

reasoning over a semantic graph and a scene graph with

neural modules under the guidance of the linguistic struc-

ture of the expression. In particular, we model the image

as a structured semantic graph, and parse the expression

into a language scene graph. The language scene graph

not only decodes the linguistic structure of the expression,

but also has a consistent representation with the image se-

mantic graph. In addition to exploring structured solutions

to grounding referring expressions, we also propose Ref-

Reasoning, a large-scale real-world dataset for structured

referring expression reasoning. We automatically generate

referring expressions over the scene graphs of images us-

ing diverse expression templates and functional programs.

This dataset is equipped with real-world visual contents as

well as semantically rich expressions with different reason-

ing layouts. Experimental results show that our SGMN1

not only significantly outperforms existing state-of-the-art

algorithms on the new Ref-Reasoning dataset, but also

surpasses state-of-the-art structured methods on commonly

used benchmark datasets. It can also provide interpretable

visual evidences of reasoning.

1. Introduction

Grounding referring expressions aims to locate in an im-

age an object referred to by a natural language expression,

†Corresponding authors. This work was partially supported by the

Hong Kong PhD Fellowship, the Guangdong Basic and Applied Ba-

sic Research Foundation under Grant No.2020B1515020048, the Na-

tional Natural Science Foundation of China under Grant No.61976250 and
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1Data and code are available at https://github.com/sibeiyang/sgmn
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Figure 1. Scene Graph guided Modular Network (SGMN) for

grounding referring expressions. SGMN first parses the expres-

sion into a language scene graph and models the image as a se-

mantic graph, then it performs structured reasoning with neural

modules under the guidance of the language scene graph.

and the object is called the referent. It is a challenging prob-

lem because it requires understanding as well as performing

reasoning over semantics-rich referring expressions and di-

verse visual contents including objects, attributes and rela-

tions.

Analyzing the linguistic structure of referring expres-

sions is the key to grounding referring expressions because

they naturally provide the layout of reasoning over the vi-

sual contents. For the example shown in Figure 1, the

composition of the referring expression “the girl in blue

smock across the table” (i.e., triplets (“the girl”, “in”, “blue

smock”) and (“the girl”, “across” , “the table”)) reveals

a tree-structured layout of finding the blue smock, locat-

ing the table and identifying the girl who is “in” the blue

smock and meanwhile is “across” the table. However,

nearly all the existing works either neglect linguistic struc-

tures and learn holistic matching scores between monolithic

representations of referring expressions and visual contents

[18, 29, 23] or neglect syntactic information and explore

limited linguistic structures via self-attention mechanisms

[26, 8, 24].

Consequently, in this paper, we propose a Scene Graph

guided modular network (SGMN) to fully analyze the lin-

guistic structure of referring expressions and enable reason-

ing over visual contents using neural modules under the

guidance of the parsed linguistic structure. Specifically,

SGMN first models the input image with a structured rep-
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resentation, which is a directed graph over the visual ob-

jects in the image. The edges of the graph encode the se-

mantic relations among the objects. Second, SGMN ana-

lyzes the linguistic structure of the expression by parsing

it into a language scene graph [21, 16] using an external

parser, including the nodes and edges of which correspond

to noun phrases and prepositional/verb phrases respectively.

The language scene graph not only encodes the linguistic

structure but is also consistent with the semantic graph rep-

resentation of the image. Third, SGMN performs reason-

ing on the image semantic graph under the guidance of the

language scene graph by using well-deigned neural mod-

ules [2, 22] including AttendNode, AttendRelation, Trans-

fer, Merge and Norm. The reasoning process can be explic-

itly explained via a graph attention mechanism.

In addition to methods, datasets are also important for

making progress on grounding referring expressions, and

various real-world datasets have been released [12, 19, 27].

However, recent work [4] indicates dataset biases exist and

they may be exploited by the methods. And methods ac-

cessing the images only achieve marginally higher perfor-

mance than a random guess. Existing datasets also have

other limitations. First, the samples in the datasets have

unbalanced levels of difficulty. Many expressions in the

datasets directly describe the referents with attributes due

to the annotation process. Such an imbalance makes models

learn shallow correlations instead of achieving joint image

and text understanding, which defeats the original intention

of grounding referring expressions. Second, evaluation is

only conducted on final predictions but not on the interme-

diate reasoning process [17], which does not encourage the

development of interpretable models [24, 15]. Thus, a syn-

thetic dataset over simple 3D shapes with attributes is pro-

posed in [17] to address these limitations. However, the vi-

sual contents in this synthetic dataset are too simple, which

is not conducive to generalizing trained models on the syn-

thetic dataset to real-world scenes.

