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Abstract—Recently, deep convolutional neural networks have
achieved significant success in salient object detection. However,
existing state-of-the-art methods require high-end GPUs to
achieve real-time performance, which makes it hard to adapt
to low cost or portable devices. Although generic network archi-
tectures have been proposed to speed up inference on mobile
devices, they are tailored to the task of image classification or
semantic segmentation, and struggle to capture intrachannel and
interchannel correlations that are essential for contrast modeling
in salient object detection. Motivated by the above observations,
we design a new deep-learning algorithm for fast salient object
detection. The proposed algorithm for the first time achieves
competitive accuracy and high inference efficiency simultane-
ously with a single CPU thread. Specifically, we propose a novel
depthwise nonlocal module (DNL), which implicitly models con-
trast via harvesting intrachannel and interchannel correlations
in a self-attention manner. In addition, we introduce a depthwise
nonlocal network architecture that incorporates both DNLs mod-
ule and inverted residual blocks. The experimental results show
that our proposed network attains very competitive accuracy on
a wide range of salient object detection datasets while achieving
state-of-the-art efficiency among all existing deep-learning-based
algorithms.

Index Terms—Deep neural network, nonlocal module, salient
object detection.

I. INTRODUCTION

ALIENT object detection, which aims to identify the most
visually distinctive objects within an image, has been well
studied. Developing an accurate salient object detection model
benefits a series of applications, such as person reidentifi-
cation [1], robotic control [2], object detection [3], visual
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tracking [4], and content-aware image editing [5]. Salient
object detection usually serves as a preprocessing component,
which not only requires acceptable accuracy but also fast speed
and small memory consumption on low-cost devices. Recent
deep convolutional neural networks (CNNs) exhibit remark-
able performance on many computer vision tasks including
salient object detection, due to its strong fitting capacity. In
particular, dense labeling methods, which make use of the
fully convolutional network (FCN) architecture, enjoy high
accuracy and efficiency offered by end-to-end training and
inference. However, the acceleration of convolution operations
is highly dependent on high-performance GPUs, which are
typically not supported by mobile devices, embedded devices,
and low-cost personal computers. Developing a deep-learning-
based salient object detection algorithm, that achieves both
fast inference and high-quality results using a single thread,
remains a challenging task.

Generic low-cost deep network architectures have been
proposed recently for mobile devices. Most of them replace
conventional convolutional operators with a combination of
depthwise separable convolutions and 1 x 1 convolutions.
The inverted residual (IR) block [6] is one such neural-
network module based on depthwise separable convolutions.
For example, an IR block first expands the feature at each
spatial position to a higher dimension, and then indepen-
dently applies a convolution operation on each channel slice.
Such methods demonstrate desired inference speed on CPUs
but their prediction quality is far from satisfactory. The most
essential reason behind this is that these lightweight meth-
ods directly discard correlation modeling at different channels
and spatial positions. Such correlation can be taken as con-
text information, which plays an important role in modeling
coherence, contrast, and uniqueness for salient object detec-
tion. Simply borrowing the existing generic lightweight
network architectures to salient object detection does obtain
high efficiency, but their prediction accuracies are far from
competitive.

Driven by the above insights, this article proposes a novel
DNL module, and a fast salient object detection network
framework based on the proposed module. This module aims
at exploiting relationships among features located at different
channel slices or positions. In contrast to traditional con-
volutional layers that take the vector across all channels
at the same spatial position as a feature, the DNL mod-
ule considers one column vector or row vector in the same
channel as a feature unit, which is described as “depthwise.”
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Fig. 1. Comparison among UCF [7], PAGRN [8], and our DNL algorithm.
The proposed algorithm not only achieves practical inference time consump-
tion using a single thread but also presents saliency maps of competitive
quality.

The proposed module then learns an attention map via cal-
culating pairwise similarity among nonlocal features within
each subregion. From the resulting attention map, a feature
residual is computed in a self-attention way to update the
feature map.

Our proposed module has the following strengths. First,
the DNL module overcomes the limitations of IR blocks by
explicitly inferring correlations among features that are nei-
ther in the same channel nor in the same spatial position.
Second, the depthwise nonlocal (DNL) module can implicitly
model connectivity, contrast, and coherence for salient object
detection. For example, if image parts are visually similar,
their visual features have high attention scores. Thus, their
salient features likely update each other and these image parts
can be labeled with close saliency values. When a target fea-
ture is widely apart from other surrounding features in their
latent space, the image region corresponding to the feature
may have a different saliency value from other surrounding
regions. Third, our proposed module segments an input fea-
ture map into subregions and only applies self-attention within
each subregion, which lowers its computational cost. As a
result, the proposed module adds a very small amount of
computation while it considerably enhances the accuracy of
a baseline.

This article has the following contributions:

1) We propose a novel DNL module, which aims at min-

ing intrachannel and interchannel correlations in context.
The proposed module enhances the fitting capacity of IR
blocks at the cost of negligible extra inference time.

2) We present a fast depthwise nonlocal neural network,
which not only demonstrates state-of-the-art inference
speed with a single CPU thread but also attains com-
petitive detection accuracy (as shown in Fig. 1) among
deep-learning methods.

