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Abstract—Grounding referring expressions in images aims to locate the object instance in an image described by a referring

expression. It involves a joint understanding of natural language and image content, and is essential for a range of visual tasks related

to human-computer interaction. As a language-to-vision matching task, the core of this problem is to not only extract all the necessary

information (i.e., objects and the relationships among them) in both the image and referring expression, but alsomake full use of context

information to align cross-modal semantic concepts in the extracted information. Unfortunately, existing work on grounding referring

expressions fails to accurately extract multi-order relationships from the referring expression and associate themwith the objects and

their related contexts in the image. In this paper, we propose a cross-modal relationship extractor (CMRE) to adaptively highlight objects

and relationships (spatial and semantic relations) related to the given expression with a cross-modal attentionmechanism, and represent

the extracted information as a language-guided visual relation graph. In addition, we propose aGated GraphConvolutional Network

(GGCN) to computemultimodal semantic contexts by fusing information from different modes and propagatingmultimodal information in

the structured relation graph. Experimental results on three common benchmark datasets show that our Cross-Modal Relationship

Inference Network, which consists of CMRE andGGCN, significantly surpasses all existing state-of-the-art methods.

Index Terms—Referring expressions, cross-modal relationship extractor, gated graph convolutional network

Ç

1 INTRODUCTION

Afundamental capability of AI for bridging humans and
machines in the physical world is comprehending natu-

ral language utterances and their relationship with visual
information. This capability is required by many challenging
tasks, among which, grounding referring expressions [2], [3]
is an essential one. The task of grounding referring expres-
sions needs to locate a target visual object in an image by
understanding multimodal semantic concepts as well as rela-
tionships between referring natural language expressions
(e.g. “the man with sun glasses”, “the dog near a white car”)
and the image content.

Identifying the object proposal referred to by an expression
from a set of proposals in an image is a typical formulation of
grounding referring expressions [4]. Recent methods adopt
the combination of ConvolutionalNeural Networks (CNN) [5]
and Long Short-Term Memory Neural Networks (LSTM) [6]
to process multimodal information in images and referring
expressions. CNNs extract visual features of single objects,
global visual contexts [3], [7] and pairwise visual differen-
ces [4], [8], [9], [10] while LSTMs encode global language
contexts [3], [8], [9], [10], [11] and language features of

decomposedphrases [4], [12], [13]. In addition, the cooperation
between CNNs and LSTMs captures the context of object
pairs [12], [13], [14]. However, existing work cannot extract all
the required information (i.e., individual objects; first-order
relationships or multi-order relationships) accurately from
referring expressions and the captured contexts in such work
also have discrepancies with the contexts described by refer-
ring expressions. In this paper, we refer to [13] and define the
“context” as the objects as well as their attributes and relation-
ships mentioned in the expression that help distinguish a
referred object from other objects.

To solve the problem of grounding referring expressions,
the accurate extraction of all required information (i.e.,
objects and the relationships among them in the image and
referring expressions) is crucial for any given pair of expres-
sion and image. Because of the unpredictability and flexibil-
ity of an expression describing the scene in an image [3], the
proposedmodel needs to extract the information adaptively.
For example, if “Theman holding a red balloon” is located in
an image with two or more men, the nouns/noun phrases
(“man” and “red balloon”) and the relation word “holding”
need to be extracted from the natural language expression;
meanwhile, proposals for “man” and “red balloon” and the
visual relationship (‘holding”) linking them together should
be identified in the image. “The parking meter on the left of
the man holding a red balloon” is a more complicated exam-
ple, which involves an additional object “parking meter”
and additional relational information “left”. In this example,
on one hand, there are three individual objects (i.e., “man”,
“red balloon” and “parking meter”), that need to be recog-
nized in both the image and expression. Object proposals in
the image can be either obtained with an object detector [15]
or provided as part of the dataset [3], [9]. Nouns and noun
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phrases in the expression need to be extracted, and words in
the same phrase should refer to the same object. Unfortu-
nately, existing methods only consider individual words
and softly parsed phrases [4], [12], [13], but words in the
same softly parsed phrase cannot be constrained to the same
object. On the other hand, the second-order relationship
between the target and the “red balloon” via the “man” need
to be inferred from either the detected direct semantic rela-
tionship “holding” or spatial relationship between object
pairs “on the left of”. Unfortunately, existing work either
does not support relationship modeling or only considers
first-order relationships among objects [12], [13], [14]. Theo-
retically, visual relation detectors [16], [17], [18] and natural
language parsers can help achieve that goal by detecting
relational information in the image and parsing grammatical
relations among thewords in the expression.However, exist-
ing visual relation detectors, which focus only on the extrac-
tion of semantic relationship, cannot deliver satisfactory and
sufficient clues for highly unrestricted scene composi-
tions [13], and existing language parsers have adverse effects
on performance for grounding referring expressions due to
their parsing errors [4], [13].

Moreover, the target object is distinguished from other
objects on the basis of their contexts and the context of the
expression [9], [13], [14]; therefore, accurate and consistent
representation of contextual information in the referring
expression and object proposals is essential. Nevertheless,
existing methods for context modeling either cannot repre-
sent the context accurately or cannot achieve high-level con-
sistency between both types of contexts mentioned above,
and the reasons are given below. First, noisy information
introduced by existing work on global language context
modeling [3], [8], [9], [10], [11] and global visual context
modeling [3], [7] makes it hard to align and match these two
types of contexts. Second, pairwise visual differences com-
puted in existing work [4], [8], [9], [10] can only represent
instance-level visual differences among objects of the same
category. Third, existing work on context modeling for object
pairs [12], [13], [14] only considers first-order relationships
instead ofmulti-order relationships (e.g., they directly extract
the relationship between the pairs of (target, “man”) and (tar-
get, “balloon”) without considering the “man” is “holding
the balloon” when extracting the relationship between the
target “parking meter” and “the man”). In addition, multi-
order relationships are actually structured information,
which cannot be modeled by the context encoders adopted
by existingwork on grounding referring expressions.

Given the limitations of existing methods, our proposed
end-to-end Cross-Modal Relationship Inference Network
(CMRIN) aims to overcome the aforementioned difficulties.
CMRIN consists of two modules, i.e., the Cross-Modal Rela-
tionship Extractor (CMRE) and the Gated Graph Convolu-
tional Network (GGCN). An example is illustrated in Fig. 1.
The CMRE extracts all the required information adaptively
(i.e., nouns/noun phrases and relationship words from the
expressions, and object proposals and their visual relation-
ships from the image) for constructing a language-guided
visual relation graphwith cross-modal attention. First, CMRE
constructs two scene graphs (a spatial relation graph as well
as a semantic relation graph) for the image. Second, it extracts
noun phrases in the expression using a constituency tree,

meanwhile, it learns to classify the words in the expression
into four types and further assign the words/phrases to the
vertices and edges in each scene graph. Finally, it constructs
the language-guided visual relation graph from the normal-
ized attention distribution of words/phrases over vertices
and edges of each scene graph. The GGCN fuses information
from different modes and propagates the fused information
in the language-guided visual relation graph to obtain seman-
tic contexts of the expression by performing the following two
steps. First, it fuses the contexts in the expression into the
visual relation graph to form a multimodal relation graph,
which includes the spatial/semantic relationships, visual
information and language contexts; Second, gated graph con-
volutional operations are applied to the multimodal relation
graph to obtain the semantic contexts. We have tested our
proposed CMRIN on three common benchmark datasets,
including RefCOCO [9], RefCOCO+ [9] and RefCOCOg [3],
for grounding referring expressions. Experimental results
show that our proposed network outperforms all other state-
of-the-artmethods.

