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Self-Enhanced Convolutional Network for Facial
Video Hallucination
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Abstract— As a domain-specific super-resolution problem,
facial image hallucination has enjoyed a series of breakthroughs
thanks to the advances of deep convolutional neural networks.
However, the direct migration of existing methods to video is
still difficult to achieve good performance due to its lack of
alignment and consistency modelling in temporal domain. Taking
advantage of high inter-frame dependency in videos, we propose
a self-enhanced convolutional network for facial video halluci-
nation. It is implemented by making full usage of preceding
super-resolved frames and a temporal window of adjacent low-
resolution frames. Specifically, the algorithm first obtains the
initial high-resolution inference of each frame by taking into
consideration a sequence of consecutive low-resolution inputs
through temporal consistency modelling. It further recurrently
exploits the reconstructed results and intermediate features of
a sequence of preceding frames to improve the initial super-
resolution of the current frame by modelling the coherence
of structural facial features across frames. Quantitative and
qualitative evaluations demonstrate the superiority of the pro-
posed algorithm against state-of-the-art methods. Moreover, our
algorithm also achieves excellent performance in the task of
general video super-resolution in a single-shot setting.

Index Terms— Facial video hallucination, recurrent frame
fusion, sequential feature encoding, deep learning.

I. INTRODUCTION

FACE hallucination, also known as face super-resolution
(SR), is a fundamental problem in computer vision

because of its vast application scenarios, such as video sur-
veillance, facial attribute analysis and visual content enhance-
ment. Recently reconstructing static high-resolution (HR)
face images from low-resolution (LR) ones has been widely
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studied [1], [2]. However the development of SR techniques
in facial videos is far less explored due to its high complexity
and requirement in effective spatio-temporal modelling. In this
paper we focus on hallucinating high-resolution (HR) videos
of talking faces from low-resolution (LR) ones. Faces in most
of such videos do not have large or sudden motions, but with
relatively small rotations.

Video super-resolution is a notorious ill-posed problem. The
challenge of this problem resides in restoring individual frames
with high-definition appearances while requiring natural inter-
frame consistency and visual friendliness. Additionally a video
SR method should exploit effective and relevant information
from the rest of the video for signal reconstruction. Traditional
methods [5], [6] mainly focus on reconstructing HR images via
estimating blur kernel, inter-frame flow fields and extra noises.
With the development and wide application of deep learning
techniques, CNN-based methods turn out to be the mainstream
in video super-resolution, which are significantly superior to
traditional methods. One of the most intuitive solutions is to
perform the restoration of the current frame by registering
other adjacent frames and using CNN based feature fusion [3],
[7], [8]. Unfortunately, this kind of method has the following
shortcomings: 1) it is usually arduous to accurately register
two frames within a long time interval which is highly likely to
have a negative impact on subsequent fusion; 2) the fusion of
all frames leads to a sharp increase in the amount of computa-
tion, which greatly reduces the overall efficiency; 3) using rela-
tively small number of frames ignores much spatial and tempo-
ral information which could be otherwise very helpful. When
directly applied to facial video hallucination, existing state-of-
the-art video SR methods [3], [4] can successfully generate
temporally coherent results with acceptable appearances in
smooth regions such as cheek and nose. However they are
not competent for the super-resolution reconstruction of image
components with relatively complicate structures or textures,
for example the regions of eyes and teeth as shown in Fig. 1.

To address the above issue, we present a so-called Self-
Enhanced Convolutional Network, which is a novel end-to-end
learning framework and can fully exploit both long-term spa-
tial and temporal information for enhancing the hallucination
inference of later frames. The self-enhancement of our method
is inspired by the following two perspectives. 1) The spatial
information of the preamble frames are crucial for restoring
subsequent frames as there is a large amount of inter-frame
redundancy especially in facial videos. Thus multiple super-
resolved results of previous frames are propagated to enhance
the prediction of subsequent frames. 2) Considering temporal
information is paramount to reason the appearance of later
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Fig. 1. Our method aims to generate high-resolution facial video frames
from low-resolution inputs. Taking a specific frame as an example, existing
video super-resolution methods SPMC [3] and FRVSR [4] have difficulty in
recovering components with complicate structures such as the right eye (green
box) and teeth (blue box). Our method is capable of achieving more promising
results. The input image is visualized using pixel duplication. ‘GT’ represents
ground truth image. (Best viewed in close-up).