3) We have conducted extensive experiments, which verify
the effectiveness and efficiency of the DNL module and
the proposed network framework.
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II. RELATED WORK
A. Salient Object Detection

Salient object detection can be solved by computing
a saliency map with prior knowledge and handcrafted
features [9]-[16], or training a deep-learning model for
prediction [17]-[29]. MBS [12] exploits the cue that back-
ground regions are usually connected to the image boundaries,
by computing an approximate minimum barrier distance trans-
form. MST [13] employs similar prior knowledge with MBS,
but computes an exact distance transform with a minimum
spanning tree to measure boundary connectivity. MDC [14]
suggests that background pixels display low contrast in at
least 1-D and proposes minimum directional contrast as raw
saliency for each pixel. Priors-based methods enjoy real-time
efficiency but cannot attain state-of-the-art results. Deep-
learning-based salient object detection models can be roughly
divided into two groups, including sparse and dense labeling.
MDF [17] employs deep CNNs to extract multiscale features
and predict saliency values for image segments of different
levels. Zeng et al. [30] formulated saliency detection as a non-
cooperative game, where image regions as players choose to
be foreground or background. Zhang et al. [31] converted an
image into a sparsely connected graph of regions and com-
puted saliency via an absorbing Markov chain. Qin ef al. [26]
developed a single-layer cellular automata (SCA) that can
utilize the intrinsic correlations of similar image patches to
locate salient objects, based on deep-learning features. These
sparse labeling methods require dividing an input image into
hundreds of segments and estimating the saliency value for
each segment, which is not efficient for real-time applications.
To name a few dense labeling methods, DSS [32] intro-
duces a series of side output layers and short connections to
combine the advantages of low-level and high-level features.
PAGRN [8] is a progressive attention-driven framework based
on multipath recurrent feedback. Wang et al. [33] proposed a
global recurrent localization network to locate salient objects,
and a local boundary refinement network to capture pixel rela-
tions. Liu er al. [34] integrated a global guidance module and
a feature aggregation module into a U-shape architecture.

B. Fast Convolutional Neural Network

Designing efficient and lightweight neural networks
[35]-[43] has recently become popular in the community.
Han et al. [36] proposed a network pruning pipeline that
is first trained to learn which connections are important,
and then discards the unimportant connections. Factorized
CNNs [41] unravel the 3-D convolution operation in a con-
volution layer as spatial convolutions in each channel and a
linear projection across channels, to reduce the computation.
He et al. [42] introduced a channel pruning method which
alternatively selects the most representative channels based on
a LASSO regression and reconstructed the output feature maps
with linear least squares. ShuffleNet [43] proposes a point-
wise group convolution that separates convolution filters into
groups, and “channel shuffle” that permutes the channels in
a group. MobileNetV2 [6] utilizes an IR structure that con-
sists of two pointwise convolutions and a depthwise separable
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convolution. Some existing state-of-the-art fast deep neural
networks employ depthwise separable convolutions that are
lightweight but lack intrachannel and interchannel correlations
mining.

C. Self-Attention and Nonlocal Modeling

Computational models that exploit pairwise similarities as
self-attention scores among dense positions or nodes within
some nonlocal regions, have been widely studied in the field
of natural language processing and computer vision [44]-[52].
The self-attention model for machine translation [50] learns
a feature for some nodes by attending to all other nodes in
the same sequence and taking the weighted summation of
their embedded features in some latent space. Nonlocal means
algorithm [45] denoises an image by replacing a pixel with
a nonlocal averaging of all pixels in the image. The nonlo-
cal averaging utilizes similarity between pixels as weights.
Block-matching 3-D (BM3D) [53] applies collaborative filter-
ing on a group of similar nonlocal image patches and achieves
competitive image denoising results, even compared to deep-
learning-based methods. Efros and Leung [47] synthesized
texture by growing one pixel at a time. They determined pixel
value by locating all image patches matching with the target
position to fill. The dense conditional random field (CRF) [48]
models long-range dependencies by introducing a pairwise
energy term that is weighted by the similarity of two nodes.
Li et al. [54] proposed a nonlocally enhanced encoder—decoder
network which can learn more accurate features for rain steaks
and preserve better image details during de-raining. Besides
from low-level tasks, Wang et al. [51] proposed a nonlo-
cal neural network that can harvest long-range spatiotemporal
relations for high-level problems such as video classifications.
Such models can learn features from long-range dependencies
that are potential to model contrast and coherency in salient
object detection. Most existing nonlocal models work in the
spatial dimensions of images or the spatiotemporal dimensions
of videos.

III. METHOD
A. Depthwise Nonlocal Module

In this section, we introduce a novel DNL module, that effi-
ciently enhances IR blocks with channel-wise coherence and
contrast learning. IR is an efficient neural network block built
on top of depthwise separable convolutions. In the following
text, we briefly review IR blocks and depthwise separable con-
volutions as preliminaries. Let / be a C x H x W input feature
map. C, H, and W denote the channel number (depth), the
height, and the width of I respectively. k, i, and j are used
as the indices of depth, height, and width, respectively. For
example, I;; is a vector of length C and I;; has W elements.
Consider a regular K x K convolution layer with C output
channels. Its total number of weights is CK? x C. The time
complexity of applying convolution at one position is C2K?.
As for a depthwise separable convolution layer with C output
channels, it has C independent convolution kernels, each of
which has a total of K> x 1 weights. Performing depthwise
separable convolution at one position costs CK>. As shown in
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Fig. 2. (a) Standard Convolution. (b) IR. Before the elementwise addition
in IR, the shapes of the two feature maps are aligned with each other. Note
that the correlation of two spatially close scalars (in orange and blue colors,
respectively) is not directly captured in an IR, while a standard convolution
can predict outputs based on them together. (c) Our proposed DNL module.
The proposed module can capture the correlation between two feature vectors,
which are located at different channels and spatial positions.