To address the aforementioned limitations, we build

a large-scale real-world dataset, named Ref-Reasoning.

We generate semantically rich expressions over the scene

graphs of images [14, 10] using diverse expression tem-

plates and functional programs, and automatically obtain

the ground-truth annotations at all intermediate steps dur-

ing the modularized generation process. Furthermore, we

carefully balance the dataset by adopting uniform sampling

and controlling the distribution of expression-referent pairs

over the number of reasoning steps.

In summary, this paper has the following contributions:

• A scene graph guided modular neural network is pro-

posed to perform reasoning over a semantic graph and a

scene graph using neural modules under the guidance of the

linguistic structure of referring expressions, which meets

the fundamental requirement of grounding referring expres-

sions.

• A large-scale real-word dataset, Ref-Reasoning, is

constructed for grounding referring expressions. Ref-

Reasoning includes semantically rich expressions describ-

ing objects, attributes, direct and indirect relations with a

variety of reasoning layouts.

• Experimental results demonstrate that the proposed

method not only significantly surpasses existing state-of-

the-art algorithms on the new Ref-Reasoning dataset, but

also outperforms state-of-the-art structured methods on

common benchmark datasets. In addition, it can provide

interpretable visual evidences of reasoning.

2. Related Work

2.1. Grounding Referring Expressions

A referring expression normally not only directly de-

scribes the appearance of the referent, but also its relations

to other objects in the image, and its reference information

depends on the meanings of its constituent expressions and

the rules used to compose them [9, 24]. However, most

of the existing works [29, 23, 25] neglect linguistic struc-

tures and learn holistic representations for the objects in

the image and the expression. Recently, there are some

works which involve the expression analysis into their mod-

els, and learn the components of expression and visual in-

ference from end to end. The methods in [9, 26, 28] softly

decompose the expression into different semantic compo-

nents relevant to different visual evidences, and compute a

matching score for every component. They use fixed se-

mantic components, e.g. subject-relation-object triplets [9]

and subject-location-relation components [26], which are

not feasible for complex expressions. DGA [24] analyzes

linguistic structures for complex expressions by iteratively

attending their constituent expressions. However, they all

resort to self-attention on the expression to explore its lin-

guistic structure but neglect its syntactic information. An-

other work [3] grounds the referent using a parse tree, where

each node of the tree is a word (or phrase) which can be a

noun, preposition or verb.

2.2. Dataset Bias and Solutions

Recently, the dataset bias began to be discussed for

grounding referring expressions [4, 17]. The work in [4]

reveals even the linguistically-motivated models tend to

learn shallow correlations instead of making use of lin-

guistic structures because of the dataset bias. In addition,

expression-independent models can achieve high perfor-

mance. The dataset bias can have a significantly negative

impact on the evaluation of a model’s readiness for joint

understanding and reasoning for language and vision.
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Figure 2. An overview of our Scene Graph guided Modular Network (SGMN)(better viewed in color). Different colors represent different

nodes in the language scene graph and their corresponding nodes in the image semantic graph. SGMN parses the expression into a language

scene graph and constructs an image semantic graph over the objects in the input image. Next, it performs reasoning under the guidance of

the language scene graph. It first locates the nodes in the image semantic graph for the leaf nodes in the language scene graph using neural

modules AttendNode and Norm. Then for the intermediate nodes in the language scene graph, it uses AttendRelation, Transfer and Norm

modules to attend the nodes in the image semantic graph, and the Merge module to combine the attention results.

In order to address the above problem, the work in [17]

proposes a new diagnostic dataset, called CLEVR-Ref+.

Same as CLEVR [11] in visual question answering, it con-

tains rendered images and automatically generated expres-

sions. In particular, the objects in the images are simple 3D

shapes with attributes (i.e., color, size and material), and the

expressions are generated using designed templates which

include spatial and same-attribute relations. However, the

models trained on this synthetic dataset cannot be easily

generalized to real-world scenes because the visual contents

(i.e., simple 3D shapes with attributes and spatial relations)

are too simple to jointly reason about language and vision.

Thanks for the scene graph annotations of real-world im-

ages provided in the Visual Genome datasets [14] and fur-

ther cleaned in the GQA dataset [10], we generate seman-

tically rich expressions over the scene graphs with objects,

attributes and relations using carefully designed templates

along with functional programs.

