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Disease Detection
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Abstract— Identifying and locating diseases in chest
X-rays are very challenging, due to the low visual contrast
between normal and abnormal regions, and distortions
caused by other overlapping tissues. An interesting phe-
nomenon is that there exist many similar structures in the
left and right parts of the chest, such as ribs, lung fields
and bronchial tubes. This kind of similarities can be used to
identify diseases in chest X-rays, according to the experi-
ence of broad-certificated radiologists. Aimed at improving
the performance of existing detection methods, we pro-
pose a deep end-to-end module to exploit the contralateral
context information for enhancing feature representations
of disease proposals. First of all, under the guidance of
the spine line, the spatial transformer network is employed
to extract local contralateral patches, which can provide
valuable context information for disease proposals. Then,
we build up a specific module, based on both additive
and subtractive operations, to fuse the features of the
disease proposal and the contralateral patch. Our method
can be integrated into both fully and weakly supervised
disease detection frameworks. It achieves 33.17 AP50 on
a carefully annotated private chest X-ray dataset which
contains 31,000 images. Experiments on the NIH chest X-ray
dataset indicate that our method achieves state-of-the-art
performance in weakly-supervised disease localization.

Index Terms— Chest X-ray, disease detection, contralat-
eral context, deep learning.
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I. INTRODUCTION

CHEST X-ray (CXR) is one of the most widely-used
examination tools for the diagnosis of thoracic diseases

such as lung nodules and pneumonia. Thanks to the devel-
opment of deep learning technologies, stupendous progress
has been achieved in automatic disease classification [1], [2]
and localization [3]–[5] for chest X-rays. Considering there
exist similar structures in the left and right parts of the chest,
we focus on exploring the contralateral context information
for both fully and weakly supervised disease detection.

The main challenges of disease identification in chest X-ray
images include low visual contrast between lesion regions and
other components, and distortions induced by other overlap-
ping tissues. Sometimes it is difficult for medical specialists
to recognize obscure diseases [6], [7]. Designing automatic
artificial intelligence systems is beneficial for guaranteeing
the diagnosis efficiency and accuracy. Previous deep learning
methods for chest X-ray diagnosis mainly concentrated on
disease classification [2], [7]–[9]. Recently, several literatures
researched on detecting disease regions under weak/limited
supervision. They can be grouped into two main categories:
the first category of methods [1], [3] resort to convolutional
neural networks (CNN) trained on the classification task and
output disease localization results through calculating category
activation maps [10]; the second kind of methods [4], [5]
use the multiple instance learning to directly yield categoric
probability maps which can be easily transformed into lesion
detections. However, the performance of these methods is still
far from practical clinical usage.

A mainstream pipeline of object detection is to screen
out potential proposals followed by identifying the class of
proposals [11], [12]. Through stacking piles of convolutional
layers, CNN models are very advantageous at extracting sur-
rounding context information. However, distant relationships
are still hard to be exploited with convolutions which usually
have small kernels. Particularly for chest X-rays, the left and
right parts of the chest share lots of similar structures, such
as ribs, lung fields and bronchial tubes. Although the two
halves of the chest are not symmetrical (e.g., the left and
right lung is composed of 2 and 3 lobes respectively, and
the heart resides only in the left side of the chest), we are
wondering whether the similarity information can exert a
positive influence on disease detection. As shown in Fig. 1,

1558-254X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 16,2022 at 07:39:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8441-5462
https://orcid.org/0000-0001-8805-9792
https://orcid.org/0000-0002-4805-0926
https://orcid.org/0000-0003-3354-9617
https://orcid.org/0000-0002-0470-5548


ZHAO et al.: CONTRALATERALLY ENHANCED NETWORKS FOR THORACIC DISEASE DETECTION 2429

Fig. 1. For each disease proposal, we seek its initial contralateral patch
under the guidance of the spine line. Then its pose is automatically
adjusted to acquire a more appropriate patch to facilitate the final
classification and localization of the disease proposal.

we devise a novel CNN-based module, named Contralaterally
Enhanced Networks, to take advantage of such similarity
information. First of all, we employ existing methods [5],
[11], [13], [14] to acquire a number of disease proposals
from the input image. For the sake of extracting the similarity
information from the contralateral part of the chest, the spine
line is used as the symmetrical axis to obtain a reference patch
for every disease proposal. Then, with the help of the spatial
transformer network [15], we sample an appropriate patch
from a relatively large region enclosing the contralateral refer-
ence patch, to enhance the feature representation of the disease
proposal. Finally, a fusion module is devised to aggregate the
features of the disease proposal and its contralateral reference
patch. Our proposed method can be plugged into both fully and
weakly supervised disease detection frameworks. The main
contributions of this paper can be summarized as follows.