Fig. 2(b), an IR block consists of a 1 x 1 convolution, a depth-
wise convolution, and another 1 x 1 convolution. These two
1 x 1 convolutions aim at aggregating features across channels.
However, for a pair of positions (the orange and blue feature
scalars in Fig. 2), It ;; and Iy y 7 (k # k" and (i, j) # (7', ])),
their correlation cannot be directly captured by the depthwise
separable convolution or the pointwise 1 x 1 convolutions even
when they are located within each other’s neighborhood.

To efficiently harvest intrachannel correlations, the DNL
module considers I ; or I ; [shown in Fig. 4(b)] rather than I; ;
[shown in Fig. 4(a)] as a feature vector. Iy ; and I ; represent
some features of their corresponding horizontal and vertical
image region, respectively. The proposed module is a resid-
ual block with two possible types of residual layers. One type
of layer is called vertical or vertical-split layer and the other
is horizontal or horizontal-split layer. In a vertical-split layer,
we take Iy ; as a feature vector. In a horizontal-split layer, I ;
is taken as a feature vector. These two types of layers are
designed in a similar and symmetric way.

In the vertical-split layer shown in Fig. 3, the input feature
map can be seen as C x W feature vectors and each vector
has H elements. To exploit cross-channel features, we first
compute an attention map by measuring pairwise similarities
among these CW vectors. Thus, the attention map A is of size
CW x CW. Consider two arbitrary features, /i j and [+ y, whose
indices in the attention map are p and g. Their attention score
can be calculated in a bilinear form

T ;T
Apg = Ik,er Vol j (M

where Uy and Vj are two learnable matrices of two embed-
ding layers 6 and ¢. The size of Uy and Vy is HA x H. The
bilinear form can be seen as mapping /i ; and I j into a latent
space RH by linear transformations, and then computing the
dot product between the transformed features as similarity.
Importantly, we discuss whether all C x W feature vectors
share the same transform matrix Uy as follows: I ; with the
same k but different j, which denotes different spatial region
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Vanilla DNL module (vertical-split). The proposed module contains four channel-wise embedding layers, a pairwise correlation layer, and a softmax

layer. The softmax layer normalizes each row of the affinity matrix A. The matrix multiplication serves as taking the weighted summation of the output of

layer g, with the softmax output as attention weights.

within the same latent space, can share the same transform
matrix. Iy ; with different k& should not utilize the same trans-
form matrix, since different & implies different latent space.
Thus, only feature vectors with the same channel share the
same parameter Ug. Since layers 6 and ¢ embed different
channels of an input feature with different weights, we name
6 and ¢ as a “channel-wise embedding layer” as displayed in
Fig. 3. We reformulate the bilinear form (shown as “pairwise
correlation” in Fig. 3) in the following equation:

T T
Apg =1i Wy Wo.n v j 2

where Wy and W, are C x H” x H matrices. Wo x and Wy i
are HA x H matrices corresponding to Ug and V. We claim
that the above attention model is promising in modeling con-
trast and connectivity for salient object detection. Small A, ,
indicates high contrast between [ ; and [ y. If I ; and It j
are spatially close to each other, large A, ; suggests that their
corresponding regions are connected in the saliency map.

To leverage these cues, we conceive a strategy to propagate
contrast information or saliency value from I y to I j, accord-
ing to their correlation. The strategy learns a feature residual
by taking attention weighted transformation of the feature map

1 = f(softmax(A)g(])) (3)

where I denotes the above-mentioned feature residual.
softmax(-) normalizes each row of matrix A. g(-) denotes
a transformation of the input feature map /. As defined
below, g(-) adopts linear transformations with different
parameters for different channels of [. Let g(I) =
U We i, ... . [fWok,....ItWg ], where Iy is an H x W
matrix representing the kth channel of feature map I, Wy
is an H x H' matrix representing the linear transforma-
tion for the kth channel of the feature map, and [ - ]
denotes the concatenation along the first dimension. Thus,
g() is a CW x H' matrix. softmax(A)g(I) is an attention
weighted linear transformation of g(I), shown as “matrix
multiplication” in Fig. 3. Since the size of softmax(A)g(l)
is CW x H’, another transformation f is required to map
it into the R space. Let y = softmax(A)g(/). Then

FO) =10 Wr DT o W T eWy o)1, where y is
a CW x H' matrix, and y is reshaped into a C x W x H’ tensor
before f(-) is applied, Wy is a C x H' x H tensor, and f(y) is
a CH x W matrix. Finally, f(y) is reshaped intoa C x H x W
residual tensor 7, and 7 is updated by adding the residual ten-
sor and [ together. The output of DNL modules is calculated
as O = I+1 = I+f(y), where O represents the output feature
map, and the reshaping operators are omitted.