3. Approach

We now present the proposed scene graph guided mod-

ular network (SGMN). As illustrated in Figure 2, given an

input expression and an input image with visual objects, our

SGMN first builds a pair of semantic graph and scene graph

representations for the image and expression respectively,

and then performs structured reasoning over the graphs us-

ing neural modules.

3.1. Scene Graph Representations

Scene graph based representations form the basis of our

structured reasoning. In particular, the image semantic

graph flexibly captures and represents all the visual contents

needed for grounding referring expressions in the input im-

age while the language scene graph explores the linguistic

structure of the input expression, which defines the layout of

the reasoning process. In addition, these two types of graphs

have consistent structures, where the nodes and edges of the

language scene graph respectively correspond to a subset of

the nodes and edges of the image semantic graph.

3.1.1 Image Semantic Graph

Given an image with objects O = {oi}
N
i=1 , we define

the image semantic graph over the objects O as a directed

graph, Go = (Vo, Eo), where Vo = {voi }
N
i=1 is the set

of nodes and node voi corresponds to object oi; Eo =
{eoij}

N
i,j=1 is the set of directed edges, and eoij is the edge

from voj to voi , which denotes the relation between objects

oj and oi.
For each node voi , we obtain two types of features, visual

feature vo
i extracted from a pretrained CNN model and spa-

tial feature po
i = [xi, yi, wi, hi, wihi], where (xi, yi), wi

and hi are the normalized top-left coordinates, width and

height of the bounding box of node vi respectively. For each

edge eoij , we compute the edge feature eoij by encoding the

relative spatial feature loij between voi and voj and the visual

feature vo
j of node voj together because relative spatial infor-

mation between objects along with their appearance infor-

mation is the key indicator of their semantic relation [5].

Specifically, the relative spatial feature is represented

as loij = [
xj−xci

wi
,
yj−yci

hi
,
xj+wj−xci

wi
,
yj+hj−yci

hi
,
wjhj

wihi
],

where (xci, yci) are the normalized center coordinates of

the bounding box of node voi . And eoij is the concatenation

of an encoded version of loij and vo
j , i.e., eoij = [WT

o l
o
ij ,v

o
j ],

where Wo is a learnable matrix.

3.1.2 Language Scene Graph

Given an expression S, we first use an off-the-shelf scene

graph parser [21] to parse the expression into an initial lan-
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guage scene graph, where a node and an edge of the graph

correspond to an object and the relation between two objects

mentioned in S respectively, and the object is represented as

an entity with a set of attributes.

We define the language scene graph over S as a directed

graph G = (V, E), where V = {vm}Mm=1 is a set of nodes

and node vm is associated with a noun or noun phrase,

which is a sequence of words from S; E = {ek}
K
k=1 is a

set of edges and edge ek = (vks, rk, vko) is a triplet of sub-

ject node vks ∈ V , object node vko ∈ V and relation rk, the

direction of which is from vko to vks. Relation rk is associ-

ated with a preposition/verb word or phrase from S, and ek
indicates that subject node vks is modified by object node

vko.

3.2. Structured Reasoning

We perform structured reasoning on the nodes and edges

of graphs using neural modules under the guidance of the

structure of language scene graph G. In particular, we first

design the inference order and reasoning rules for its nodes

V and edges E . Then, we follow the inference order to per-

form reasoning. For each node, we adopt the AttendNode

module to find its corresponding node in graph Go or use

the Merge module to combine information from its inci-

dent edges. For each edge, we execute specific reasoning

steps using carefully designed neural modules, including

AttendNode, AttendRelation and Transfer.

3.2.1 Reasoning Process

In this section, we first introduce the inference order, and

then present specific reasoning steps on the nodes and edges

respectively. In general, for every node in language scene

graph G, we learn its attention map over the nodes of image

semantic graph Go on the basis of its connections.