• We build up a novel deep module, Contralaterally
Enhanced Networks, for facilitating the disease detection
in chest X-rays. We are the first to explicitly exploit
the contralateral context information between the left and
right parts of chest, to enhance the feature representations
of disease proposals.

• An effective method is proposed to seek contralateral
reference patches for disease proposals. A reference patch
is extracted for each disease proposal under the guidance
of the spine line and is further refined with the spatial
transformer network. And A novel feature fusion module
is devised to enhance the feature representation of a
disease proposal with its contralateral reference patch.

• Our proposed method can improve existing object detec-
tion baselines [11], [13], [14], [16] with large margins
on a chest X-ray dataset for fully supervised disease
detection. It also achieves state-of-the-art performance
on the NIH chest X-ray dataset [1] under the weakly
supervised setting.

II. RELATED WORK

A. Object Detection

Object detection is a widely-studied topic in both natural
and medical images. It aims at localizing object instances of
interest such as faces, pedestrians and disease lesions. The

most famous kind of deep learning approaches for object
detection is the R-CNN [17] family. The primitive R-CNN
extracts proposals through selective search [18], and then
predicts object bounding boxes and categories from convo-
lution features of these proposals. Fast R-CNN [19] adopts
a shared backbone network to extract proposal features via
RoI pooling. Faster R-CNN [11] automatically produces object
proposals from top-level features with the help of pre-defined
anchors. The above methods accomplish the detection pro-
cedure through two stages, including object proposal extrac-
tion, object recognition and localization. In [16], the feature
pyramid network is exploited to further improve the detection
performance of Fast R-CNN and Faster R-CNN with the help
of multi-scale feature maps. The other pipeline for object
detection implements object localization and identification in
single stage through simultaneous bounding box regression
and object classification, such as YOLO [20] and SSD [21].
The RetinaNet [13] is also built upon the feature pyramid
network, and uses dense box predictions during the training
stage. The focal loss is proposed to cope with the class
imbalance problem. cornetNet [22] presents an anchor-free
pipeline through detecting corners of bounding boxes. Despite
of corners, the center point is also explored to guarantee the
correctness of the obtained object boxes in CenterNet [14]. The
detection task has also attracted a large amount of research
interest in medical images, such as lesion detection in CT
scans [12] and cell detection in malaria images [23]. This
paper targets at detecting diseases in chest X-ray images.
Practically, we propose a Contralaterally Enhanced Networks
to exploit contralateral context information to enhance feature
representations of disease proposals.

B. Disease Detection in Chest X-ray Images

Accurately recognizing and localizing diseases in chest
X-Ray images is very challenging because of low textural
contrast, large anatomic variation across patients, and organ
overlapping. Previous works in this field mainly focus on dis-
ease classification [1], [2], [6], [24], [25]. Recently, the authors
in [26] propose to transfer deep models pretrained on the
ImageNet dataset [27] for recognizing pneumonia in chest
X-ray images. In [28], the artificial ecosystem-based optimiza-
tion algorithm is used to select the most relevant features
for tuberculosis recognition. Based on the category activation
map [10] which can be estimated with a disease recognition
network, researchers attempt to localize disease in a weakly
supervised manner [1], [3]. In [29], the triplet loss is used to
facilitate the training of the disease classification model, and
better performance is observed in class activation maps (CAM)
estimated by the trained model. In [4], [5], multiple instance
learning is employed to solve the disease localization problem.
In [30], a novel weakly supervised disease detection model is
devised on the basis of the DenseNet [31]. Two pooling layers
including a class-wise pooling layer and a spatial pooling layer
are used to transform 2-dimensional class attention maps into
the final prediction scores. The performance of these methods
is still far from practical usage in automatic diagnosis systems.
In [32], a novel pipeline is proposed to identify and search
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Fig. 2. Procedure of extracting the contralateral patch for each disease proposal. First the spine line is derived from the spine mask. For each
disease proposal Oi , a preliminary contralateral patch O′

i is retrieved under the guidance of the spine line. Then a spatial transformer network is
devised to acquire the final contralateral patch Ôi .

potential lung diseases with the help of heuristic algorithms,
such as Moth-Flame and Ant Lion.