frames, ConvLSTM [9] is applied to enhance the feature repre-
sentation of every frame by sequentially encoding the features
from the past frames. The self-enhancement model is imple-
mented through an encoder-decoder architecture. It absorbs in
an initial prediction of current frame and registered HR frames
of past frames, resulting in a refinement map of the initial
prediction. The feature representation of each frame resides
in-between the encoder and decoder. To involve in informa-
tion of future frames and further boost the SR performance,
neighboring LR images are used to generate the initial HR
estimation for each frame via a local frame fusion network.
Except for facial videos, our proposed method also has a
strong advantage for the super-resolution of general videos
as it is particularly good at learning and capturing structural
and temporal consistency, especially for the reconstruction of
scenes with intricate and trifling structures (e.g. buildings).

In summary, this paper has the following contributions.
• A self-enhanced convolutional network is proposed for

facial video hallucination. The uniqueness of our model is
that it makes use of both spatial and temporal information
across all preceding frames.

• Three ConvLSTM-based recurrence strategies are devised
to excavate temporal information for enhancing the fea-
ture representation of every frame.

• Our proposed method has achieved state-of-the-art perfor-
mance in: two facial video datasets, VoxCeleb [10] and
RAVDESS [11]; two single-shot generic video datasets,
VID4 [5] and Harmonic collected from the Internet.

II. RELATED WORK

Image/video super resolution has been studied for a long
time. We refer to [12] for a detailed survey. In this section,
we mainly discuss the related works based on deep learning.

A. Image/Video Super-Resolution

The basic idea of recent deep learning based methods [13],
[14] is to design a CNN architecture to map low resolution

images to their HR versions. In [15], an improved version
of [14] is proposed with the help of convolutional non-local
operation [16]. A novel super-resolution method is developed
in [17] using residual-in-residual dense blocks [18]. During
the training stage, Relativistic GAN [19] is employed for
achieving realistic predictions. Video super resolution, as an
extension of image super resolution, attracts more attentions
for its practicality but being more challenging. To extend
single frame SR model to its multi-frame version, [7] attempts
to utilize multiple motion compensated frames/features when
super-resolving each frame. Reference [8] and [3] utilize con-
secutive neighboring frames to produce the super-resolution
output of the current frame with the help of flow based motion
correction. A joint upsampling and warping operation [20]
is proposed for fusing neighboring frames in video super-
resolution. Reference [21] super-resolves every LR image
using multiple frames via learning a dynamic upsampling
filter for each pixel in the target HR image and a residual
image. Reference [22] devises a multi-scale temporal adaptive
neural network and a spatial alignment network for utilizing
inter-frame dependency in video super-resolution. Considering
high inter-frame repeatability in videos, a frame recurrence
strategy is proposed in [4] to propagate the spatial information
of previously estimated HR frames to all subsequent frames
and enhance their HR predictions. As only one previous
frame is fused into the inference procedure of current frame,
temporal connection across frames is weak which might miss
lots of inter-frame spatial dependencies, especially informa-
tion provided by future frames. Our method differs it from
two perspectives. First, multiple neighboring LR frames are
utilized to generate an initial prediction through a local frame
fusion network. Second, ConvLSTM-based recurrence module
is devised to enhance the feature representation of every frame.
Reference [23] devises a bidirectional recurrent convolutional
network to learn long-term temporal and contextual infor-
mation for video super-resolution. But each frame relies on
intermediate features from both past and subsequent frames.
All images in the input clip are required to be processed simul-
taneously and the memory cost grows linearly with respect to
its length. Our devised bidirectional recurrent module avoids
this shortcoming as each input frame can be super-resolved
independently after obtaining features of previous frames.