Given a language scene graph G, we locate the node with

zero out-degree as its referent node vref because the refer-

ent is usually modified by other entities rather than modify-

ing other entities in a referring expression. Then, we per-

form breadth-first traversal of the nodes in graph G from the

referent node vref by reversing the direction of all edges,

meanwhile, push the visited nodes into a stack which is ini-

tially empty. Next, we iteratively pop one node from the

stack and perform reasoning on the popped node. The stack

determines the inference order for the nodes, and one node

can reach the top of the stack only after all of its modifying

nodes have been processed. This inference order essentially

converts graph G into a directed acyclic graph. Without loss

of generality, suppose node vm is popped from the stack in

the present iteration, and we carry out reasoning on node

vm on the basis of its connections to other nodes. There are

two different situations: 1) If the in-degree of vm is zero,

vm is a leaf node, which means node vm is not modified

by any other nodes. Thus, node vm should be associated

with the nodes of image semantic graph Go independently;

2) otherwise, if node vm has incident edges Em ∈ E start-

ing from other nodes, vm is an intermediate node, and its

attention map over Vo should depend on the attention maps

of its connected nodes and the edges between them.

Leaf node. We learn an embedding for the words associated

with the nodes of the language scene graph G in advance.

Then, for node vm, suppose its associated phrase consists of

words {wt}
T
t=1, and the embedded feature vectors for these

words are {ft}
T
t=1. We use a bi-directional LSTM [7] to

compute the context of every word in this phrase, and define

the concatenation of the forward and backward hidden vec-

tors of a word wt as its context, denoted as ht. Meanwhile,

we represent the whole phrase using the concatenation of

the last hidden vectors of both directions, denoted as h. In a

referring expression, an individual entity is often described

by its appearance and spatial location. Therefore, we learn

feature representations for node vm from both appearance

and spatial location. In particular, inspired by self-attention

in [9, 23, 26], we first learn the attention over each word

on the basis of its context, and obtain feature representa-

tions vlook
m and vloc

m at node vm by aggregating attention

weighted word embedding as follows,

αlook
t,m =

exp(WT
lookht)∑T

t=1
exp(WT

lookht)
,vlook

m =

T∑

t=1

αlook
t,m ft

αloc
t,m =

exp(WT
locht)∑T

t=1
exp(WT

locht)
,vloc

m =

T∑

t=1

αloc
t,mft,

(1)

where Wlook and Wloc are learnable parameters, and vlook
m

and vloc
m correspond to the appearance and spatial loca-

tion of node vm. Then, we feed these two features into

the AttendNode neural module to compute attention maps

{λlook
n,m}Nn=1 and {λloc

n,m}Nn=1 over the nodes of image se-

mantic graph Go. Finally, we combine these two attention

maps to obtain the final attention map for node vm. A noun

phrase may place emphasis on appearance, spatial location

or both of them. We flexibly adapt to the variations of noun

phrases by learning a pair of weights at node vm for the

attention maps related to appearance and spatial location.

The weights (i.e. βlook and βloc) and the final attention map

{λn,m}Nn=1 for node vm are computed as follows,

βlook = sigmoid(WT
0 h+ b0)

βloc = sigmoid(WT
1 h+ b1)

λn,m = βlookλlook
n,m + βlocλloc

n,m

{λn,m}Nn=1 = Norm({λn,m}Nn=1),

(2)

where WT
0 , b0, WT

1 and b1 are learnable parameters, and

the Norm module is used to constrain the scale of the atten-

tion map.
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Intermediate node. As an intermediate node, vm is con-

nected to other nodes that modify it, and such connections

are actually a subset of edges, Em ∈ E , incident to vm. We

compute an attention map over the edges of image seman-

tic graph Go for each edge in this subset, then transfer and

combine all these attention maps to obtain a final attention

map for node vm.

For each edge ek = (vks, rk, vko) in Em (where vks is

exactly vm), we first form a sentence associated with ek
by concatenating the words or phrases associated with vks,

rk and vko. Then, we obtain the embedded feature vectors

{ft}
T
t=1 and word contexts {ht}

T
t=1 for the words {wt}

T
t=1

in this sentence and the feature representation of the whole

sentence by following the same computation for leaf nodes.

Next, we compute the attention map for node vks from two

different aspects, i.e. subject description and relation-based

transfer, because ek not only directly describes subject vks
itself but also its relation to object vko. From the aspect

of subject description, same as the computation for leaf

nodes, we obtain attention maps corresponding to the ap-

pearance and spatial location of vks ( i.e. {λlook
n,ks

}Nn=1 and

{λloc
n,ks

}Nn=1) and weights (i.e. βlook
ks

and βloc
ks

) to combine

them. From the aspect of relation-based transfer, we first

compute a relational feature representation for edge ek as

follows,

αrel
t,k =

exp(WT
relht)∑T

t=1
exp(WT

relht)
, rk =

T∑

t=1

αrel
t,k ft (3)