An interesting phenomenon is that there exist similar struc-
tures between the left and right halves of the chest, such as
the left and right parts of lungs. Such contralateral context
information can benefit the recognition of thoracic diseases
according to the experience of broad-certificated radiologists.
Reference [33] attempts to take advantage of the lung region
symmetry when constructing hand-crafted features for tho-
racic disease or abnormality identification. In this paper,
we devise a specific module to extract context information
from the contralateral structures for strengthening the fea-
ture representations of disease proposals. The contralateral
context information can effectively improve the performance
of existing fully and weakly supervised disease detection
methods.

III. CONTRALATERALLY ENHANCED NETWORKS

The target of this paper is to automatically locate various
thoracic diseases in chest X-rays. There exists a certain degree
of similarity between the left and right parts of the chest,
from high-level structures of organs, such as lungs, bones and
vessels, to low-level tissues. Based on this observation, we pro-
pose a feature enhancement module to exploit the contralateral
context information for enhancing the feature representations
of disease proposals. For every disease proposal extracted with
an existing disease detection method, a reference patch from
the contralateral location of the chest is acquired under the
guidance of the spine line at first. Then a transformer network
is devised to refine the pose of the reference patch, which is
used to complement the representation of the disease proposal
via an additive and subtractive feature fusion module. Our
proposed module can be easily integrated into both fully and
weakly supervised disease detection models. The technical
details are illustrated as below.

A. Contralateral Patch Extraction

Given a CXR image I with size of W × H , we can screen
out n potential disease proposals {Oi | i = 1 · · · n} with the
help of an existing disease/object detection method, such as the
fully-supervised method [11] or the weakly-supervised method
[5]. Oi is represented by a quad (xi , yi , wi , hi ), indicating the
horizontal and vertical coordinate of the top-left corner, width,
and height, respectively. We denote the disease category of

Oi as li . Suppose the number of target disease categories is
m. Hence, li ∈ {1, · · · , m}. The pipeline of extracting the
contralateral patch for each disease proposal is illustrated in
Fig. 2.

1) Preliminary Contralateral Patch: Considering the spine is
located at a relatively middle position of the chest, we exploit
the spine line to fetch the preliminary contralateral patch for
each disease proposal. The minimum circumscribed quadri-
lateral enclosing the spine mask can be obtained as in [34].
We regard the spine line bridged by the centers of two short
edges as the symmetric axis, which can be expressed as ax +
by +c = 0 (a, b and c are coefficients). For a disease proposal
Oi , its preliminary contralateral patch O ′

i (= (x ′
i , y ′

i , wi , hi )) is
located through solving the following linear system,{

a
xi+x ′

i +wi −1
2 + b

yi+y′
i+hi −1
2 + c = 0,

−b(xi − x ′
i) + a(yi − y ′

i ) = 0.
(1)

The PSPNet proposed in [35] is chosen as our spine
segmentation model. We use ResNet50 [36] as the backbone
of PSPNet and modify the dimension of the final output into
1. The same settings as in [35] are adopted to optimize the
network parameters. Quantitative and qualitative experimental
results are reported in Section V-C.

2) Refined Contralateral Patch: To acquire a patch which
is more suitable for enhancing the feature representation of
the disease proposal, we further devise a spatial transformer
network (abbr. STN) to refine the pose of O ′

i . STN aims
to find out a better contralateral patch for disease proposals
through refining the location of the initial contralateral patch,
it refines the localization of the initial contralateral patches
and acts as a verifier of the disease localization for effective
training. STN explicitly allows the spatial manipulation of
data within the network. This differentiable module can be
inserted into existing convolutional architectures, giving neural
networks the ability to actively spatially transform feature
maps, conditional on the feature map itself, without any
extra training supervision or modification to the optimiza-
tion process. In details, we set up STN on the basis of
ResNet18 [36], through modifying the output dimension of the
ultimate fully connected layer into 6. The ResNet18 model is
pretrained on ImageNet dataset. And then it is trained with our
framework in an end-to-end manner. We extend the borders of
O ′

i by �x and �y pixels along the horizontal and vertical axes
respectively, resulting to a new patch O ′′