In summary, this paper has the following contributions:

� Cross-Modal Relationship Extractor (CMRE) is pro-
posed to convert the pair of input expression and
image into a language-guided visual relation graph.
For any given pair of expression and image, CMRE
highlights objects as well as spatial and semantic rela-
tionships among them with a cross-modal attention
mechanism by considering the words and phrases in
the expression as guidance.

� Gated Graph Convolutional Network (GGCN) is pro-
posed to capture multimodal semantic context with
multi-order relationships. GGCN fuses information
from different modes and propagates fused informa-
tion in the language-guided visual relation graph.

� CMRE and GGCN are integrated into Cross-Modal
Relationship InferenceNetwork (CMRIN), which out-
performs all existing state-of-the-art methods on
grounding referring expressions using the ground-
truth proposals. In addition, CMRIN shows its robust-
ness using the detected proposals.

This paper is an extended version of [1], it provides a
more complete introduction and analysis to the proposed
cross-modal relationship inference network for referring

Fig. 1. Cross-modal relationship inference network. Given an expression
and image, Cross-Modal Relationship Extractor constructs the
language-guided visual relation graphs (spatial relation graph as an
example, the attention scores of proposals and edges’ types are
visualized inside green dashed box). The gated graph convolutional
network capture semantic context and computes the matching scores
between context of proposals and context of expression (the matching
scores of proposals are shown inside blue dashed box). Warmer color
indicates higher scores of pixels and darker blue indicates higher scores
of edges’ types.
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expression comprehension, providing additional insights
and relevant research discussion, verification of the effective-
ness of framework components, network parameter analysis
and more elaborated experimental comparisons. Further-
more, we propose to add phrase parsing for the expression
and apply it to enhance the representation of language-
guided visual relation graphs, which helps to better align lin-
guistic words with visual objects. Second, to complement the
spatial relation graph, we have also extracted semantic rela-
tions and use them as another guidance in edge gate compu-
tation for multi-order relationship inference in our proposed
GGCN. Experimental results show that by introducing
phrase decomposition for referring expressions and seman-
tic relationship modeling for images, it can bring different
levels of performance improvement and make the algorithm
more complete and robust.

2 RELATED WORK

2.1 Grounding Referring Expressions

Grounding referring expression and referring expression gen-
eration [3] are dual tasks. The latter is to generate an unambig-
uous text expression for a target object in an image, and the
former selects the corresponding object according to the image
content referred by a text expression.

To address the problem of grounding referring expression,
some previous work [3], [8], [9], [10], [11], [19] extracts visual
object features from CNN and treat an expression as a whole
to encode language feature through an LSTM. Among them,
some methods [3], [9], [11] learn to maximize the posterior
probability of the target object given the expression and the
image, and the others [8], [10] model the joint probability of
the target object and the expression directly. Specifically,
MMI [3] applies the same CNN-LSTM network architecture
for grounding referring expressions and referring expression
generation respectively, and jointly optimize those two parts
together. Speaker [9] improves MMI by taking more consider-
ation between the comparisons on objects of the same type in
the image, and it encodes visual appearance differences and
relative spatial (i.e. location and size) differences between
object and surrounding objects of the same object category.
Speaker-Listener-Reinforcer [10] proposes an Reinforcer mod-
ule to sample more discriminative expressions for helping the
training of the Speaker. Attr [8] suggests that the attributes of
objects help to distinguish the target object from other ones,
and it learns the attributes of objects and encodes the features
from the learned attributes and visual features. A-ATT [19]
adopts joint attention mechanism on query, image and objects
multiply round to obtain the communication among the three
different types of information. However, all of the abovemeth-
ods independently encode the images and expressionswithout
considering the interactions between them, and the learned
monolithic representations in the two modes are not practical
to the semantic-rich visual scenes and complex expressions.

Different from the methods above, Neg Bag [14] proposes
to feed the concatenation of visual object representation, visual
context representation and the word embedding to an LSTM
model. Recent methods [4], [12], [13] learn to decompose
an expression into different components and compute the
language-vision matching scores of each module for objects.
Specially, CMN [12] learns to parse the expression into a fixed

form of subject-object-relationship; MAttNet [4] decomposes
the expression into subject, location and relationshipmodules,
and the module weights are computed for combining those
three modules. VC [13] obtains the context-cue language fea-
tures and referent-cue language features for both single objects
and pairwise objects. However, all of the existing works are
based on simple expression decomposition andmatch directly
with the detected object features and the additionally com-
puted relationship features [16], [17], [18], without considering
the cross-modal alignment of multi-order relationship among
objects and attributes, they are therefore arduous to adapt to
the referring of objects in highly unrestricted scenes. Our
Cross-Modal Relationship Extractor also learns to parse the
expression, but we treat the parsed words as the guidance to
highlight all the objects and their relationships described in
the expression automatically to build the language-guided
visual relation graphs which are further enhanced by a tailor-
designed gated graph neural network for cross-modal multi-
order context reasoning and alignment.

2.2 Context Modeling

Context modeling has been applied in many visual recogni-
tion tasks, e.g., object detection [20], [21], [22], semantic seg-
mentation [23], [24] and saliency detection [25], [26]. For
example, ION [20] uses four directional Recurrent Neural
Networks (RNNs) to compute the context features on feature
maps from four spatial directions. Ren et al. [21] propose
Recurrent Rolling Convolution architecture to gradually
aggregate context among the feature maps with different res-
olutions. Context Encoding Module [24] encodes the global
semantic context by learning an inherent codebookwhich is a
set of visual centers. Recently, Structure Inference Network
[27] formulates the context modeling task as a graph struc-
ture inference problem [28], [29], [30], and it obtains the scene
context by applying RNN to proposals in image.

As contextual information helps to distinguish the target
from other objects, previous work on grounding referring
expressions has also attempted to captured the context. For
example, some earlyworks [3], [7] propose to encode the entire
image as a visual context, but that global contextual informa-
tion usually cannot accurately match with the local context
described by the expression. Other works [4], [8], [9], [10] cap-
ture the visual difference between the objects belonging to the
same category in an image, but the visual difference of the
object’s appearance is often insufficient to distinguish the tar-
get from other objects. In fact, the visual difference between
the context including appearance and relationship is essential,
e.g., “Man holding a balloon”, the necessary information to
locate the “man” is not only the appearance of the “man” but
the “holding” relation with the “balloon”. There are also some
works [12], [13], [14] whichmodel the context from the context
of object pairs, but they only consider the context with the
first-order relationship between the objects. Inspired byGraph
Convolutional Network [29] for classification, our Gated
Graph Convolutional Network flexibly capture the context
referring to the expression by message passing, and the con-
text withmulti-order relationships can be captured.

2.3 Vision-Language

The combination of language and vision has been exten-
sively studied in the last few years due to its significance for
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building AI systems. Besides grounding referring expres-
sions, image/video captioning [31], [32] and visual question
answering [33] are two popular and fundamental tasks.