where Wrel is a learnable parameter. Then we feed the

relational representation rk to the AttendRelation neu-

ral module to attend the relation rk over the edges Eo
ij

of graph Go, and the computed attention weights are de-

noted as {γij,k}
N
i,j=1. Moreover, we use the Transfer

module and the Norm module to transfer the attention

map {λn,ko
}Nn=1 for object node vko to node vm by mod-

ulating {λn,ko
}Nn=1 with the attention weights on edges

{γij,k}
N
i,j=1, and the transferred attention map for node vm

is denoted as {λrel
n,ks

}Nn=1. It is worth mentioning that object

node vko has been accessed before and the attention map

{λn,ko
}Nn=1 for node vko has been computed. Next, we es-

timate the weight of relation at edge ek and integrate the at-

tention maps for node vks related to subject description and

relation-based transfer to obtain attention map {λn,ks
}Nn=1

for node vks contributed by edge ek, and {λn,ks
}Nn=1 is de-

fined as follows.

βrel
k = sigmoid(WT

2 h+ b2)

λn,ks
= βlook

ks
λlook
n,ks

+ βloc
ks

λloc
n,ks

+ βrel
n,ks

λrel
n,ks

{λn,ks
}Nn=1 = Norm({λn,ks

}Nn=1),

(4)

where W2 and b2 are learnable parameters.

Finally, we combine the attention maps {{λn,ks
}Nn=1}

for node vm contributed by all edges in Em using the Merge

module followed by the Norm module to obtain the final

attention map {λn,m}Nn=1 for node vm.

3.2.2 Neural Modules

We present a series of neural modules to perform specific

reasoning steps, inspired by the neural modules in [22]. In

particular, the AttendNode and AttendRelation modules are

used to connect the language mode with the vision mode.

They receive feature representations of linguistic contents

from the language scene graph and output attention maps

of the features defined over visual contents in the image se-

mantic graph. The Merge, Norm and Transfer modules are

adopted to further integrate and transfer attention maps over

the nodes and edges of the image semantic graph.

AttendNode [appearance query, location query] mod-

ule aims to find relevant nodes among the nodes of the

image semantic graph Go given an appearance query and

location query. It takes the query vectors of the appear-

ance query and location query as inputs and generate at-

tention maps {λlook
n }Nn=1 and {λloc

n }Nn=1 over the nodes Vo,

where every node von ∈ Vo has two attention weights, i.e.,

λlook
n ∈ [−1, 1] and λloc

n ∈ [−1, 1]. The query vectors are

linguistic features at nodes of the language scene graph, de-

noted as vlook and vloc. For node von in graph Go, its atten-

tion weights λlook
n and λloc

n are defined as follows,

λlook
n = 〈L2Norm(MLP0(v

o
n)),L2Norm(MLP1(v

look))〉,

λloc
n = 〈L2Norm(MLP2(p

o
n)),L2Norm(MLP3(v

loc))〉,
(5)

where MLP0(), MLP1(), MLP2() and MLP3() are multi-

layer perceptrons consisting of several linear and ReLU lay-

ers, L2Norm() is the L2 normalization, and vo
n and po

n are

the visual feature and spatial feature at node von respectively,

which are mentioned in Section 3.1.1.

AttendRelation [relation query] module aims to find rele-

vant edges in the image semantic graph Go given a relation

query. The purpose of a relation query is to establish con-

nections between nodes in graph Go. Given query vector

e, the attention weights {γij}
N
i,j=1 on edges {eoij}

N
i,j=1 are

defined as follows,

γij = σ(〈L2Norm(MLP5(e
o
ij)),L2Norm(MLP1(e))〉)

(6)

where MLP5(), MLP5() are multilayer perceptrons, and the

ReLU activation function σ ensures the attention weights

are larger than zero.

Transfer module aims to find new nodes by passing at-

tention weights {λn}
N
n=1 on nodes that modify those new

nodes along attended edges {γij}
N
i,j=1. The updated atten-

tion weights {λnew
n }Nn=1 are calculated as follows,

λnew
n =

N∑

j=1

γn,jλj . (7)
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Merge module aims to combine multiple attention maps

generated from different edges of the same node, where

the attention weights over edges are computed individually.

Given the set of attention maps Λ for a node, the merged

attention map {λn}
N
n=1 is defined as follows,

λn =
∑

{λ′

n}
N
n=1

∈Λ

λ′
n. (8)

Norm module aims to set the range of weights in attention

maps to [−1, 1]. If the maximum absolute value of an at-

tention map is larger than 1, the attention map is divided by

the maximum absolute value.