i = (x ′′
i , y ′′

i , w′′
i , h′′

i ).
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x ′′
i = x ′

i − �x , y ′′
i = y ′

i − �y , w′′
i = wi + 2�x , and

h′′
i = hi + 2�y . Empirically, we set �x = 0.25wi and

�y = 0.25hi . Afterwards the original disease proposal Oi

is padded to have the same size as O ′′
i . After being resized to

a fixed size of w0 × h0, the padded disease proposal and O ′′
i

are concatenated and fed into the STN, which gives rise to a
tensor of 6 elements including two rescaling parameters (sx

and sy), two transition parameters (tx and ty) and one rotation
parameter (θ ). These parameters can be used to locate the
refined symmetrical patch Ôi . Here, w0 and h0 are both set as
64. For a point (xdst, ydst) in Ôi , we can obtain its correspond-
ing point (x src, ysrc) in the original input image with a linear
transformation operation, [xdst, ydst]T = Ti [x src, ysrc, 1]T. Ti

can be calculated as the following formulation,

Ti =
[

w′′
i −1

w0−1 0 x ′′
i

0
h′′

i −1
h0−1 y ′′

i

] ⎡
⎣sx cos θ −sy sin θ tx

sx sin θ sy cos θ ty

0 0 1

⎤
⎦ . (2)

B. Feature Fusion Module

The architecture of the module for fusing features of a
disease proposal and its contralateral patch is shown in Fig. 3.
Given a feature map F extracted with a backbone network,
the RoI pooling operation [19] is adopted to extract feature
representation fi for the disease proposal Oi . A feature map
F̂i (w × h) is extracted for the contralateral patch Ôi . For
every point in Ôi , its coordinates are obtained according to
transformation matrix in (2), and its feature vector is sampled
from F via bi-linear interpolation. Again RoI pooling is used
to aggregate F̂i into the feature representation f̂i for Ôi . The
spatial sizes of fi and f̂i are both set as 7 × 7. We directly
flatten fi and f̂i into 1-dimensional feature vectors. Every
element in fi or f̂i can be regarded as certain attribute factor
of Oi or Ôi . The addition between fi and f̂i can help highlight
attributes which have large responses in both Oi and Ôi .
This is beneficial to the identification of diseases striding
across the left and right parts of the chest. On the other
hand, the subtraction between fi and f̂i can provide contrast
information and suppress the responses of attributes which are
irrelevant to disease recognition and localization. Considering
the above issues, both addition and subtraction operations
are used to merge fi and f̂i . Two fully connected layers
are employed to transform the merged features into the final
prediction. The output dimension of the first fully connected
layer is 512, and that of the second fully connected layer
depends on the length of the final prediction.

For fully supervised disease detection, the output of the
contralaterally enhanced networks is composed of two groups
including one m-dimensional category probability vector pi ,
which identifies the disease type of Oi (ci = argmax j pi ( j)),
and 4 m-dimensional bounding box offsets, t x

i , t y
i , twi and th

i ,
which are used for adjusting the pose of Oi . The pose of the
updated bounding box for Oi is as bellow,

x ′
i = wi ∗ t x

i (ci ) + xi , y ′
i = hi ∗ t y

i (ci ) + yi , (3)

w′
i = wi ∗ etwi (ci ), h′

i = hi ∗ eth
i (ci ). (4)

Fig. 3. Feature fusion module. For the disease proposal Oi , ROI
pooling is directly used to extract the feature representation from the input
feature map �. For the contralateral patch Ôi , a specific feature map is
generated via bi-linear sampling, which is then used to produce a feature
representation using ROI pooling as well. The feature representations of
Oi and Ôi are fused, and then fed into two fully connected layers to
produce the final predictions.

With the help of the above parameterizations, our method
can determine the category, and resize the bounding box and
translate the top-left corner of the disease proposal.

For weakly supervised disease detection, our method only
rectifies the category prediction, and the final output is an
m-dimensional category probability vector pi .

IV. DISEASE DETECTION FRAMEWORK

The pipeline for fully and weakly supervised disease detec-
tion frameworks is summarized in Fig. 4. Without specifica-
tion, the residual network with 50 layers (ResNet50) is used
as the backbone of disease detection models.

A. Fully Supervised Disease Detection

Our method can be incorporated into existing fully super-
vised disease detection frameworks, including both two-stage
methods such as Faster R-CNN [11] and Faster R-CNN
FPN [16], and one-stage methods such as RetinaNet [13] and
CenterNet [14].