Image caption is to generate image-relevant textual descrip-
tions for given images. Early approaches [31], [34] extract
visual concepts (i.e., objects and attributes) from images and
format the sentences from those visual concepts and tem-
plates. Recently, some work [35], [36] starts to encode the
image as visual representations (e.g., single visual represen-
tation for the whole image [35] and a set of visual representa-
tions for different sub-regions of the image [36]) by applying
CNN, and then decode the visual representations into lan-
guage descriptions through LSTM. The attention mechanism
is adopted to attend the most relevant part of visual informa-
tion [36] of it with the already generated text [37] in every
time step of LSTM. Some of the recent approaches [38], [39]
use the additional information (e.g., phrases and semantic
words) extracted from image or text to help generate high
quality sentences. There are also some works which focus
on the description of a specified object in an image, a.k.a
referring expression generation [3], which is a dual problem
of visual grounding. It can be applied as an auxiliary compo-
nent to referring expression comprehension to enhance the
performance of cross-modal matching by computing the
semantic distance between the generated statement and
the given expression [3]. However, as the description of the
object is varied and involves complex context information
and relationships with other objects, the performance impro-
vement for referring expression comprehension of unrestric-
ted complex scenes is limited.

Visual question answering is to correctly infer the answer
for a given pair of image and textual question. Most of the
existing work [40], [41], [42], [43], [44], [45], [46] extracts the
visual features from the image through CNN and encodes
the question to language representation by passing the ques-
tion into LSTM. And then, the answer is predicted by cooper-
ation between those two types of representations. The
cooperation is implemented by approaches, like learning a
common embedding space for visual and language represen-
tations [40], [41], [42], or attending the most discriminate
regions of image by applying different attentionmechanisms
on both representations [43], [44], [45], [46], or using both of
them together. Besides the direct prediction of the answers,
interpreting the reasoning procedure is important as well.
The reasoning procedures are modeled from three different
perspectives (i.e., relation-based modeling [47], [48], atten-
tion-based modeling [42], [49] and module-based modeling
[50], [51]). Although visual question answering and referring
expression comprehension have different problem defini-
tions and solving goals, visual grounding is the key to
endowing VQAwith interpretability, which helps to ground
their answers to relevant regions in the image [51], [52]. On
the other hand, cross-modal feature fusion and semantics
reasoning are equally effective and important for both issues.
The study of the two problems can be integrated and learned
from each other [42], [53].

2.4 Graph Neural Networks

Graph Neural Networks (GNNs) which are widely used to
model the relational dependencies among elements of a
graph through message passing [29], [54], [55], have been

successfully applied to various context-aware visual tasks,
e.g., semi-supervised classification [29], zero-shot recogni-
tion [56] and object detection [27].

Graph-structured representations and GNNs have also
been introduced to the tasks of language and vision under-
standing. The methods in [57], [58], [59], [60] for VQA and
image captioning represent an image as a graph structure
where the vertices represent visual regions of an image and
the edges are relationships among them, and then capture
the visual context of each region node by GNN propagation.
Specifically, [57] and [60] encode the contextual features at
vertices by using the graph networks based on the recurrent
unit [61] and the graph convolutional network (GCN)
respectively. Their graph networks operate in the modes of
vision and language independently. Different with them,
our graph network performs on the top of multi-modal
graph to learn the language-guided contexts at vertices. The
recent works, [58] and [59], also obtain the convolved graph
representations over the language-conditioned graphs: the
former identifies neighbors for a vertex as its K most similar
vertices and update feature at the vertex as sum of the
learned features of its neighbors weighted by the learned
weighting factors in each convolution layer, and the latter
considers relationships between any pairs of vertices and
aggregates the relational features for vertices using max
pooling operator. Different with the above methods, we
define gates of vertices and edges to implement the different
influences of neighbors and relationships, and the gates are
learned globally. To the best of our knowledge, we are the
first to incorporate the graph convolutional networks in
referring expressions comprehension for multi-order rela-
tionships representation learning.

3 CROSS-MODAL RELATIONSHIP

INFERENCE NETWORK

Our proposed Cross-Modal Relationship Inference Network
(CMRIN) relies on relationships among objects and context
captured in the multimodal relation graph to choose the
target object proposal in the input image referred to by
the input expression. First, CMRIN constructs a language-
guided visual relation graph using the Cross-Modal Rela-
tionship Extractor. Second, it captures multimodal context
from the relation graph based on the Gated Graph Convolu-
tional Network. Finally, a matching score is computed for
each object proposal according to its multimodal context and
the context of the input expression. The overall architecture
of our CMRIN for grounding referring expressions is illus-
trated in Fig. 2. In the rest of this section, we elaborate all the
modules in this network.

3.1 Cross-Modal Relationship Extractor

The Cross-Modal Relationship Extractor (CMRE) adaptively
constructs the language-guided visual relation graph accord-
ing to each given pair of image and expression using a cross-
modal attention mechanism. Our CMRE considers both the
word level and the phrase level. At the word level, it softly
classify the words in the expression into four types (i.e.,
entity, relation, absolute location, and unnecessary words)
according to the context of the words. At the phrase level, it
extracts noun phrases, which are directly taken as entity
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phrases. Meanwhile, the context of the entire expression can
be computed from the context of each individual word. In
addition, a spatial relation graph of the image is constructed
by linking object proposals in the image according to their
size and locations and a semantic relation graph is con-
structed by an off-the-shelf object relationship detector [62].
Next, CMRE generates the language-guided visual relation
graph by highlighting the vertices and edges of the relation
graphs. Highlighting is implemented as computing cross-
modal attention between the words/phrases in the expres-
sion and the vertices and edges in the relation graphs.

3.1.1 Relation Graph Construction

Exploring spatial relations and semantic relations among
object proposals within an image is necessary for grounding
referring expressions, because they are frequently occurs in
referring expressions. Thus, we construct two different
graphs by exploring two different types of relationships,
i.e., spatial relation graph and semantic relation graph.

For spatial relation graph, we obtain the spatial relation-
ship between each pair of object proposals according to their
size and locations, which bears resemblance to the approach
in [63]. For a given image I with K object proposals (bound-
ing boxes), O ¼ foigKi¼1, the location of each proposal oi is
denoted as loci ¼ ðxi; yi; wi; hiÞ, where ðxi; yiÞ are the normal-
ized coordinates of the center of proposal oi, and wi and hi

are the normalized width and height. The spatial feature pi is
defined as pi ¼ ½xi; yi; wi; hi; wihi�. For any pair of proposals
oi and oj, the spatial relationship rij between them is defined

as follows. We compute the relative distance dij, relative
angle uij (i.e., the angle between the horizontal axis and vector
ðxi � xj; yi � yjÞ) and Intersection over Union uij between
them. If oi includes oj, rij is set to “inside”; if oi is covered by
oj, rij is set to “cover”; if none of the above two cases is true
and uij is larger than 0.5, rij is set to “overlap”; otherwise,
when the ratio between dij and the diagonal length of the
image is larger than 0.5, rij is set to “no relationship”. In the
rest of the cases, rij is assigned to one of the following spatial
relationships, “right”, “top right”, “top”, “top left”, “left”,
“bottom left”, “bottom” and “bottom right”, according to the
relative angle uij. The details are shown in Fig. 3.

The directed spatial relation graph Gs ¼ ðV;E;XsÞ is con-
structed from the set of object proposalsO and the set of pair-
wise relationships R ¼ frijgKi;j¼1, where V ¼ fvigKi¼1 is the set
of vertices and vertex vi corresponds to proposal oi; E ¼
feijgKi;j¼1 is the set of edges and eij is the index label of relation-
ship rij; X

s ¼ fxsigKi¼1 is the set of features at vertices and
xsi 2 RDx is the visual feature of proposal oi, where Dx is the
dimension of visual feature. xsi is extracted using a pretrained
CNN model. A valid index label of E ranges from 1 to
Ne ¼ 11 (the label of “no relationship” is 0).

Similar to the spatial relation graph Gs ¼ ðV;E;XsÞ, the
semantic relation graph Gsem ¼ ðV;Esem;XsÞ shares the same
sets of vertices and features at vertices as Gs, but instead
the set of edges Esem is extracted by a pretrained object rela-
tionship detector [62].