The horizontal-split layer is a symmetric form of the
vertical-split layer. We simply summarize its process and
describe the differences from the vertical one

Apg =TLW5 Wil 4)
gD =[LiWgi1,...., kWi, ... . IcWe c] 5)
0=1+ [yl W, oo oo iWrk, - ,yCWf‘C] 6)

where the size of attention map A is CH x CH, and A, , denotes
pairwise similarity between two arbitrary features I ; and I
(1<kk <C,1<i,i <H), whose indices in the attention
map A are p and q. Ii; is a feature vector of length W. W,
Wy, W, and Wy are Cx WA X W, Cx WA X W, Cx W x W',
and C x W x W tensors, respectively. y is computed in the
same way as in the vertical-split layer, and is reshaped into a
C x H x W' tensor before f is applied. f(y) is converted to a
CxHxW tensor before / is updated. Note that all channel-wise
embedding layers, 6, ¢, g(-), and f(-), have bias parameters.
For example, y, Wy should actually be [y,’;T, l]T[W; o Br.l-
For simplicity, all bias terms have been omitted in the above
formulations.

B. Divide-and-Conquer

In this section, we accelerate the naive DNL module by
dividing an input feature map into multiple subtensors. A
few rationales support the divide-and-conquer strategy. First,
the naive DNL module computes dense pairwise similarities,
which is too computationally expensive for a fast neural-
network module. Second, the divide-and-conquer strategy still
maintains spatial coherence in the resulting saliency map. If
there is a strong similarity between spatially adjacent features,
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Fig. 4. (a) Vanilla (spatial) nonlocal module. (b) Vanilla DNL module (vertical-split). (¢c) Divide-and-conquer DNL module (vertical-split, split number,

s = 2). (d) Split number, s = 3. Dense pairwise similarity is computed between each pair of feature vectors (the orange bar and the blue bar) within the same

region/subregion. In (c), the C x W plane is split into two subregions.

it is most likely that these two features or segments belong to
the same object. Propagating saliency values between such
pairs of features can likely improve the accuracy of saliency
prediction. In the naive vertical-split DNL module, all pairs
of feature vectors on the C x W plane are used to measure
similarity, as shown in Fig. 4(b). For the divide-and-conquer
DNL shown in Fig. 4(c), the feature tensor is divided into
two subtensors, and vector pairs are only sampled from the
same subtensor. For each subtensor, a smaller affinity matrix
is obtained by calculating the pairwise correlation. The soft-
max operation is separately applied for each affinity matrix.
Different subtensors still share the same Wy and Wy. The
number of subtensors is controlled by split number s.

C. Complexity Analysis

In this section, we analyze the space and time complexities
of the vanilla DNL module and its divide-and-conquer version.
This analysis can help us determine the values of hyperparam-
eters and the location of the proposed module in our network
architecture.

Let us first discuss the space complexity of a vanilla
DNL module. We assume that all variables are released after
inference. Only parameters and intermediate variables are con-
sidered. The size of Wy, Wy, W,, and Wy in a vertical-split
layer is, respectively, C x HAXH CxHAxXxH,CxHxH,
and C x H' x H while their size is Cx WA x W, C x WA x W,
CxWxW’, and Cx W x W in a horizontal-split layer. Without
taking bias terms into account, the total number of parameters
is 2C(H(HA + H') + W(WA + W’)). The size of intermediate
variables A, g(I), y, and 1is, respectively, CW x CW, CW x W',
CW x W, and C x H x W in a vertical layer. In a hori-
zontal one, their size is CH x CH, CH x H', CH x H’, and
C x H x W. The space complexity of intermediate variables is
C%>(H* +W?)+2C(HH' +HW + WW'). The space complexity
of a DNL module is O(C2(H? + W?2)).

For time complexity, we count the number of multiplications
and additions (MAdds). In a vertical-split layer, applying
transformations Wy and Wy costs CWHHA while comput-
ing pairwise similarity costs C>°W?HA. The time complexity
of softmax(-), g(-), f(-), and softmax(A)g(l) is, respectively,

TABLE I
COMPLEXITY OF VANILLA DNL MODULE AND ITS
DIVIDE-AND-CONQUER VARIANT

Complexity Vanilla Divide-and-Conquer
Space O(C?(H? + W?2)) O(LCc?(H? + W?))
Time O(C?HW(H+W)) O(C?HW(H +W))

decoder

encoder

Conv-1x1-256
conv-1x1-1

conv-3x3-32

DNL-1
DNL-2
IR-5
IR-7

conv-1x1-48

Fig. 5. Depthwise nonlocal deep neural network. As shown in the above, IR
denotes the IR module while DNL denotes the DNL module. “Rate” refers
to the dilation rate of a convolution. GAP denotes global average pooling.

C*W?, CWHH', CWHH', and C2W?H’. In a horizontal-split
layer, computing A costs 2CHWWA + C?H?WA. The time
complexity of softmax(-), g(-), f(-), and softmax(A)g(I) is,
respectively, C2ZH>, CHWW’', CHWW’, and C2H>W'. The total
number of MAdds is C2W2(HA +H' + 1) + C?H>(WA + W' +
1)+ 2CHW (HA 4+ H' + WA 4+ W’). The time complexity of the
proposed module is O(CZHW (H 4+ W)).