For two-stage methods, we directly replace the head for
predicting the category and bounding box with our contralat-
erally enhanced networks. It is implemented through feeding
the feature map produced by the backbone and class-agnostic
disease proposals produced by the region proposal network
into our proposed module. As shown in Fig.4, for detection
models built with FPN, multi-scale feature maps are used to
extract region proposals. Upon each scale of feature map,
a set of proposals can be generated, and an independent
contralaterally enhanced networks are employed to identify
the category and rectify the pose of the proposals.

When incorporated with one-stage methods, we use the orig-
inal detection models to produce disease proposals, ignoring
the categorical information. Then, our module is adopted to
predict the final disease class and bounding box for every dis-
ease proposal. The corresponding feature map which directly
induces to the disease proposal is chosen to compute the
feature representation for it and its contralateral patch.

For the primitive version of Faster R-CNN, the output of the
4-th convolution block (abbr. C4) is adopted as the input fea-
ture map of the contralaterally enhanced networks; for models
using backbones with pyramid architectures (including Faster
R-CNN FPN and RetinaNet), the exact feature map which
gives rise to the disease proposal is chosen; for CenterNet,
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TABLE I
CHEST X-RAY DATASET FOR FULLY SUPERVISED DISEASE DETECTION

Fig. 4. The disease detection framework after incorporated with our proposed contralaterally enhanced networks (CEN). For detection models
built upon feature pyramid networks, multi-scale feature maps are used for extract proposal regions, and each scale of feature map and generated
proposals are fed into a specific CEN which produces the disease category probability map and box offsets for adjusting the poses of proposals.
In single-scale detection models such as ‘Faster R-CNN C4’, only one scale of feature map is used for proposal generation. For weakly supervised
methods, CEN only produces the category probability vectors without box offsets.

the output of the penultimate convolution layer is used as the
input feature map.

We follow the loss function and the training algorithm in
[11] to optimize our improved disease detection networks. The
loss functions for training the object detection networks Dur-
ing the testing stage, 100 boxes with the highest confidences
are selected as disease proposals, and non-maximum suppres-
sion with an IoU threshold of 0.7 is used to filter out severely
overlapped boxes. The final predictions are post-processed
with the non-maximum suppression again. The IoU threshold
is set as 0.5. Boxes with confidences larger than 0.05 are
considered as positive detections and the maximum number
of boxes is set to 20.

B. Weakly Supervised Disease Detection

We can also integrate the contralaterally enhanced networks
into the weakly supervised disease framework [5] which is
trained with multiple instance learning (abbr. MIL). A prob-
ability map P with size of H

32 × W
32 is produced. The vector

at position (x, y) in P indicate the probabilities of the patch
(32x, 32y, 32, 32) with respect to disease categories. Here we
select top n patches as disease proposals and use the output of
the penultimate convolutional layer as the feature map which
is a tensor with size of H

32 × W
32 . n is empirically set as

128. They are fed into the contralaterally enhanced networks,
which produces new category probabilities for the selected
disease proposals. During the training stage, the other MIL
loss function is imposed on the new category probabilities.
In the inference phase, the threshold value is set as 0.5 to
select the disease proposals from the probability map, and
determine the final detection results according to the output
of the contralaterally enhanced networks.

V. EXPERIMENTS

A. Datasets and Evaluation Metrics

Fully Supervised Dataset We collect a private dataset
to validate fully supervised disease detection methods. The

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 16,2022 at 07:39:25 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: CONTRALATERALLY ENHANCED NETWORKS FOR THORACIC DISEASE DETECTION 2433

Fig. 5. Confusion matrices of disease detection on our private chest X-ray dataset: (a) vanilla Faster R-CNN FPN; (b) the variant of Faster R-CNN
FPN improved by our method. A prediction successfully hits a ground-truth annotation if their classes are consistent and the IoU is larger than 0.5.
It is clearly observed that our method significantly reduces false detections.

TABLE II
COMPARISON WITH BASELINE DETECTION MODELS ON THE FULLY

SUPERVISED DATASET. OUR METHOD CAN SIGNIFICANTLY IMPROVE

4 EXISTING BASELINE MODELS WITHOUT LOSING MUCH

COMPUTATION EFFICIENCY

dataset includes 31,000 frontal-view X-ray images which
belong to 30 disease classes. 155,000 lesions indicated by
bounding boxes are carefully annotated by broad-certificated
radiologists. In average, there are 5 bounding boxes per
image and 5,100 bounding boxes per disease category. The
distributions of disease with respect to images and bounding
boxes are presented in Table I. The dataset is split into a
training set of 27,000 images, a testing set of 2,100 images,
and a validation set of 1,900 images. Three metrics based
on average precision (AP) are utilized to evaluate the disease
detection methods.