B. Face Hallucination

As a special case of image/video super-resolution, facial
image hallucination has drawn much more attentions due to
its wider application scenarios. Most deep neural network
based methods attempt to integrate facial prior knowledge
into the CNN architectures. Reference [24], [25] implicitly
exploit global facial features learned using fully connected
layers. Reference [1] utilizes a reinforcement learning policy to
generate HR face image patch by patch iteratively. Reference
[2], [26], [27] explicitly make use of facial priors (land-
marks/parsing maps) to help inferring the restoration of HR
face images or training neural networks. Wavelet coefficients
of HR images are inferred from the embedded features of
the low resolution faces and are then used to reconstruct the
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Fig. 2. Our network architecture for super-resolving 64 × 64 images to 256 × 256 ones. ‘D[D]’ represents a convolution or deconvolution layer with the
number of output channels set to D. The x × y beside the box of convolution/deconvolution layer indicates kernel size. ‘↑ 2’ means the deconvolution layer
upsample the feature map to 4 times while ‘↓ 2’ means the convolution layer downsample the feature map to one quarter. The pixel shuffle layer rearranges
the input s2 D × H × W tensor to a D × s H × sW tensor. s = 2 for each shuffle layer. The main pipeline (a) of our method consists of two stages. The first
one utilizes a local frame fusion network built on residual dense blocks (c) to produce an initial super-resolution inference. The second stage takes advantage
of the previously estimated results and encodes feature maps of past frames sequentially (SFE) to enhance the feature representation of current frame. The
adopted residual block is shown in (d). The optical flow module is shown in (b).

expected HR image [28]. Based on PixelCNN [29], a novel
face image super-resolution model [30] is set up to recurrently
reconstruct every pixel. This method is hard to restore images
with large spatial sizes because of its computational cost.
On the other hand, generative adversarial models [31] are
widely used in face super-resolution. UR-DGN [32] is claimed
to be the first face SR method using generative adversarial
network. Reference [33] discusses the efficacy of Wasserstein
GAN [34], [35] in training face SR networks. Reference [36]
learns a CNN model to super-resolve blurry face and text
images with a complicated objective function consisting of
pixel-wise MSE, feature matching and adversarial loss. As far
as we know, no literature published by conference/journal on
face video SR using deep learning is found. Without additional
constraints, single face image SR methods can hardly work
well in face video SR because of the deformity to guarantee
smoothness across frames.

III. METHOD

Denote a sequence of facial video frames as {Xt }, where
t ∈ [1, N] and t ∈ N+. Xt is a single frame with resolution
w × h. Facial video hallucination aims to generate the high-
resolution counterpart Y = {Yt} composed of frames with
resolution rw × rh where r is the upscaling factor. In the
following, we first give an overview of our proposed network
architecture and then describe the details of each module.

A. Self-Enhanced Convolutional Architecture

The overall architecture of our proposed self-enhanced
convolutional network is illustrated in Fig. 2. The base of our
method consists of two cascaded subnetworks. The first sub-
network is named as local frame fusion network, which takes
multiple aligned neighbouring LR frames as input and aims at
generating an initial super-resolved result for each independent
frame. The second subnetwork is named as enhanced recurrent
frame fusion module which refines the result of the local frame

fusion network with the help of aligned super-resolved images
and features from previous frames.

B. Local Frame Fusion Network

For sake of involving in information of future frames and
providing a high starting point for subsequent subnetwork,
we set up a local frame fusion network based on the residual
dense network (RDN [37]). 2T1 + 1 consecutive LR frames
{Xk|k ∈ [t − T1, t + T1]} are used as the input when
super-resolving frame t . First of all, to make up inter-frame
differences caused by facial/camera motions, an optical flow
module is exploited to warp every LR image Xk to frame
t as shown in Fig. 2 (b). Practically the optical flow field
Ft→k from Xt to Xk is used to bi-linearly sample an aligned
counterpart of Xk . We define the warped result of Xk as Xk→t .
The mean square error loss with total variation regularization
is imposed on the optical flow module,