Next, we analyze the computational cost of a divide-and-
conquer DNL module, which is summarized in Table I. Its
space complexity is reduced by a factor of s since the size
of A becomes (1/s)C*W? in a vertical layer and (1 /s)C*H?
in a horizontal layer. As for time complexity, computing
attention scores in a vertical-split layer costs 2CWHH" +
s(CW/s)?HA. The time complexity of softmax(-), g(-), f(-),
and softmax(A)g(I) is, respectively, [(C*W?) /sl, CWHH',
CWHH', and s(CW/s)?H'. The computation in a vertical-
split layer costs (1/5)C2W2(HA +H' 4 1) +2CHW(H” + H')
and a horizontal-split layer (1/s)CZH>(WA + W' + 1) +
2CHW (WA4W’). The time complexity of the accelerated vari-
ant is O([1/s]C?HW (H + W)). Note that H4/H' and WA,/ W’
are set as H/2 and W/2, respectively, in our implementation.
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D. Model Architecture

In this section, we develop a depthwise nonlocal neural
network based on our proposed module. The proposed network
consists of an encoder, an atrous spatial pyramid pooling
(ASPP) module [55], and a decoder, as shown in Fig. 5. The
encoder contains seven IR modules, two DNL modules, and
several regular convolution layers. Each IR module consists
of one or multiple IR blocks. The hyperparameters of these
above-mentioned IR modules follow the setting in [6].

Our proposed DNL modules are located between some of
the IR modules to strengthen nonlocal correlations among all
feature map channels. Since the computational complexity of
the proposed module grows quadratically with respect to the
number of channels and cubically with respect to the spatial
resolution of the input feature map, we place the proposed
module at the middle levels of the network. The first DNL
module is placed behind the third IR module. The second one
is inserted after the fourth IR module. After the third IR mod-
ule, the feature map has shrunk to the smallest spatial size,
1/8 of the original image size, while the number of chan-
nels is still reasonably small. Thus, positioning the proposed
modules at middle levels helps lower the computational cost
incurred by these modules. Theoretically, DNL modules can be
placed at any position of a backbone network. How the posi-
tion of a DNL module affect its performance and efficiency is
investigated in Section IV-C.

The ASPP module in Fig. 5 concatenates the feature maps
produced from the five parallel layers along the depth dimen-
sion. These five parallel layers are, respectively, a 1 x 1
pointwise convolution, three dilated 3 x 3 convolutions, and
an image pooling layer. The dilation rates of the three atrous
convolutions are 6, 12, and 18, respectively. All of these five
parallel layers produce 256-channel feature maps. The image
pooling layer consists of a global spatial averaging sublayer
and a pointwise convolution that converts the number of output
channels to 256. The ASPP module produces a 1280-channel
feature map. The decoder takes the output of both the ASPP
module and the third IR module as a combination of high-
level and low-level inputs. The decoder reduces the number
of channels in the high-level input to 256 while increasing the
number of channels in the low-level input to 48 using point-
wise convolutions following a 2-D batch normalization layer.
Finally, the low-level and high-level features are concatenated
to predict a dense saliency map via a 1 x 1 convolution.

IV. EXPERIMENTS

In the experiment section, salient object detection methods
are tested on DUT-OMRON [56], ECSSD [57], HKU-IS [58]
test set, PASCAL-S [59], and DUTS [60]. All the above
datasets provide dense pixel-level annotations. DUT-OMRON
contains 5168 challenging images which have one or more
salient objects. ECSSD has 1000 images. HKU-IS includes a
train set of 2500 images, a validation set of 500 images, and
a test set of 1447 images. PASCAL-S consists of 850 images.
Threshold is chosen as 0.5 to binarize masks of PASCAL-S, as
suggested in [59]. Note that all salient object detection models
are not trained on any subsets of DUT-OMRON and all 5168
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images are utilized as testing samples. Thus, DUT-OMRON
is a challenging benchmark that can reveal the generaliza-
tion capability of a salient object detection model. HKU-IS
is another challenging dataset in which many images con-
tain multiple ground-truth objects. Our proposed method is
trained with 5000 images from the MSRA-B train set and the
HKU-IS train set. The optimization algorithm is SGD with
weight decay Se-4, momentum 0.9, and initial learning rate
le-7. We adopt poly policy with power 0.9 to tune the learning
rate. The proposed network is trained for 300 epochs. Pytorch
0.4.1 with MKL backend is used for all deep-learning meth-
ods. For the methods whose released model is not trained with
Pytorch, their model weights are copied to an implementation
of Pytorch. For fair comparisons, the efficiency of the men-
tioned salient object detection algorithms is evaluated on the
same personal computer, which has an Intel i7-6850k CPU
with 3.60-GHz base frequency, a GeForce GTX 1080 Ti GPU,
and 32-GB memory.