The spatial relation graph Gs and semantic relation
graph Gsem, which are constructed from the image, involves

Fig. 2. An overview of our Cross-Modal Relationship Inference Network for grounding referring expressions (better view in color). We use color to
represent semantics, i.e., yellow denotes “person”, green denotes “green shirt”, blue denotes “umbrella”, purple means “white T-shirt”, brown means
“wearing” and dark grey refers to “held by”. It includes a Cross-Modal Relationship Extractor (CMRE) and a Gated Graph Convolutional Network
(GGCN). First, CMRE constructs (a) a spatial relation graph from the visual features of object proposals and spatial relationships between proposals.
Second, CMRE parses the expression into a constituency tree and extracts the valid noun phrases. Third, CMRE highlights the vertices (red bound-
ing boxes) and edges (solid lines) to generate (b) a language-guided visual relation graph using cross-modal attention between words/phrases in the
referring expression and the spatial relation graph’s vertices and edges. Fourth, GGCN fuses the context of words into the language-guided visual
relation graph to obtain (c) a multimodal (language, visual and spatial information) relation graph. Fifth, GGCN captures (d) the multimodal semantic
context with first-order relationships by performing gated graph convolutional operations in the relation graph. By performing gated graph convolu-
tional operations multiple iterations, (e) semantic context with multi-order relationships can be computed. Finally, CMRIN calculates the matching
scores between semantic context of proposals and the global context of the referring expression. The triplet loss with online hard negative mining is
adopted during training and the proposal with the highest matching score is chosen.
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the visual features of the proposals as well as their spatial
relationships or semantic relationships. They are further
transformed into the language-guided visual relation graph
based on the guidance from the expression, which will be
detailed in Section 3.1.4. To simplify the description and
focus on the pipeline design of the proposed method, we
adopt the Gs as the example for remaining part in Section 3.
And the detail implementation for the semantic branch will
be described in Section 4.4.5.

3.1.2 Phrase

Parsing the phrases in the expression is paramount as it
helps to accurately highlight the vertices of graphGs referred
to by the expression. For example, if the expression is “the
umbrella held by a ladywearing a green skirt”, it is necessary
to recognize the noun phrase (i.e., “green skirt”), and the
words in this phrase refer to the same vertex. We only extract
noun phrases in this paper since they aremost relevant to the
objects in the image. Specifically, Our CMRE follows the
three steps below to extract the noun phrases. First, it parses
the given expression into a constituency tree, which breaks
the expression into sub-phrases. Second, it locates candidate
noun phrases (i.e., “the umbrella”, “a lady” and “a green
skirt”) from the leaves to the root. On each path from the
leaves to the root, it extracts the first noun phrase and ignores
the other noun phrases. Third, it eliminates determiners and
words indicating absolute location in the extracted noun
phrase candidates. A candidate phrase is valid if the number
of remaining words is at least two. Thus, “green shirt” is a
valid noun phrase. For a given expression L ¼ fltgTt¼1 (T is
the number of words), we denote the set of extracted noun
phrases asQ ¼ fqmgMm¼1, whereM is the number of phrases.

3.1.3 Language Representation

Inspired by the attention weighted sum of word vectors over
differentmodules in [4], [12], [13], ourCMREdefines attention
distributions of words/phrases over the vertices and edges of
the spatial relation graphGs. In addition, different words in a
referring expression may play different roles. For referring
expressions, words can usually be classified into four types (i.
e entity, relation, absolute location and unnecessary words),
and the type for noun phrases is entity. By parsing the expres-
sion into different types of words and distributing words/
phrases over the vertices and edges of graphGs, the language

embedding of every vertex and edge can be captured, and the
global language context can also be obtained.

Given an expression L ¼ fltgTt¼1, CMRE first learns a
Df -dimensional embedding for eachword, Fl ¼ fflt 2 RDf gTt¼1,
and then applies a bi-directional LSTM [64] to encode the con-
text of words. The context of word lt is the concatenation of its
forward and backward hidden vectors, denoted as hl

t 2 RDh .
The weightmt of each type (i.e., entity, relation, absolute loca-
tion and unnecessaryword) forword lt is defined as follows:

mt ¼ softmaxðWl1sðWl0h
l
t þ bl0Þ þ bl1Þ; (1)

whereWl0 2 RDl0�Dh , bl0 2 RDl0�1,Wl1 2 R4�Dl0 and bl1 2 R4�1

are learnable parameters, Dl0 and Dh are hyper-parameters
and s is the activation function. The feature vector of a phrase
is computed as the mean embedding feature (context) of
words appearing in the phrase. The set of features for all
phrases in the expression is denoted as Fq ¼ ffqmgMm¼1 (contex-
tual embeddingsHq ¼ fhq

m 2 RDhgMm¼1).
Next, CMRIN computes the language context of every

vertex in graph Gs from both words and phrases. When
words are considered, on the basis of the word embedding
Fl ¼ ffltgTt¼1 and the entity weights of words fmð0Þt gTt¼1, a
weighted normalized attention distribution over the verti-
ces of graph Gs is defined as follows:

al
t;i ¼Wl

n½tanhðWl
vx

s
i þWl

ff
l
tÞ�;

�l
t;i ¼ m

ð0Þ
t

expðal
t;iÞPK

i expðal
t;iÞ

;
(2)

where Wl
n 2 R1�Dn , Wl

v 2 RDn�Dx and Wl
f 2 RDn�Dh are

transformation matrices and Dn is hyper-parameter. �t;i is
the weighted normalized attention, indicating the probability
that word lt refers to vertex vi. Likewise, CMRIN computes
aq
m;i for the phrases Q ¼ fqgMi on the basis of their features

Fq ¼ ffqmgMm¼1, and the normalized distribution over the verti-
ces are computed as follows:

�q
m;i ¼

expðaq
m;iÞPK

i expðaq
m;iÞ

; (3)

The language context ci at vertex vi is computed by aggre-
gating all attention weighted word contexts and phrase
contexts

hi ¼
PT

t¼1 �
l
t;ih

l
t þ

PM
m¼1 �

q
m;ih

q
mPT

t¼1 �
l
t;i þ

PM
m¼1 �

q
m;i

: (4)

Then, the global language context hg of graph Gs is calcu-
lated as follows:

hg ¼
XT
t¼0
ðmð0Þt þm

ð1Þ
t þm

ð2Þ
t Þhl

t; (5)

where the entity weight, relation weight and absolute loca-
tion weight are the first three elements of mt. CMRIN com-
putes the global context only from word contexts because
phrases are only used for improving the accuracy of vertex
highlighting in the relation graphs.

Fig. 3. All types of spatial relationships between proposal oi (green box)
and proposal oj (blue box). The number following the relationship is
the label.
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3.1.4 Language-Guided Visual Relation Graph

Different object proposals and different relationships
between proposals do not have equal contributions in solv-
ing grounding referring expressions. The proposals and
relationships mentioned in the referring expression should
be given more attention. Our CMRE highlights the vertices
and edges of the spatial relation graph Gs, that have connec-
tions with the referring expression, to generate the lan-
guage-guided visual relation graph Gv. The highlighting
operation is implemented by designing a gate for each ver-
tex and edge in graph Gs.