3.3. Loss Function

Once all the nodes in the stack have been processed, the

final attention map for the referent node of the language

scene graph is obtained. This attention map is denoted as

{λn,ref}
N
n=1. As in previous methods for grounding refer-

ring expressions [9], during the training phase, we adopt the

cross-entropy loss, which is defined as

pi = exp(λi,ref )/

N∑

n=1

exp(λn,ref ), loss = −log(pgt) (9)

where pgt is the probability of the ground-truth object. Dur-

ing the inference phase, we predict the referent by choosing

the object with the highest probability.

4. Ref-Reasoning Dataset

The proposed dataset is built on the scenes from the

GQA dataset [10]. We automatically generate referring ex-

pressions for every image on the basis of the image scene

graph using a diverse set of expression templates.

4.1. Preparation

Scene Graph. We generate referring expressions according

to the ground-truth image scene graphs. Specifically, we

adopt the scene graph annotations provided by the Visual

Genome dataset [14] and further normalized by the GQA

dataset. In a scene graph annotation of an image, each node

represents an object with about 1-3 attributes, and each edge

represents a relation (i.e., semantic relation, spatial relation

and comparatives) between two objects. In order to use

the scene graphs for referring expression generation, we re-

move some unnatural edges and classes, e.g., “nose left of

eyes”. In addition, we add edges between objects to rep-

resent same-attribute relations between objects, i.e., “same

material”, “same color” and “same shape”. In total, there

are 1,664 object classes, 308 relation classes and 610 at-

tribute classes in the adopted scene graphs.

Expression Template. In order to generate referring ex-

pressions with diverse reasoning layouts, for each specified

number of nodes, we design a family of referring expression

templates for each reasoning layout. We generate expres-

sions according to layouts and templates using functional

programs, and the functional program for each template can

be easily obtained according to the layout. In particular, lay-

outs are sub-graphs of directed acyclic graphs, where only

one node (i.e., the root node) has zero out-degree and other

nodes can reach the root node. The functional program

for a layout provides a step-wise plan for reaching the root

node from leaf nodes (i.e., the nodes with zero in-degree)

by traversing all the nodes and edges in this layout, and

templates are parameterized natural language expressions,

where the parameters can be filled in. Moreover, we set

the constraint that the number of nodes in a template ranges

from one to five.

4.2. Generation Process

Given an image, we generate dozens of expressions from

the scene graph of the image, and the generation process for

one expression is summarized as follows,

• Randomly sample the referent node and randomly de-

cide the number of nodes, denoted as C.

• Randomly sample a sub-graph with C nodes including

the referent node in the scene graph.

• Judge the layout of the sub-graph and randomly sam-

ple a referring expression template from the family of

templates corresponding to the layout.

• Fill in the parameters in the template using contents

of the sub-graph, including relations and objects with

randomly sampled attributes.

• Execute the functional program with filled parame-

ters and accept the expression if the referred object is

unique in the scene graph.

Note that we perform extra operations during the genera-

tion process: 1) If there are objects that have same-attribute

relations in the sub-graph, we avoid choosing the attributes

that appear in such relations for these objects. This re-

striction intends to make the modified node identified by

the relation edge instead of the attribute directly. 2) To

help balance the dataset, during the process of random sam-

pling, we decrease the chances of nodes and relations whose

classes most commonly exist in the scene graphs. In addi-

tion, we increase the chances of multi-order relationships

with C = 3 or C = 4 to reasonably increase the level of

difficulty for reasoning. 3) We define a difficulty level for

a referring expression. We find its shortest sub-expression

which can identify the referent in the scene graph, and the

number of objects in the sub-expression is defined as the

difficulty level. For example, if there is only one bottle in

an image, the difficulty level of “the bottle on a table beside
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Number of Objects Split

one two three >= four val test

CNN 10.57 13.11 14.21 11.32 12.36 12.15

CNN+LSTM 75.29 51.85 46.26 32.45 42.38 42.43

DGA 73.14 54.63 48.48 37.63 45.37 45.87

CMRIN 79.20 56.87 50.07 35.29 45.43 45.87

Ours SGMN 79.71 61.77 55.57 41.89 51.04 51.39

Table 1. Comparison with baselines and state-of-the-art methods on Ref-Reasoning dataset. The best performing method is marked in bold.

a plate” is still one even though it describes three objects

and their relations. Then, we obtain the balanced dataset

and its final splits by randomly sampling expressions of im-

ages according to their difficulty level and the number of

nodes described by them.