Lt,k
f = 1

cwh
‖Xk→t −Xt‖2

2+ α

2wh
(‖∇x Ft→k‖2

2+‖∇yFt→k‖2
2),

(1)

where α is a constant and c is the channel of input image.
∇x and ∇y are horizontal and vertical derivation operation
respectively. The overall loss function for training the optical
flow network is as follows,

Lt
f = γ

2T1

t+T1∑

k=t−T1,k �=0

Lt,k
f . (2)

RDN is a state-of-the-art SR method for static image SR
method. We extend it into a multi-frame version by replacing
the single input image with the concatenation of aligned LR
images {Xk→t }. Let the output be Ŷt . We use the following
loss function for training the local frame fusion network,

Lt
l = 1

cr2wh
‖Ŷt − Gt‖2

2, (3)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 16,2022 at 07:43:34 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: SELF-ENHANCED CONVOLUTIONAL NETWORK FOR FACIAL VIDEO HALLUCINATION 3081

Fig. 3. Three sequential feature encoding strategies. The left (a) propagates the cell output and hidden variable to next frame recurrently. The second (b)
collects T3 features from past frames and employs bidirectional ConvLSTM to encode them at every frame. In the third (c) strategy, the input feature maps
are also fed into the forward pass.

where Gt represents the ground-truth image of frame t . Details
about the network architecture and residual dense blocks are
presented in Fig. 2 (a) and (c).

C. Enhanced Recurrent Frame Fusion Module

1) Encoder-Decoder Framework: Super-resolving HR
images from LR images requires recovering both accurate
global appearances and visual friendly details such as
textures and sharp edges. Inspired by [38], we adopt
an encoder-decoder framework with skip connections to
extract multi-scale convolutional features. Detailed network
architecture is presented in right part of Fig. 2 (a). The
encoder module extracts three scales of features using
convolution layers, ReLUs [39] and residual blocks [40] from
the input. Features in the first two scales are responsible for
restoring details. They are forwarded to the decoder via skip
connections. Compared to the first two scales, 4 extra residual
blocks are applied in the third scale for sake of enlarging
receptive field and producing deeper features. Denote feature
map in the i -th scale as Et

i . The decoder possesses almost
symmetric architecture with the encoder, generating the final
restored result Yt through refining the initial super-resolved
result Ŷt . It should be noted in particular that: 1) The input
of our encoder-decoder model is formed by concatenating Ŷt

and the aligned super-resolved images of previous frames;
2) Feature maps of past frames in the third scale {Ek

3|k < t}
are accumulated to enhance Et

3 to Êt
3 via sequential encoding

strategies which will be introduced in Section III-C.3. The
following mean square error loss function is exploited to train
the above model,

Lt
e = 1

cr2wh
‖Yt − Gt‖2

2. (4)

2) Recurrent Frame Fusion: Because of the high depen-
dency across frames in video, propagating super-resolved
result of previous frame is helpful to infer the result of current
frame in video super-resolution [4]. Here we take advantage
of multiple previous frames {Yk |k = t − 1, · · · , t − T2} when
predicting HR image of frame t . Each previous frame Yk

is firstly aligned to frame t using the bi-linearly interpolated

Fig. 4. Given a sequence of low-resolution images (1st row), preliminary
HR images are generated using the local frame fusion network (2nd row).
Then it is refined by our enhanced recurrent frame fusion module (3rd row).

optical flow field Ft→k . Suppose the aligned result be Yk→t .
Afterwards {Yk→t |k = t−1, · · · , t−T2} are concatenated with
Ŷt and then fed into the encoder. When T2 ≤ T1, warping past
HR frames does not entail much more computational cost as
all optical flow fields have been calculated in Section III-B.
The differences with [4] are that multiple previous frames are
utilized and no space-to-depth transformation is required to
convert the HR image into a tensor with same spatial size as
the LR image.