The gate pvi for vertex vi is defined as the sum over the
weighted probabilities that individual words and phrases
in the expression refer to vertex vi

pvi ¼
XT
t¼1

�l
t;i þ

XM
m¼1

�q
m;i: (6)

Each edge has its own type and the gates for edges are
formulated as the gates for edges’ types. The weighted nor-
malized distribution of words over the edges of graph Gs is
defined as follows:

we
t ¼ softmaxðWe1sðWe0h

l
t þ be0Þ þ be1Þmð1Þt ; (7)

where We0 2 RDe0�Dh , be0 2 RDe0�1, We1 2 RNe�De0 and
be1 2 RNe�1 are learnable parameters, and De0 is hyper-
parameter.we

t;j is the jth element ofwe
t , which is the weighted

probability of word lt referring to edge type j. And the gate pej
for edges with type j 2 f1; 2; ::Neg is the sum over all the
weighted probabilities that individual words in the expres-
sion refer to edge type j

pej ¼
XT
t¼1

we
t;j: (8)

The language-guided visual relation graph is defined as
Gv ¼ ðV;E;X; P v; P eÞ, where Pv ¼ fpvigKi¼1, and Pe ¼ fpejgNe

j¼1.

3.2 Multimodal Context Modeling

Our proposedGatedGraphConvolutional Network (GGCN)
further fuses the language context into the language-guided
visual relation graph to generate multimodal relation graph
Gm, and computes a multimodal semantic context for every
vertex by performing gated graph convolutional operations
on the graphGm.

3.2.1 Language-Vision Feature

As suggested by visual relationships detection [16], [18], the
spatial locations together with the appearance features of
objects are the key indicators of visual relationship, and the
categories of objects is highly predictive of relationship. Our
GGCN fuses the language context of vertices into the lan-
guage-guided visual relation graph Gv (Gv encodes the spa-
tial relationships and appearance features of proposals) to
generate multimodal relation graph Gm, which forms the
basis for computing the semantic context of vertices.

We define feature xmi at vertex vi in Gm to be the concate-
nation of the visual feature xsi at vertex vi in the language-
guided visual relation graph and the language context hi at

vertex vi, i.e., x
m
i ¼ ½xsi ;hi�. The multimodal graph is defined

as Gm ¼ ðV;E;Xm; Pv; P eÞ, where Xm ¼ fxmi gKi¼1.

3.2.2 Semantic Context Modeling

Multi-order relationships may exist in referring expressions.
We obtain semantic context representing multi-order rela-
tionships through message passing. On one hand, semantic
features are obtained by learning to fuse the spatial rela-
tions, visual features and language features. On the other
hand, context representing multi-order relationships is com-
puted by propagating pairwise context in graph Gm.

Inspired byGraph Convolutional Network (GCN) for clas-
sification [29], [56], our GGCN adopts graph convolutional
operations in multimodal relation graph Gm for computing
semantic context. Different from GCN operating in unweig-
hted graphs, GGCN operates in weighted directed graphs
with extra gate operations. The nth gated graph convolution
operation at vertex vi in graph Gm ¼ ðV;E;Xm;Pv; P eÞ is
defined as follows:

xi
!ðnÞ ¼

X
ei;j > 0

peei;jðW
�!ðnÞ

x̂
ðn�1Þ
j pvj þ bðnÞei;j

Þ;

xi
 ðnÞ ¼

X
ej;i > 0

peej;iðW
 �ðnÞ

x̂
ðn�1Þ
j pvj þ bðnÞej;i

Þ;

~x
ðnÞ
i ¼fWðnÞx̂ðn�1Þi þ ebðnÞ;

x̂
ðnÞ
i ¼ sðxi!ðnÞ þ xi

 ðnÞ þ ~x
ðnÞ
i Þ;

(9)

where x̂
ð0Þ
i ¼ xmi , W

�!ðnÞ
; W
 �ðnÞ

;fWðnÞ 2 RDe�ðDxþDhÞ fbðnÞj gNe
j¼1;ebðnÞ 2 RDe�1 are learnable parameters, and De is hyper-

parameter. xi
!ðnÞ and xi

 ðnÞ are encoded features for out- and
in- relationships respectively. ~x

ðnÞ
i is the updated feature for

itself. The final encoded feature x̂
ðnÞ
i is the sum of the above

three features and s is the activation function. By performing
the gated graph convolution operation multiple iterations
(N), semantic context representing multi-order relationships
among vertices can be computed. Such semantic context are
denoted asXc ¼ fxci ¼ x̂

ðNÞ
i gKi¼1.

Finally, for each vertex vi, we concatenate its encoded spa-
tial feature pi mentioned before and its language-guided
semantic context xci to obtain the multimodal context xi ¼
½Wppi; x

c
i �, whereWp 2 RDp�5 andDp is hyper-parameter.

3.3 Loss Function

The matching score between proposal oi and expression L is
defined as follows:

si ¼ L2NormðWs0xiÞ � L2NormðWs1hgÞ; (10)

whereWs0 2 RDs�ðDpþDxÞ andWs0 2 RDs�Dh are transforma-
tion matrices, andDs is hyper-parameter.

Inspired by the deep metric learning algorithm for face
recognition in [65], we adopt the triplet loss with online
hard negative mining to train our CMRINmodel. The triplet
loss is defined as

loss ¼ maxðsneg þ D� sgt; 0Þ; (11)

where sgt and sneg are thematching scores of the ground-truth
proposal and the negative proposal respectively. The negative
proposal is randomly chosen from the set of online hard
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negative proposals, fojjsj þ D� sgt > 0g, whereD is themar-
gin. During testing, we predict the target object by choosing
the object proposal with the highest matching score.

4 EXPERIMENTS

4.1 Datasets

We have evaluated our CMRIN on three commonly used
benchmark datasets for referring expression comprehension
(i.e., RefCOCO [9], RefCOCO+ [9] and RefCOCOg [3]).

In RefCOCO, there are 50,000 target objects, collected
from 19,994 images in MSCOCO [66], and 142,210 referring
expressions, collected from an interactive game interface [2].
RefCOCO is split into train, validation, test A, and test B,
which has 120,624, 10,834, 5,657 and 5,095 expression-target
pairs, respectively. Test A includes images of multiple peo-
ple while test B contains images withmultiple other objects.

RefCOCO+ has 49,856 target objects collected from 19,992
images in MSCOCO, and 141,564 expressions collected from
an interactive game interface. Different from RefCOCO,
RefCOCO+ does not contain descriptions of absolute loca-
tion in the expressions. It is split into train, validation, test A,
and test B, which has 120,191, 10,758, 5,726 and 4,889 expres-
sion-target pairs, respectively.

RefCOCOg includes 49,822 target objects from 25,799
images in MSCOCO, and 95,010 long referring expressions
collected in a non-interactive setting. RefCOCOg [14] has
80,512, 4,896 and 9,602 expression-target pairs for training,
validation, and testing, respectively.

4.2 Evaluation and Implementation

The Precision@1metric (the fraction of correct predictions) is
used formeasuring the performance of amethod for ground-
ing referring expressions. A prediction is considered to be a
true positive when the Intersection over Union between the
ground-truth proposal and the top predicted proposal for a
referring expression is larger than 0.5.

For a given dataset, we count the number of occurrences of
eachword in the training set. If a word appears more than five
times,we add it to the vocabulary. Eachword in the expression

is initially an one-hot vector, which is further converted into a
word embedding. We parse the expression into a constituency
tree by Stanford CoreNLP toolkit [67]. Annotated regions of
object instances are provided in RefCOCO, RefCOCO+ and
RefCOCOg. The target objects in the three datasets belong to
the 80 object categories in MSCOCO, but the referring expres-
sions may include objects beyond the 80 categories. In order to
make the scope of target objects consistent with referring
expressions, it is necessary to recognize objects in expressions,
evenwhen they are not in the 80 categories.