A. Comparison on Quality of Saliency Maps

To evaluate the quality of saliency maps, we adopt maxi-
mum F-measure (maxF) [61], mean absolute error (MAE), and
structure-measure [62] (S-m) as criteria. To compute maxF, we
first sample a list of thresholds. Given a threshold, the average
of precision and recall is computed for all saliency predictions
in a dataset. Then, Fg is defined as

(l + ﬂz) - Precision - Recall
B2 - Precision + Recall

Fg = (7
where B controls the relative importance between precision
and recall. B2 is selected as 0.3, according to [61]. MAE
is computed as the average of pixel-level absolute difference
between predictions and ground-truth annotations, as shown in

1 H W
MAE = hzl Zl|Ph,W — G| ®)
=] w=

where P denotes a binarized saliency prediction and G
denotes its corresponding binary ground truth. H and W are
height and width of images. 4 and w are the corresponding
indices. Different from estimating pixelwise errors, S-measure,
recently proposed in [62], is adopted to estimate structural sim-
ilarity between predictions and ground truth. It is defined as a
weighted sum of an object-aware measure and a region-aware
measure. Formal definition of S-m can be found in [62].

As shown in Table II and Fig. 6, the proposed DNL
network is compared with existing salient object detec-
tion models, RAS [27], PAGRN [8], UCF [7], NLDF [22],
DSS [32], RFCN [23], DCL [63], DS [20], MDF [58],
and two generic lightweight architectures originally proposed
for image classification and semantic segmentation, includ-
ing MobileNet-V2 [6] and ShuffleNet [43]. As suggested
in [6], MobileNet-V2 serves as an encoder integrated with
a DeepLab-V3+ architecture [55] to solve semantic segmen-
tation tasks. To detect salient objects, the output channels
of the last convolution in DeepLab-V3+ is adjusted to 1.
Similar to MobileNet-V2, ShuffleNet is also modified as an
encoder with DeepLab-V3+. We fine-tune these two generic
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TABLE II
COMPARISON AMONG THE STATE-OF-THE-ART AND OURS. x* METHODS ARE ORIGINALLY
PROPOSED FOR IMAGE CLASSIFICATIONS AND SEGMENTATIONS

DUT-OMRON ECSSD HKU-IS PASCAL-S DUTS
maxF MAE S-m maxF MAE S-m maxF MAE S-m maxF MAE S-m maxF MAE S-m
RAS 0.7848 0.0633 0.8119 0.0551 0.8935 09116 0.0449 0.8875 0.1021 0.7978 0.8281

PAGRN 0.7709 0.7751  0.9268 0.9187 0.0475 0.8531 0.0921 0.8190 0.8541 0.0549
UCF 0.7365 0.1318 0.7578 0.9097 0.0790 0.8816 0.8866 0.0749 0.8643 0.8217 0.1292 0.7999 0.7700 0.1178 0.7710
NLDF 0.7532  0.0796 0.7704 0.9050 0.0626 0.8747 0.9017 0.0480 0.8782 0.8278 0.8156 0.0649 0.8052
DSS 0.7604 0.0744 0.7892 0.9078 0.0620 0.8836 0.9005 0.0499 0.8805 0.8262 0.1029 0.8025 0.8130 0.0647 0.8168
RFCN 0.7332 0.0782 0.7503 0.8867 0.0765 0.8368 0.8832 0.0572 0.8361 0.8284 0.0996 0.7895 0.7702 0.0744 0.7506
DCL 0.7260 0.0944 0.7498 0.8884 0.0717 0.8672 0.8823 0.0584 0.8650 0.8053 0.1092 0.7930 0.7756 0.0787 0.7859
DS 0.7449 0.1204 0.7502 0.8824 0.1217 0.8206 0.8661 0.0791 0.8531 0.8109 0.1472 0.7715 0.7756 0.0894 0.7916
MDF 0.6944 0.0916 0.7208 0.8316 0.1050 0.7761 0.8605 0.1291 0.8101 0.7655 0.1451 0.6935 0.7285 0.0995 0.7232
«MoblieNetV2  0.7446  0.0871 0.7595 0.8901 0.0737 0.8614 0.8979 0.0537 0.8756 0.7716 0.1318 0.7592 0.7613 0.0806 0.7720
xShuffleNet 0.7300 0.0946 0.7506 0.8763 0.0830 0.8443 0.8914 0.0558 0.8701 0.7856 0.1216 0.7709 0.7698 0.0845 0.7740
ours 0.0779 0.9096 0.0646 0.8851 0.8974 0.8229 0.1065 0.8031 0.8081 0.0731 0.8071

TABLE III

frameworks with our training data for saliency prediction. The
proposed method significantly outperforms MobileNet-V2 and
ShuffleNet on all four benchmarks and three criteria since
they fail to capture the contrast as well as the channel-wise
coherence information which is essential for saliency infer-
ence. Our proposed model obtains the second best maxF of
0.7795 and the best S-measure of 0.7981 on the large and
challenging dataset DUT-OMRON. The DNL network outper-
forms the third best PAGRN by 0.9% maxF and DSS by 0.9%
S-measure. Noted that our method is not trained on any sub-
sets of DUT-OMRON but tested on the all 5168 images, which
suggests that the DNL network possesses strong generalization
capability to achieve stable performance in real applications.
The proposed DNL network presents the second best maxF,
the second smallest MAE, and the best S-measure on the
HKU-IS dataset. Particularly, the proposed method surpasses
the second best PAGRN by 0.8% S-measure. Our proposed
method shows the best results on two challenging benchmarks
DUT-OMRON and HKU-IS, which indicates that the proposed
network enjoys superior generalization and is comparable to
the state-of-the-arts.