1. AP-center: If the center of the predicted box is located
inside certain ground-truth box having the same disease
category, the box is a true positive; otherwise, it is a false
positive.

2. AP50: If the IoU between the predicted box and the
ground-truth box is larger than 50%, the box is a true
positive; otherwise, it is a false positive.

3. AP75: If the IoU between the predicted box and the
ground-truth box is larger than 75%, the box is a true
positive; otherwise, it is a false positive.

TABLE III
ABLATION STUDY ON THE FULLY SUPERVISED DATASET. CORE

COMPONENTS IN OUR METHOD, INCLUDING A SPATIAL TRANSFORMER

NETWORK (STN) AND OUR PROPOSED ADDITIVE AND SUBTRACTIVE

FUSION (ASF), ARE BENEFICIAL FOR IDENTIFICATION AND

LOCALIZATION OF DISEASES. CIA INDICATES THE FEATURES OF

DISEASE PROPOSALS AND THEIR CONTRALATERAL PATCHES ARE

FUSED WITH THE CONTRAST INDUCED ATTENTION [5]. AF MEANS

ONLY THE ADDITION OPERATION IS USED FOR FEATURE FUSION

Weakly Supervised Dataset The NIH chest X-ray dataset
[1] is used for weakly supervised disease detection. It contains
112,120 frontal-view X-ray images with 14 disease classes.
Bounding box annotations are provided for 880 images. In this
paper, we use images with class annotations during the training
stage, while the 880 images with bounding box annotations
are used for testing. We evaluate the performance of disease
detection, following the metrics in [1], [4], [5]. The threshold
of IoU for identifying true positive detections varies from
0.1 to 0.7, in step of 0.2.

B. Training Scheme

For weakly supervised disease detection, we use the SGD
algorithm with the Nesterov momentum to train all the models
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Fig. 6. Visualization of fully supervised disease detection. The original images, results produced by ‘Faster R-CNN C4’ [11], and results improved
by our method are shown from top to bottom. Green, blue and red boxes represents ground-truths, true positive predictions, and false positive
predictions, respectively. We can see that our approach can produce more accurate localizations. The IoU threshold for detecting lesions is set as
0.1.

for 15 epochs on chest X-ray dataset. The learning rate starts
with 0.001 and is reduced by a factor of 10 after every
5 epochs. In addition, the weight decay and the momentum
are set to 0.0001 and 0.9, respectively. All the weights are
initialized by pre-trained ResNet models on ImageNet. Our
implementation is based on PyTorch. For testing. We use the
threshold of 0.5 to distinguish positive grids from negative
grids in the class-wise feature map.

For fully supervised disease detection, we randomly
initialize all new layers by drawing weights from a zero-mean
Gaussian distribution with standard deviation 0.01. All other
layers (i.e., the shared convolutional layers) are initialized
with parameters pretrained on ImageNet classification dataset.
We use a learning rate of 0.001 for 20 epoches, and 0.0001 for
the next 4 epoches. We use a momentum of 0.9 and a
weight decay of 0.0005. In addition, for fully supervised tasks,
the number of disease proposals is set to 512.

C. Fully Supervised Disease Detection

Spine Segmentation For training the spine segmentation
network, the spine regions of 8000 images are carefully

annotated by radiologists. These images are randomly split into
10 folds. Cross validation is conducted to validate the segmen-
tation performance. The Dice similarity coefficient (DSC) and
three other metrics including pixel accuracy (P.ACC), mean
accuracy (M.ACC), mean IU (M.IU) and frequency weighted
IU (F.W.IU) proposed in [37] are used for evaluation. The
experimental results are presented in Table V.