Inspired by the Bottom-Up Attention Model in [68] for
image captioning and visual question answering, we train
ResNet-101 based Faster R-CNN [15], [69] over selected
1,460 object categories in the Visual Genome dataset [70],
excluding the images in the training, validation and testing
sets of RefCOCO, RefCOCO+ and RefCOCOg. We combine
the detected objects and the ground-truth objects provided
byMSCOCO to form the final set of objects in the images.We
extract the visual features of objects as the 2,048-dimensional
output from the pool5 layer of the ResNet-101 based Faster
R-CNNmodel. Since some previous methods use VGG-16 as
the feature extractor, we also extract the 4,096-dimensional
output from the fc7 layer of VGG-16 for fair comparison. We
set the mini-batch size to 64. The Adam optimizer [71] is
adopted to update network parameters with the learning
rate set to 0.0005 initially and reduced to 0.0001 after 5
epochs.MarginD is set to 0.1.

4.3 Comparison With the State-of-the-Art

We compare the performance of our proposed CMRIN
against the state-of-the-art methods, including MMI [3],
Neg Bag [14], CG [11], Attr [8], CMN [12], Speaker [9], Lis-
tener [10], VC [13], A-ATT [19] and MAttNet [4].

4.3.1 Quantitative Evaluation

Table 1 shows quantitative evaluation results on RefCOCO,
RefCOCO+ and RefCOCOg datasets. Our proposed CMRIN
consistently outperforms existing methods across all the
datasets by a large margin, which indicates that our CMRIN

TABLE 1
Comparison With the State-of-the-Art Methods on RefCOCO, RefCOCO+, and RefCOCOg

RefCOCO RefCOCO+ RefCOCOg

feature val testA testB val testA testB val test

1 MMI [3] vgg16 - 71.72 71.09 - 58.42 51.23 - -
2 Neg Bag [14] vgg16 76.90 75.60 78.00 - - - - 68.40
3 CG [11] vgg16 - 74.04 73.43 - 60.26 55.03 - -
4 Attr [8] vgg16 - 78.85 78.07 - 61.47 57.22 - -
5 CMN [12] vgg16 - 75.94 79.57 - 59.29 59.34 - -
6 Speaker [9] vgg16 76.18 74.39 77.30 58.94 61.29 56.24 - -
7 Listener [10] vgg16 77.48 76.58 78.94 60.50 61.39 58.11 69.93 69.03
8 Speaker+Listener+Reinforcer [10] vgg16 79.56 78.95 80.22 62.26 64.60 59.62 71.65 71.92
9 VC [13] vgg16 - 78.98 82.39 - 62.56 62.90 - -
10 A-ATT [19] vgg16 81.27 81.17 80.01 65.56 68.76 60.63 - -
11 MAttNet [4] vgg16 80.94 79.99 82.30 63.07 65.04 61.77 73.04 72.79
12 Ours CMRIN vgg16 83.57 83.97 82.69 71.57 75.60 65.56 75.65 76.45

13 MAttNet [4] resnet101 85.65 85.26 84.57 71.01 75.13 66.17 78.10 78.12
14 Ours CMRIN resnet101 86.43 87.36 85.52 75.63 80.37 69.58 79.72 80.85
15 Ours CMRIN + Semantic Branch resnet101 86.59 88.17 85.59 76.38 81.44 68.81 80.76 81.71

The two best performing methods using VGG-16 are marked in red and blue. The best performing method using ResNet is marked in bold.
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performs well on datasets with different characteristics.
Specifically, CMRIN improves the average Precision@1 over
validation and testing sets achieved by the existing best-
performing algorithm by 1.80, 5.17 and 3.14 percent respec-
tively on the RefCOCO, RefCOCO+ and RefCOCOg datasets
when VGG-16 is used as the backbone network. Our CMRIN
significantly improves the precision in the person category
(test A of RefCOCO and RefCOCO+), which indicates that
casting appearance attributes (e.g., shirt, glasses and shoes)
of a person as external relationships between person and
appearance attributes can effectively distinguish the target
person from other persons. After we switch to the visual fea-
tures extracted by ResNet-101 based Faster R-CNN, the Pre-
cision@1 of our CMRIN is further improved by another
�4.40%. It improves the average Precision@1 over validation
and testing sets achieved by MAttNet [4] by 1.62, 5.03 and
3.13 percent respectively on the three datasets. Note that our
CMRIN only uses the 2048-dimensional features from pool5
while MattNet uses the feature maps generated from the last
convolutional layers of both the third and fourth stages.

4.3.2 Qualitative Evaluation

Visualizations of some samples along with their attention
maps and matching scores are shown in Fig. 4. They are
generated from our CMRIN using ResNet-101 based Faster
R-CNN features.

Without relationship modeling, our CMRIN can identify
the proposals appearing in the given expression (second col-
umns), and it achieves this goal on the basis of mentioned
objects in the given sentence (e.g., the parking meter in
Fig. 4a and the elephant in full view in Fig. 4d have higher
attention scores). After fusing information from different
modes and propagating multimodal information in the
structured relation graph, it is capable of learning semantic
context and locating target proposals (third columns) even
when the target objects do not attract the most attention at
the beginning. It is worth noting that our CMRIN learns
semantic relationships (“behind”) for pairs of proposals with

different spatial relationships (“bottom right” between “car”
and “parking meter” in Fig. 4a; “top” between “green plant”
and “lady’s head” in Fig. 4b), which indicates that CMRIN is
able to infer semantic relationships from the initial spatial
relationships. In addition, CMRIN learns the context for tar-
get “elephant” (Fig. 4d) from “two other elephants” by con-
sidering the relations from multiple elephants together.
Moreover, multi-order relationships are learned through
propagation in CMRIN, e.g., the relationships (“right” in
Fig. 4c) between object pairs are propagated gradually to the
target proposal (most “right man”).

Fig. 5 demonstrates more qualitative results from our
proposed CMRIN. In order to better visualize the pixels
covered by multiple proposals generated from the same
object (e.g., the pixels covered by proposal man and pro-
posal shirt weared by the man), we compute the score of a
pixel in attention score maps as the sum of the scores of all
covering proposals. And in order to distinguish different
objects, we set the score of a pixel in matching score maps to
be the maximum among scores of all covering objects. We
exclude negative scores and normalize the range of each
score map to ½0; 1�.

4.4 Ablation Study

We evaluate the proposed CMRIN in five different aspects: 1)
the effectiveness of the twomodules in our proposed network
architecture, i.e., CMRE and GGCNmodules; 2) the impact of
different training schemes on the performance of CMRIN; 3)
the necessity of phrases; 4) the impact of variants of spatial
relation graphs used in CMRIN; 5) we explore the effective-
ness of incorporating semantic relation graph and detail its
implementation. In the following experiments, features com-
puted using ResNet-101 based Faster R-CNNare adopted.

4.4.1 Variants of Network Architecture

Our proposed CMRIN includes CMRE and GGCN mod-
ules. To demonstrate the effectiveness and necessity of each

Fig. 4. Qualitative results showing initial attention score (gate) maps and final matching score maps. We compute the score of a pixel as the maximum
score of proposals covering it, and normalize the scoremaps to 0 to 1.Warmer color indicates higher score.
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module and further compare each module against its var-
iants, we have trained five additional models for compari-
son. The results are shown in Table 2.

As a baseline (row 1), we use the concatenation of
instance-level visual features of objects and the location fea-
tures as the visual features, and use the last hidden state of

the LSTM based expression encoder as the language feature,
and then compute the matching scores between the visual
features and the language feature. In comparison, a simple
variant (row 2) that relies on a global visual context, which is
computed by applying graph convolutional operations to
the spatial relation graph, already outperforms the baseline.