B. Comparison on Efficiency

To evaluate the efficiency of the proposed methods and
existing neural-network models, this section utilizes CPU
time, GPU time, memory usage (denoted as Mem), num-
ber of parameters (denoted as Params), MAdds [6], and time
complexity as criteria. CPU time is computed using a sin-
gle CPU thread while GPU time is measured with a single
GPU. Batch size is set as 1 for all neural models. Time cost
by file input/output is not included but time-consuming pre-
processings, such as computing prior maps and superpixel
segmentation are taken into accounts. Each model sequen-
tially infers 50 randomly selected images from HKU-IS.
The peak memory cost during inference is logged as the
memory usage. Params is the number of learnable param-
eters in a neural model and it determines the disk space
consumed. MAdds is the number of MAdds, calculated by
setting the input size of each method as its default size. Time

EFFICIENCY OF THE STATE-OF-THE-ART AND OURS

CPUTime GPUTime Mem Params MAdds Complexity

/secs /secs /MB ™M /B /HW

RAS 0.0355 5023

PAGRN — — — 2363 1004 805.8K
UCF 3.4696 0.0886 5307 29.43 1233 614.4K
NLDF 2.6051 0.0340 1709 35.48 354.6 2863K
DSS 3.4451 6222 1275 984.0K
RFCN 2.7190 0.0691 4833 53.00 113.9 455.7K
DCL 2.5820 0.0867 4069 66.31 797.6 3031K
DS 2.4588 0.0609 4799 50.37 106.7 426.7K
MDF 897.68 24996 1591 75.68 7533 149.9M
ours 0.3993 0.0113 605 5320 9.567 73.82K

complexity denoted as “Complexity” in Table III is the num-
ber of MAdds with respect to input size that is viewed as
variables H and W.

As shown in Table III, MB denotes million bytes. K, M, and
B denote thousands, millions, and billions, respectively. HW
represents the product of input height and width. Since the
implementation of PAGRN is not available, we only present
its theoretical efficiency, including parameters, MAdds, and
time complexity. Most existing CNN-based methods predict a
saliency map with more than 2.5 s on CPU while our proposed
network takes less than 0.4 s to infer an image. Achieving
the fastest CPU inference, our method is 5x faster than the
second best RAS. The proposed method also demonstrates
the most efficient inference with GPU, and it is 3x faster
than the second best DSS. Most methods use 1500-5000-MB
memory during inference, which is too expensive for a pre-
processing component. Meanwhile, our proposed method costs
600-MB running memory, less than 40% of the second best.
Besides, our proposed method has the least parameters, less
than 25% of the second least. Most models consume more than
100-MB storage while our method only costs about 20 MB.
Our proposed method obtains the minimum MAdds less than
20% of the second best. The time complexity of the DNL
network is also the lowest and six times less than the second
lowest RAS. Note that the time complexity of DNL mod-
ules actually contains terms with respect to HW(H + W).
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input  MDF [58] DS [20] DCL [63] RFCN [64] NLDF [22] DSS [32] UCF [7] PAGRN [8] ours GT

Fig. 6. Qualitative comparison among the state-of-the-art and ours. As shown in the above, the proposed method is compared with MDF, DS, DCL, RFCN,
NLDF, DSS, UCF, and PAGRN on the DUT-OMRON benchmark. Our proposed method successfully segments complete foreground objects with consistent
saliency value and sharp boundaries.

For convenient comparison, we simplify the formula by fixing CPU and GPU, consumes the least memory and disk storage,
input size H x W as default size 360 x 360. To summarize, our and shows the lowest theoretical complexity, in comparison to
proposed network enjoys the fastest inference speed on both existing deep-learning models.
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Fig. 7. Comparisons on efficiency and quality. To measure the efficiency and quality of salient object detection models at the same time, the above

scatter diagrams take an efficiency metric as horizontal axis and a quality metric as vertical axis. Our proposed method is always located at the upper left
of these diagrams, which indicate the best tradeoff between efficiency and accuracy. (a) Smeasure-CPU time. (b) Smeasure-Mem. (c) Smeasure-MAdds.

(d) Smeasure-Params.
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Fig. 8. Ablation study on precision—recall curves. In the above graphs, the

blue curve denotes the baseline model without deploying any proposed mod-
ules, while the orange one denotes our proposed DNL network. Our proposed
method obtains higher precision than the baseline, for the same recall value.
(a) DUT-O. (b) ECSSD. (c) HKU-IS.

To simultaneously evaluate the efficiency and quality of our
proposed method, we plot an efficiency metric and a quality
metric on the same scatter diagram (shown in Fig. 7), with
the efficiency metric as horizontal axis and the quality metric
as vertical axis. For quality metric, larger S-measure means
more accurate predictions while smaller value means lower
cost for efficiency metric. Thus, the best method balancing
accuracy and efficiency should be located at the upper left in
an efficiency—quality scatter diagram. As shown in Fig. 7, our
proposed method achieves the best tradeoff between efficiency
and quality, on the scatter diagrams of Smeasure-CPU time,
Smeasure-Mem, Smeasure-MAdds, and Smeasure-Params.