3) Sequential Feature Encoding: Feature-level temporal
information benefits facial video hallucination from the follow-
ing perspectives: facial motions could be used to infer future
frames which is paramount to restore lost appearance infor-
mation in future frames; motions in most regions of talking
faces are usually not severe, making spatial dependencies in
high-level feature maps could be easily obtained for ensuring
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Algorithm 1 One-Way ConvLSTM

content coherence in restored videos. Considering the above
two points, we adopt ConvLSTM [9] to extract temporal
information for enhancing the feature representation of current
frame. Given a sequence of input features {Ek}. We summarize
the formulation of ConvLSTM as follows,

Hk, Ck = ConvLSTM(Hk−1, Ck−1, Ek , θl), (5)

where θl contains all the weights and biases of convolution
kernels in the ConvLSTM cell. Hk and Ck is hidden state and
cell output respectively. H0 = C0 = 0. Detailed computation
steps of ConvLSTM are given below.

1. Ak
i = ς(Ek ∗ Wei + Hk−1 ∗ Whi + bi );

2. Ak
f = ς(Ek ∗ We f + Hk−1 ∗ Wh f + b f );

3. Ak
g = tanh(Ek ∗ Weg + Hk−1 ∗ Whg + bg);

4. Ck = Ak
f ◦ Ck−1 + Ak

i ◦ Ak
g;

5. Ak
o = ς(Ek ∗ Wio + Hk−1 ∗ Who + bo);

6. Hk = Ak
o ◦ tanh(Ck),

where ς(·) is the Sigmoid function. W-s and b-s are the
weights and biases of convolution kernels with size of 3 × 3.
‘◦’ represents the Hadamard product. Ak

i , Ak
f and Ak

o repre-
sent input, forget and output gate for the k-th data sample,
respectively.

We provide three strategies to encode collected features
based on ConvLSTM units: one-way ConvLSTM, cascaded
bidirectional ConvLSTM and fused bidirectional ConvLSTM.
One-way ConvLSTM: To capture long-term temporal infor-
mation, we propagate the cell output C and hidden state H to
next frame recurrently as shown in Fig. 3 (a). Consequently
at any frame t all past features {Ek

3|k < t} are exploited to
enhance Et

3,

Ht , Ct = ConvLSTM(Ht−1, Ct−1, Et
3, θl). (6)

The result of the enhanced feature Êt
3 is Ht exactly. The

computation procedure is concluded in Algorithm 1.
Cascaded Bidirectional ConvLSTM: According to [41],
bidirectional RNN framework outperforms regular recurrent
model with one-way pass. Thus we can devise a bidirectional
ConvLSTM module as shown in Fig. 3 (b). Here only T3
past features at most should be considered, preventing the
time and memory cost from increasing continuously as t
grows. Then one backward and forward passes are adopted
to processing the ordered feature sequence E

t = {Ek
3|k =

t, · · · , t − Tt + 1; Tt = min(t, T3 + 1)},
Hk

b, Ck
b = ConvLSTM(Hk+1

b , Ck+1
b , Ek

3, θ
b
l ); (7)

Hk
f , Ck

f = ConvLSTM(Hk−1
f , Ck−1

f , Hk
b, θ

f
l ). (8)

Hk
b, Ck

b and θb
l are the hidden state, cell output and parameter

of the backward pass respectively while Hk
f , Ck

f and θ
f

l

Algorithm 2 Cascaded Bidirectional ConvLSTM

Algorithm 3 Fused Bidirectional ConvLSTM

represents the hidden state, cell output and parameter of the
forward pass respectively. The final result Êt

3 is H1
f . Ht+1

b =
Ct+1

b = 0. Ht−Tt
f = Ct−Tt

f = 0. The computation procedure is
summarized in Algorithm 2.
Fused Bidirectional ConvLSTM: To prevent loss of forward
motion information, we devise another sequential feature
encoding strategy as shown in Fig. 3 (c). Feature maps are
not only fed into the ConvLSTM cell of the backward pass,
but also constitute proportion of the input of the forward
ConvLSTM cell as shown in Algorithm 3. The backward pass
is the same as (7) while the forward pass (8) is replaced with
the following procedure,