Fig. 5. Qualitative results showing initial attention score (gate) maps and final matching score maps. Warmer color indicates higher score.
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This demonstrates the significance of visual context. Another
variant (row 3) with a visual context computed in the lan-
guage-guided visual relation graph outperforms the above
two versions. It captures the context by considering cross-
modal information. By fusing the context of words into the
language-guided visual relation graph, the semantic context
can be captured by applying gated graph convolutional
operations (row 6, the final version of CMRIN). Finally, we
explore the number of gated graph convolutional layers
used in CMRIN. The 1-layer CMRIN (row 4) performs worse
than the 2-layer CMRIN because it only captures context
with first-order relationships. The 3-layer CMRIN (row 5)
does not further improve the performance. One possible rea-
son is that third-order relationships merely occur in the
expressions.

4.4.2 Different Training Schemes

In this section, we evaluate the impact of different loss func-
tion designs on the performance of the proposed CMRIN. As
shown in Table 3, CMRIN is robust with respect to different
loss function settings (i.e., the softmax loss and triplet loss
with different parameter settings) and consistently outper-
forms existing state-of-the-art models on all the three com-
monly used benchmark datasets (i.e., RefCOCO, RefCOCO+
and RefCOCOg).

Specifically, we compare different loss functions, hyper-
parameters and sampling strategies in the triplet loss for the
training of CMRIN. We optimize the proposed CMRIN with
the softmax loss (row 1), which is commonly adopted by
existing works [9], [11], [12], [13]. The performance of
CMRIN using the softmax loss performs worse than that of
CMRIN using the triplet loss (row 7) because the matching

score between the context of an expression and the context of
a proposal is not always exactly zero or one. For example, in
the image associated with expression “the umbrella held by
a lady wearing a green skirt”, there are three umbrellas held
by three different ladies and only one of them wears a green
skirt. The context of two umbrellas held by the ladieswithout
wearing a green skirt partially matches the context (“the
umbrella held by a lady”) of the expression. In addition, we
explore the effects of different margins (i.e., 0.1, 0.2 and 0.5)
in the triplet loss. CMRIN trained using the triplet loss with a
0.5 margin achieves worse performance (row 3) than that
with other margins (row 2 and 7) over all the three datasets.
Moreover, the performance of CMRIN using the triplet loss
with a 0.5 margin fluctuates during training. The models
trained by the triplet loss with margin 0.1 and 0.2 have simi-
lar performance. Meanwhile, noting that sampling strategies
for the triplet loss are essential in face recognition [65], [72],
we also sample triplets using different online sampling strat-
egies, including random sampling with one hard negative
proposal (row 7), random sampling with two hard negative
proposals (row 4), hardest negative mining (row 5) and ran-
dom semi-hard negative mining (row 6; semi-hard negative
proposals can be hard and some of their matching scores are
smaller than the matching score of the ground-truth pro-
posal). CMRINs using the triplet loss with one or two nega-
tive proposals have similar performance. Their differences
in average precision over the three testing sets (RefCOCO,
RefCOCO+ and RefCOCOg) are�0:19%,�0:04% and 0.06%,
respectively. CMRINs trained using the triplet loss with
three different definitions of negative proposals have similar
performance except the triplet loss with hardest negative
mining on the RefCOCO+ dataset. Their differences in

TABLE 2
Ablation Studies on Variants of Network Architecture of Our Proposed CMRIN on RefCOCO, RefCOCO+, and RefCOCOg

RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

1 global langcxt+vis instance 79.05 81.47 77.86 63.85 69.82 57.80 70.78 71.26
2 global langcxt+global viscxt(2) 82.61 83.22 82.36 67.75 73.21 63.06 74.29 75.23
3 weighted langcxt+guided viscxt(2) 86.02 86.21 84.51 73.59 78.62 68.01 77.14 78.29
4 weighted langcxt+guided viscxt(1)+fusion 85.89 87.27 84.61 74.28 79.24 69.16 79.41 79.38
5 weighted langcxt+guided viscxt(3)+fusion 86.20 87.24 84.91 75.26 80.06 69.52 79.55 80.55
6 weighted langcxt+guided viscxt(2)+fusion 86.43 87.36 85.52 75.63 80.37 69.58 79.72 80.85

The number following the “viscxt” refers to the number of gated graph convolutional layers used in the model.

TABLE 3
Comparison of Different Schemes for Training Our Proposed CMRIN on RefCOCO, RefCOCO+, and RefCOCOg

RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

1 softmax loss 85.43 86.81 84.47 74.23 79.74 67.78 78.94 79.37
2 triplet loss (0.2; 1; random hard) 86.25 87.50 84.99 75.15 80.11 68.91 79.96 80.49
3 triplet loss (0.5; 1; random hard) 85.84 86.87 84.69 74.52 79.99 68.32 79.04 79.97
4 triplet loss (0.1; 2; random hard) 86.32 87.54 84.97 75.12 80.75 69.13 79.39 81.30
5 triplet loss (0.1; 1; hardest) 86.38 87.68 85.06 74.32 79.69 68.30 79.68 80.38
6 triplet loss (0.1; 1; random semi-hard) 86.35 87.36 84.87 75.16 80.39 69.07 79.41 80.55
7 triplet loss (0.1; 1; random hard) 86.43 87.36 85.52 75.63 80.37 69.58 79.72 80.85

The contents in parentheses following the “triplet loss” represent the margin value, number of negative proposals and the sampling strategy respectively. The two
best performing models are marked in red and blue. CMRIN is robust to different loss settings and consistently outperforms existing state-of-the-art models on
all the three benchmark datasets.
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precision over the validation sets and testing sets are within
�0.65%, which demonstrates the robustness of our proposed
CMRINwith respect to different sampling strategies.

We report the performance of CMRIN (row 7: triplet loss
with a margin of 0.1, one negative proposal and random hard
negative mining) as the final version of our algorithm, which
is chosen according to its performance on the validation sets.

4.4.3 Necessity of Phrases

We discuss the necessity of phrases in this section and the
results are shown in Table 4. The performance of the variant
using words to highlight the vertices of the spatial relation
graph (row 1) is worse than that of the final version using
both words and phrases (row 3), which demonstrates the
effectiveness of phrases in improving the accuracy of vertex
highlighting. It is worth noting that we implicitly consid-
ered the word context (phrase-level information) in our con-
ference version (row 2) by using the contextual features of
words to attend the vertices instead of using the word
embeddings. However, the contextual features of words
introduce the global noise of the expressions, which
increases the difficulty of learning the correspondence
between words and vertices. The performance of CMRIN
with implicit phrases is worse than that of it with explicit
phrases in the object category (i.e., test B), because the visual
contents of object category is sensitive to contextual noise. In
addition, explicit use of phrases can help align between the
linguistic words and visual objects.

4.4.4 Variants of Spatial Relation Graph

We conduct experiments for CMRINs with different spatial
relation graphs to evaluate the effects of different designs
for spatial relation graphs, and those designs come from
two perspectives.