5. Experiments

5.1. Datasets

We have conducted extensive experiments on the pro-

posed Ref-Reasoning dataset as well as on three com-

monly used benchmark datasets (i.e., RefCOCO[27],

RefCOCO+[27] and RefCOCOg[19]). Ref-Reasoning con-

tains 791,956 referring expressions in 83,989 images. It

has 721,164, 36,183 and 34,609 expression-referent pairs

for training, validation and testing, respectively. Ref-

Reasoning includes semantically rich expressions describ-

ing objects, attributes, direct relations and indirect rela-

tions with different layouts. RefCOCO and RefCOCO+

datasets includes short expressions collected from an in-

teractive game interface. RefCOCOg collects from a non-

interactive settings and it has longer complex expressions.

5.2. Implementation and Evaluation

The performance of grounding referring expressions is

evaluated by accuracy, i.e., the fraction of correct predic-

tions of referents.

For the Ref-Reasoning dataset, we use a ResNet-101

based Faster R-CNN [20, 6] as the backbone, and adopt

a feature extractor which is trained on the training set of

GQA with an extra attribute loss following [1]. Visual fea-

tures of annotated objects are extracted from the pool5 layer

of the feature extractor. For the three common benchmark

datasets (i.e., RefCOCO, RefCOCO+ and RefCOCOg), we

follow CMRIN [23] to extract the visual features of objects

in images. To keep the image semantic graph sparse and

reduce computational cost, we connect each node in the im-

age semantic graph to its five nearest nodes based on the

distances between their normalized center coordinates. We

set the mini-batch size to 64. All the models are trained by

the Adam optimizer [13] with the learning rate set to 0.0001

and 0.0005 for the Ref-Reasoning dataset and other bench-

mark datasets respectively.

5.3. Comparison with the State of the Art

We conduct experimental comparisons between the pro-

posed SGMN and existing state-of-the-art methods on both

the collected Ref-Reasoning dataset and three commonly

used benchmark datasets.

Ref-Reasoning Dataset. We evaluate two baselines (i.e.,

a CNN model and a CNN+LSTM model), two state-of-

the-art methods (i.e., CMRIN [23] and DGA [24]) and the

proposed SGMN on the Ref-Reasoning dataset. The CNN

model is allowed to access objects and images only. The

CNN+LSTM model embeds objects and expressions into a

common feature space and learns matching scores between

them. For CMRIN and DGA, we adopt their default set-

tings [23, 24] in our evaluation. For a fair comparison, all

the models use the same visual object features and the same

setting in LSTMs.

Table 1 shows the evaluation results on the Ref-

Reasoning dataset. The proposed SGMN significantly out-

performs the baselines and existing state-of-the-art models,

and it consistently achieves the best performance on all the

splits of the testing set, where different splits need differ-

ent numbers of reasoning steps. The CNN model has a low

accuracy of 12.15%, which is much lower than the accu-

racy (i.e., 41.1% [4]) of the image-only model for the Ref-

COCOg dataset, which demonstrates that joint understand-

ing of images and text is required on Ref-Reasoning. The

CNN+LSTM model achieves a high accuracy of 75.29% on

the split where expressions directly describe the referents.

This is because relation reasoning is not required in this

split and LSTM may be qualified to capture the semantics of

expressions. Compared with the CNN+LSTM model, DGA

and CMRIN achieve higher performance on the two-, three-

and four-node splits because they learn a language-guided

contextual representation for objects.

Common Benchmark Datasets. Quantitative evaluation

results on RefCOCO, RefCOCO+ and RefCOCOg datasets

are shown in Table 2. The proposed SGMN consis-

tently outperforms existing structured methods across all

the datasets, and it improves the average accuracy over

the testing sets achieved by the best performing existing

structured method by 0.92%, 2.54% and 2.96% respectively

on the RefCOCO, RefCOCO+ and RefCOCOg datasets.