Disease Detection The four baseline models, including
‘Faster R-CNN C4’, ‘Faster R-CNN FPN’, RetinaNet and
CenterNet, are re-implemented using our fully supervised
dataset. We attempt to incorporate our proposed module into
all of them as introduced in Section IV-A. The quantitative
comparisons are presented in Table II. The proposed mod-
ule can significantly improve the four baseline models. The
improvement of AP-center brought by our method is 3.64%
(from 35.76% to 39.40%) or 2.44% (from 37.57% to 40.01%),
when employing ‘Faster RCNN C4’ or ‘Faster RCNN FPN’
to produce disease proposals. Under metrics AP50 and AP75,
our method can also outperform all compared methods. For
example, the variant of our method equipped with ‘Faster
R-CNN C4’ achieves 29.17% AP50 and 9.82% AP75 which
is 3.06 and 2.25 higher than the results of original ‘Faster
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Fig. 7. Visualization of fully supervised disease detection. The original images, results produced by ‘Faster R-CNN C4’ [11], and results improved
by our method are shown from top to bottom. Green, blue and red boxes represents ground-truths, true positive predictions, and false positive
predictions, respectively. We can see that our approach can produce more accurate localizations. The IoU threshold for detecting lesions is set as
0.5.

Fig. 8. We generate a critical difference diagram to make comparisons
between pairs weakly supervised disease detection methods, based on
the Wilcoxon-Holm method. These thick horizontal lines means the linked
methods are not significantly different.

R-CNN C4’ respectively. The improvements brought by our
method are 3.80 (AP50) and 2.52 (AP75) when using the
baseline of ‘Faster R-CNN FPN’. The confusion matrices 1 of
‘Faster R-CNN FPN’and its variant improved by our method
are presented in Fig. 5. Results of disease detection in 4 CXRs
are visualized in Figs. 6 and 7. From top to down are original
images, results of the original ‘Faster R-CNN C4’, and results
of the variant of ‘Faster R-CNN C4’ which is improved by
our module. The green, blue and red boxes stand for ground-
truths, true positives and false positives, respectively. The
experimental results demonstrate that the contralateral context
information extracted by our proposed module is beneficial to
the detection of diseases in CXRs.

1https://github.com/kaanakan/object_detection_confusion_matrix

D. Weakly Supervised Disease Detection

In this task, we adopt images with only image-level labels
for training, and images with both bounding box and class
annotations for testing. We compare our method against var-
ious existing methods proposed in [1], [3]–[5], [29], [30].
As shown in Table IV, our method achieves the best perfor-
mance in overall. Compared to the baseline model [5], our
method achieves consistently higher accuracy under all IoU
thresholds. For example, in case of using 0.3 as IoU threshold,
it produces results with accuracy of 0.48, surpassing [5] by
0.02. When threshold of IoU is set as 0.5 and 0.7, our approach
achieves accuracy of 0.36 and 0.21, with a lead of 0.01 and
0.02 over [5], respectively. In Fig. 9, we illustrate disease
detection results of several cases under the condition of the
weak supervision. From top to down are original images,
results of [5], and results produced by our method. The
green boxes stand for ground-truths and blue regions indicate
predictions inferred by disease localization models. The results
verify the effectiveness of our method in weakly supervised
disease detection. Following [38], we generate a critical differ-
ence diagram for comparing our method against other weakly
supervised methods, based on the Wilcoxon-Holm method.2

2https://github.com/hfawaz/cd-diagram/
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TABLE IV
COMPARISON WITH OTHER WEAKLY SUPERVISED DISEASE DETECTION METHODS ON NIH CHEST X-RAY DATASET. T(IOU) MEANS THE

THRESHOLD VALUE OF IOU USED TO MATCH PREDICTED RESULTS AND GROUND-TRUTHS. DISEASE LOCALIZATION ACCURACY ARE EVALUATED

AT T(IOU)-S IN {0.1, 0.3, 0.5, 0.7}. ‘MIL�’ INDICATES THE RESULTS OF [4] WHICH ARE RE-IMPLEMENTED BY [5]

Fig. 9. Visualization of weakly supervised disease detection. The original images are presented in the first row. Results produced by [5] and our
method are visualized in the second and third row respectively. Green boxes stand for ground-truths and blue regions indicate predicted results.
We can see that our approach can output more accurate localization results.

The mean accuracies under different IoUs are used as the
input. As shown in Fig. 8, our proposed method achieves the
best rank.

E. Ablation Study

Ablation studies are conducted to discuss the effective-
ness of core modules in our method. Both ‘Faster R-CNN

C4’ and ‘Faster R-CNN FPN’ are used as baseline models.
To validate the effectiveness of the STN, a variant of our
method without STN, which uses the preliminary contralateral
patches to enhance the features of disease proposals, is imple-
mented. In contrast to our proposed additive and subtractive
fusion (ASF) strategy, we also apply a counterpart of our fea-
ture module with only additive operation (AF) or the contrast
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Fig. 10. The AP50 metric values of 30 disease categories. ‘Faster R-CNN C4’ is used to extract disease proposals in our method. The incorporation
of contralateral patches is beneficial for improving the detection performance of most diseases.