C. Ablation Study

This section verifies the effectiveness of the DNL mod-
ule and investigates how the number of splits affects the
performance of the proposed network. The baseline is built by
removing all DNL modules from the proposed network. The
baseline has exactly the same architecture as MobileNetV2
but has different input size. We use precision-recall curves
and threshold-Fg measure curves to compare our proposed
method with the baseline. To draw these curves, a list of evenly
spaced thresholds is sampled. For each threshold, a tuple of
precision, recall, and Fg measure is calculated, with /32 =0.3.
Then we plot the pairs of (recall and precision) in Fig. 8, and
the pairs of (threshold and Fg measure) in Fig. 9. As shown in
Figs. 8 and 9, the proposed module effectively improves the
prediction accuracy of the baseline on all three benchmarks.

As Table IV displays, Split-9 denotes an accelerated DNL
module that divides the input feature tensor into nine sub-
tensors. For Split-s (s = 1,3,5,9), DNL modules are
located after IR-3 and IR-4 shown in Fig. 5. For IR6-splits

Fig. 9. Ablation study on threshold-Fgmeasure curves. As shown in the
above, the Fg measures of our proposed method are considerably higher
than those of the baseline, for most thresholds within the range of [50, 200].
(a) DUT-O. (b) ECSSD. (c) HKU-IS.

(s=1, 5, 10), a DNL module is inserted after IR-6. As shown
in Table IV, Split-9 surpasses the baseline by 3.9% maxF, 1.2%
MAE, and 4.1% S-m on the HKU-IS dataset. The performance
of Split-5 is quite close to that of Split-9. Split-9 marginally
outperforms Split-1 by 0.11% maxF and 0.22% S-measure. For
IR6-splits, similarly, IR6-split10 exceeds IR6-splitl by 0.9%
maxF, 0.3% MAE, and 0.7% S-m. The above results suggest
that DNL modules effectively improve the baseline and the
splits number does not affect much of the prediction quality.
Larger splits number could lead to slight improvement, since
it helps to maintain better spatial coherence as discussed in
Section III-B. If the splits number is larger, then the spatial size
of each subregion becomes smaller. Feature vectors within the
same subregion are more likely to belong to the background
or the same object. In such cases, nonlocal pairwise corre-
lations help propagate the saliency score of a feature to its
adjacent features, which models spatial coherence. Compared
with IR6-split]l whose DNL module is at a high level, Split-1,
whose DNL modules are at the middle level, achieves better
maxF, MAE, and S-m. It suggests that placing the proposed
module at the middle level better improves the performance.

The baseline obtains the fastest CPU inference and the low-
est MAdds. As the splits number decreases, both CPU time
cost and MAdds of the corresponding DNL network become
larger. Because smaller splits number results in computing
more pairwise similarities. Since CPU time is measured for
a whole network, we need to compute difference between
some network and the baseline to obtain the time cost of DNL
modules. For examples, DNL modules in Split-9 additionally
costs 399.3 — 390.6 ~ 9 ms and 9.567 — 9.325 ~ 0.24 B
MAdds while DNL modules in Split-1 additionally takes
454.9 — 390.6 ~ 64 ms and 10.42 — 9.325 ~ 1.1B MAdds
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TABLE IV
EFFECTIVENESS OF THE DNL MODULE

HKU-IS CPUTime

maxF MAE S-m /secs MAdds
Baseline w/o DNL 0.8745 0.0572 0.8563 0.3906 9.325B
Split-9 0.9133 0.0451 0.8974 0.3993 9.567B
Split-5 0.9133 0.0451 0.8969 0.4019 9.657B
Split-3 09131 0.0452 0.8967 0.4103 9.781B
Split-1 09121 0.0458 0.8952 0.4549 10.42B
IR6-split10 0.9125 0.0459 0.8922 0.5138 12.25B
IR6-split5 0.9069 0.0479 0.8873 0.5447 12.90B
IR6-splitl 0.9036 0.0489 0.8851 1.1384 18.13B

when compared with the baseline model. Compared with Split-
1, DNL modules in Split-9 speed up 7x CPU time from
64 to 9 ms, and reduce 5x MAdds from 1.1 to 0.24B. For
IR6-splits, the difference is larger. The DNL module in IR6-
splitl0 reduces 1.1384 — 0.5138 ~ 0.6 s CPU time and
18.13 — 12.25 ~ 6B MAJdds, in comparison to IR6-splitl.
The above results indicate that the divide-and-conquer vari-
ant of the DNL module indeed accelerates the inference. To
understand the difference between positioning DNL modules
at the middle level and high level, we compare Split-1 with
IR6-splitl. DNL modules are located at the middle level of
Split-1 and the high level of IR6-splitl. IR6-split]l spends more
CPU time (0.7 s) and larger MAdds (7.7B) than Split-1. Thus,
positioning DNL modules at a high level causes more compu-
tational cost. Because the time complexity of DNL modules
is in proportion to the squared number of input channels.

V. CONCLUSION

This article introduced a novel DNL module that effectively
enhances the accuracy of an IR block. A divide-and-conquer
variant of DNL was proposed to further accelerate inference.
Moreover, we developed a lightweight DNL-based network
architecture with low memory cost, high inference speed, and
competitive accuracy. The numerical results declare that our
method achieves not only competitive accuracy but also state-
of-the-art efficiency among deep CNN-based methods.
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