On one hand,we adopt three types of designs for edges, i.e,
“type(11)”, “type(7)” and “soft”. Specifically, “type(11)” is the
11 types of edges introduced in Section 3.1.1; the “type(7)” is a
coarse-grained version of “type(11)” and its 7 types of edges
are “inside”, “cover”, “overlap”, “right”’, “top”, “left” and
“bottom”; the “soft” is a fine-grained version of “type(11)”
and it directly encodes the edges as relative location represen-
tations [4] by calculating the offsets and area ratios between
objects. As shown in Table 5, the performance of CMRINwith
“type(7)” (row 1) is slightly worse than that of it with “type
(11)” (row 7), because the design of “type(7)” is coarse than
the design of “type(11)”. The CMRINwith “soft” (row 2) and
“type(11)” (row 3) have similar performance on RefCOCO
and RefCOCOg datasets, but the performance of latter is bet-
ter than that of the former on RefCOCO+ dataset, which indi-
cates that “type(11)” is fine enough to capture spatial
relationships. In addition, “type(11)” is more memory- and
computation-efficient than “soft”.

On the other hand, we evaluate different conditions for
connecting between objects, i.e, “edge num”, “axis dis” and
“center dis”. In particular, the “edge num(5)” constraints
the maximum out-degrees of each vertices to 5 and a vertex
is connected to its 5 nearest nodes based on the distances
between their normalized center coordinates (i.e., center
distances) [4]; the “axis dis(0.15)” connects each pair of
objects as long as the relative distances between them in
axes are smaller than 15 percent of the length and width of
the image respectively [73]; the “center dis(threshold)” cre-
ates a edge for each pairs of objects whose center distance is
smaller than the threshold. As shown in Table 5, CMRIN
with “center dis(0.7)” (row 6) has relative lower precision
than that with other conditions (row 3, 4, 5 and 7), because
the “center dis(0.7)” covers several redundant edges which
introduces noisy information. The CMRIN with remaining
conditions have similar performance, and their differences
in average precision over the validation and testing sets on
RefCOCO, RefCOCO+ and RefCOCOg datasets are within
�0.07%, �0.27% and �0.55%, respectively.

4.4.5 Semantic Relation Graph Branch

It is intuitive to encode the semantic relationships among
objects, in this section, we explore the effectiveness and
detail the implementation of semantic relation graph branch.

Effectiveness.We compare the CMRINs with single spatial
relation graph branch, with single semantic relation graph

TABLE 5
Ablation Studies on Variants of Spatial Relation Graph of Our Proposed CMRIN on RefCOCO, RefCOCO+, and RefCOCOg

RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

1 type(7) + center dis(0.5) 86.50 87.56 84.26 75.18 80.58 69.01 79.58 80.37
2 soft + edge num(5) 86.94 88.12 84.46 75.12 80.06 68.62 80.43 80.80
3 type(11) + edge num(5) 86.58 88.39 84.47 75.29 81.63 68.64 80.11 81.07
4 type(11) + axis dis(0.15) 86.46 87.91 85.14 76.01 81.02 68.99 80.45 81.21
5 type(11) + center dis(0.3) 86.67 88.21 84.53 75.46 80.49 69.26 80.29 80.35
6 type(11) + center dis(0.7) 86.57 87.71 84.14 75.21 79.74 69.16 79.68 80.20
7 type(11) + center dis(0.5) 86.43 87.36 85.52 75.63 80.37 69.58 79.72 80.85

The variant is denoted as design of edge type with condition of existence for edges. The numbers in parentheses following the “type”, “dis” and “num” represent
the number of types of edges, the threshold of normalized distance and the maximum number of edges at each vertices respectively. The two best performing mod-
els are marked in red and blue. CMRIN consistently outperforms existing state-of-the-art models on all the three benchmark datasets.

TABLE 4
Comparison of Different Phrase Designs on RefCOCO,

RefCOCO+, and RefCOCOg

RefCOCO RefCOCO+ RefCOCOg

testA testB testA testB test

w/o phrase 86.95 84.40 79.57 68.23 79.71
implicit phrase 87.63 84.73 80.93 68.99 80.66
CMRIN 87.36 85.52 80.37 69.58 80.85
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branch and joint model including both branches. And the
results are shown in the Table 6. The performance of single
semantic branch is worse than that of single spatial branch,
because the object relationship detector cannot recognize
the semantic relations completely accurately in the highly
unrestricted scenes. Moreover, the spatial relation graph
branch also implicitly captures the semantic relationships
as described in Section 3.2.2. In addition, the model includ-
ing both branches achieves the best precision, which indi-
cate the possibility of cooperation between the spatial and
semantic relationship representations.

Implementation. To implement the branch using semantic
relationship graph, we first use a visual relationship detec-
tor (the relationship detection part of [62]) trained on the
Visual Genome datasets excluding the images in RefCOCO,
RefCOCO+ and RefCOCOg datasets to extract the semantic
relationships among objects. And, for each predicted edge,
we compute its features as the probability-weighted embed-
ding of the relationship categories, and the probabilities to
relationship categories are predicted by the visual relation-
ship detector. Since we represent each edge as a type in spa-
tial branch and represent each edge as a feature in semantic
branch, the implementation for semantic branch has some
minor differences with that of spatial branch. In particular,
1) we attend the language representations over the features
of edges instead of over the types of edges; 2) We learn the
bias vectors for edges by using fully connected layers to
encode the edge features in each gated graph convolutional
layers instead of learning the bias vectors for types of edges.

For model including both branches, the semantic branch
and spatial branch share the same language representations
and the vertex attention computation, but have their individ-
ual attention learning between language representations and
visual edges, gated graph convolutional layers andmatching
computations. The final score of the two-branched model is
the mean of matching scores from those two branches. The
whole model is end-to-end trained by the triplet loss with
online hard negativemining.

4.5 Grounding Referring Expressions With
Detected Object Proposals

We have also evaluated the performance of the proposed
CMRIN for grounding referring expressions using automati-
cally detected objects in the three datasets. The detected
objects are provided by [4], and they were detected with a
pretrained Faster R-CNN in COCO’s training images with
the images in the validation and testing sets of RefCOCO,
RefCOCO+ and RefCOCOg excluded. The results are shown
in Table 7. The proposed CMRIN outperforms existing state-
of-the-art models, which demonstrates the robustness of

CMRIN with respect to object detection results. Specifically,
CMRIN improves the average precision in the person cate-
gory achieved with the existing best-performing method by
3.80 percent, and it improves the Precision@1 on RefCOCO
+’s test A and test B by 5.50 and 1.27 percent, respectively.

4.6 Effectiveness on Multi-Order
Relationships Subsets

To evaluate the effectiveness of our method on multi-order
relationships alone, we identify the subset of expressions
with indirect references in the RefCOCOg’s test set. There
are 2,507 expressions with multiple verbs/location words
and Precision@1 on this subset is 81.07 percent while the
number of remaining expression is 7,095 and Precision@1
on them is 80.22 percent. In contrast, the Precision@1 of
MattNet [4] (existing best method) is 76.31 and 79.30 percent
respectively on these two subsets. This result demonstrates
that our method can handle indirect references equally well
as other simpler cases.

5 CONCLUSION

In this paper, we focus on the task of referring expression
comprehension in images, and demonstrate that a feasible
solution for this task needs to not only extract all the necessary
information in both the image and referring expressions, but
also compute and represent multimodal contexts for the
extracted information. In order to overcome the challenges,
we propose an end-to-end Cross-Modal Relationship Infer-
ence Network (CMRIN), which consists of a Cross-Modal
Relationship Extractor (CMRE) and a Gated Graph Convolu-
tionalNetwork (GGCN).CMRE extracts all the required infor-
mation adaptively for constructing language-guided visual
relation graphs with cross-modal attention. GGCN fuses
information from different modes and propagates the fused
information in the language-guided relation graphs to obtain
multi-order semantic contexts. Experimental results on three
commonly used benchmark datasets show that our proposed
method outperforms all existing state-of-the-artmethods.
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