TABLE V
THE PERFORMANCE OF PSPNET IN THE SPINE SEGMENTATION TASK.

DICE SIMILARITY COEFFICIENT (DSC), PIXEL ACCURACY (P.ACC),
MEAN ACCURACY (M.ACC), MEAN IU (M.IU), FREQUENCY

WEIGHTED IU (F.W.IU) ARE USED FOR EVALUATION

induced attention (CIA) [5] which is based on the subtractive
operation to fuse features of each disease proposal and its
contralateral patch. As we can see in III, compared to the
baseline models, the usage of preliminary contralateral patches
can give rise to marginally better performance. The adoption of
STN is capable of improving all detection evaluation metrics
in all settings. For example, the value of AP-center is promoted
from 36.70 to 39.40, once STN is adopted in the variant of
‘Faster R-CNN C4’ with ASF. For feature fusion strategies,
our proposed ASF outperforms CIA under all conditions. For
example, ASF induces detection results with 2.20 (39.40 vs
37.20) or 1.00 (40.01 vs 39.01) higher AP-center than the
results of CIA when using ‘Faster R-CNN C4’ or ‘Faster
R-CNN FPN’ as the baseline model, respectively. Besides,
the detection performance is degraded without using any of
the additive and subtractive operations. It indicates that the two
operations can complement each other. In summary, exhaustive
ablation studies demonstrate the superiorities of core modules
devised in this paper.

F. Performance in Individual Disease Categories

The AP50 metric values of 30 disease categories produced
by ‘Faster R-CNN C4’ and our proposed method are presented
in Fig. 10. Compared with the baseline ‘Faster R-CNN C4’,
our proposed method achieves better results in the detection of

most disease categories. Our method is particularly advanta-
geous at detecting abnormalities residing in structures having
similar counterparts in the contralateral side of the chest, such
as lungs and ribs. Especially, the AP-50 of rib abnormality
detection is improved from around 20% to 50% after incor-
porating our method into ‘Faster R-CNN C4’. For diseases of
organs which only exist in single half of the chest, such as
cardiomegaly, our method can still improve the identification
performance, since the contralateral context information can
also be used to ignore overlapping or surrounding distortion
signals.

For statistical analysis, the Wilcoxon signed-rank test3 is
conducted to compare the distributions of AP50 across dis-
eases, produced by the original ‘Faster R-CNN C4’ and its
improved variant. The sum of the ranks of the differences is
41.5, and the p-value for the test is 0.00039. Hence, we would
reject the null hypothesis that the two groups of AP50 are from
the same distribution under a confidence level of 5%.

The above experiments demonstrate that, the retrieved con-
tralateral patches are able to strengthen the feature representa-
tions of proposals when identifying and locating most disease
lesions.

VI. CONCLUSION

We propose a novel module, Contralaterally Enhanced
Networks, for disease localization in chest X-ray images. Our
method aims at taking advantage of the thoracic contralateral
context information to enhance the feature representations of
disease proposals. The spine line is regarded as the symmetry
axis to obtain an initial contralateral patch for each disease
proposal. Then a spatial transformer network is devised to

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.
html
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refine the pose of the initial contralateral patch. The disease
proposal and its retrieved contralateral patch are fused to pre-
dict final disease classification and localization. Experiments
on a carefully annotated dataset demonstrate our proposed
module improves existing two-stage and one-stage detection
methods, Faster R-CNN C4, Faster R-CNN RPN, RetinaNet
and CenterNet, by 3.06, 3,80, 3.23 and 4.15 on the AP50 met-
ric, respectively. Our method can also be applied in weakly
supervised disease localization and achieves state-of-the-art
performance on the NIH chest X-ray dataset.

VII. FUTURE WORK

As discussed above, the contralaterally enhanced networks
can effectively improve the disease performance in both fully
and weakly supervised disease localization in chest X-ray
images. The limitations of our method are as follows: 1) The
retrieval of the contralateral patches is dependent to the
localization of the spine line; 2) The disease regions neglected
by the proposal extraction model cannot be recovered. To settle
these issues, it deserves further study to design more efficient
module to explore the contralateral contextual information.
Furthermore, the replication of small thoracic structures exists
in the same side of the chest. Thus, how to exploit such rela-
tionships for disease detection is also an interesting research
topic.
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