Moreover, it also surpasses all the existing models on the
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RefCOCO RefCOCO+ RefCOCOg

testA testB testA testB test

Holistic Models

CMN [9] 75.94 79.57 59.29 59.34 -

ParallelAttn [29] 80.81 81.32 66.31 61.46 -

MAttNet* [26] 85.26 84.57 75.13 66.17 78.12

CMRIN* [23] 87.63 84.73 80.93 68.99 80.66

DGA* [24] 86.64 84.79 78.31 68.15 80.26

Structured Models

MattNet* + parser [26] 79.71 81.22 68.30 62.94 73.72

RvG-Tree* [8] 82.52 82.90 70.21 65.49 75.20

DGA* + parser [24] 84.69 83.69 74.83 65.43 76.33

NMTree* [15] 85.63 85.08 75.74 67.62 78.21

MSGL* [16] 85.45 85.12 75.31 67.50 78.46

Ours SGMN* 86.67 85.36 78.66 69.77 81.42

Table 2. Comparison with state-of-the-art methods on RefCOCO,

RefCOCO+ and RefCOCOg. We use * to indicate this model uses

resnet101 features. None-superscript indicates that model uses

vgg16 features. The best performing method is marked in bold.

RefCOCOg dataset which has relatively longer complex

expressions with an average length 8.43, and achieves a

performance comparable to the best performing holistic

method on the other two common benchmark datasets. Note

that holistic models usually have higher performance than

structured models on the common benchmark datasets be-

cause those datasets include many simple expressions de-

scribing the referents without relations, and holistic mod-

els are prone to learn shallow correlations without reason-

ing and may exploit this dataset bias [4, 17]. In addition,

the inference mechanism of holistic methods has poor in-

terpretability.

5.4. Qualitative Evaluation

(a) a woman with pink and black 

hair walking a dog

a woman

walking

pink and black haira dog

with

(b) there is a blanket which is on the chair 

to the left of lamp on a floor

a floor lamp

a chairthere is a blanket

on

to the left of

on

Figure 3. Qualitative results showing the attention maps over the

objects along the language scene graphs predicted by the SGMN.

Visualizations of two examples along with their lan-

guage scene graphs and attention maps over the objects

in images at every node of the language scene graphs

are shown in Figure 3. This qualitative evaluation results

demonstrate that the proposed SGMN can generate inter-

pretable visual evidences of intermediate steps in the rea-

soning process. In Figure 3(a), SGMN parses the expres-

sion into a tree structure and finds the referred “woman”

who is walking “a dog” and meanwhile is with “pink and

black hair”. Figure 3(b) shows a more complex expression

which describes four objects and their relations. SGMN

first successfully changes from the initial attention map

(bottom-right) to the final attention map (top-right) at the

node “a chair” by performing relational reasoning along the

edges (i.e., triplets (“a chair”, “to the left of” , “lamp”)

and (“lamp”, “on”, “a floor”)), and then identifies the tar-

get “blanket” on that chair.

5.5. Ablation Study

Number of Objects Split

one two three >= four val test

w/o transfer 79.14 48.51 45.97 31.57 40.66 41.88

w/o norm 79.37 49.44 45.61 31.57 40.80 41.93

max merge 78.71 54.00 50.34 34.76 44.50 45.27

min merge 78.83 53.83 51.11 35.79 45.25 46.00

Ours SGMN 79.71 61.77 55.57 41.89 51.04 51.39

Table 3. Ablation study on Ref-Reasoning dataset. The best per-

forming method is marked in bold.

To demonstrate the effectiveness of reasoning under the

guidance of scene graphs inferred from referring expres-

sions as well as the design of neural modules, we train four

additional models for comparison. The results are shown in

Table 3. All the models have similar performance on the

split of expressions directly describing the referents. For

the other splits, SGMN without the Transfer module and

SGMN without the Norm module have much lower perfor-

mance than the original SGMN because the former treats

the referent as an isolated node without performing rela-

tion reasoning while the latter unfairly treats different re-

lational edges and the nodes connected by them. Next,

we explore different options of the function (i.e., max, min

and sum) used in the Merge module. Compared to SGMN

with sum-merge, its performance with min-merge and max-

merge drops because max-merge only captures the most sig-

nificant relation for each intermediate node and min-merge

is sensitive to parsing errors and recognition errors.

6. Conclusion

In this paper, we present a scene graph guided modular

network (SGMN) for grounding referring expressions. It

performs graph-structured reasoning over the constructed

graph representations of the input image and expression

using neural modules. In addition, we propose a large-

scale real-world dataset for structured referring expres-

sion reasoning, named Ref-Reasoning. Experimental re-

sults demonstrate that SGMN not only significantly out-

performs existing state-of-the-art algorithms on the new

Ref-Reasoning dataset, but also surpasses state-of-the-art

structured methods on commonly used benchmark datasets.

Moreover, it can generate interpretable visual evidences of

reasoning via a graph attention mechanism.
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