Hk
f , Ck

f = ConvLSTM(Hk+1
f , Ck+1

f , [Hk
b, Ek

3], θ f
l ). (9)

4) Self-Learned Attention: Spatial attention is significant
in facial image hallucination as faces consist of specific
components. Inspired by [42], we integrate a spatial attention
mechanism into the residual block as shown in Fig. 2 (d).
Two convolution layers and one ReLU layer are used to
produce a spatial attention map, which is subsequently applied
to suppress activations of pixels with low attention values.
This attention mechanism enables every residual block to
emphasize particular regions. Examples of our self-learned
attention maps are presented in Fig. 5.

D. Network Training

Summing up (2) (3) and (4), we can obtain the overall
training loss,

L = 1

N

N∑

t=1

(Lt
e + Lt

l + γ Lt
f ), (10)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 16,2022 at 07:43:34 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: SELF-ENHANCED CONVOLUTIONAL NETWORK FOR FACIAL VIDEO HALLUCINATION 3083

TABLE I

DATASETS USED IN FACIAL AND GENERIC VIDEO SUPER-RESOLUTION

Algorithm 4 One Training Step of Our Self-Enhanced
Convolutional Network

where γ is a constant. The loss function (10) is optimized
using Adam [43] with learning rate of 10−4. One step of
optimization is illustrated in Algorithm 4. During the inference
stage, only those super-resolved images and features required
in next frame are preserved at the end of each frame.

IV. EXPERIMENTS

A. Dataset

Two facial video datasets, VoxCeleb [10] and
RAVDESS [11], are used to validate the performance
of our method. In addition, we also use generic single-shot
videos from Harmonic and VID4 [5] to test deep video super-
resolution methods. Table I presents the split of training,
validation and testing sets.

(1) The VoxCeleb dataset contains over 100,000 utterances
by 1,251 celebrities, providing sequences of tracked
faces in the form of bounding boxes. We select out
140,334 sequences of face images with high quality.

Fig. 5. Visualizations of self-learned spatial attention maps from the 1st,
2nd, 4th and 6th residual blocks.

For each sequence, we compute a box enclosing the faces
from all frames and use it to crop face images from the
original video. All face images are resized to 280 × 280.
Only the central 256 × 256 region is used in validating
and testing.

(2) The RAVDESS dataset encloses 2,452 sequences cap-
tured from 24 persons speaking/singing with various
expressions and motions. We choose 4 sequences for
each person forming the other testing set of facial video
hallucination.

(3) The Harmonic dataset includes 18 videos captured from
natural scenes containing buildings, birds, animals, etc.
Sequences without scene switching are manually selected
to serve as our single-shot video super-resolution dataset.
Images are resized to 540 × 960. For training set we
uniformly sample 8 sequences of 300 × 300 images
from every video clip along horizontal axis with stride
of 220 and vertical axis with stride of 240. Validation set
is generated via cropping the centering 512×512 regions.
Testing images with size of 512 × 640 are also cropped
out in the center.

(4) The VID4 dataset containing 4 sequences (‘calendar’,
‘city’, ‘foliage’ and ‘walk’) of images has been widely
used to validate video SR methods.

Input LR images are synthesized through blurring HR
images with a Gaussian kernel (standard deviation of 1.5),
and then downscaling them via sampling 1 pixel out of
every 4 pixels in each dimension. The following strategies
are adopted for data augmentation during the training stage:

1) Random shuffle is utilized to reorganize the order of
image sequences in each epoch;

2) N consecutive frames are selected from each sequence in
the batch via starting at a random position and sampling
one frame out of every l frames where l is random integer
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Fig. 6. Comparison of super-resolution algorithms in two facial image sequences. The predicted SR images from our method (‘Ours’) are closer to the
ground truth than other algorithms.

within [1, 2] for facial videos and [1, 4] for general
videos;

3) 256×256 patches are randomly cropped from HR images
of these frames, serving as ground-truth;

4) The chronologically order of the selected frames is
reversed randomly;

5) Images are randomly flipped horizontally.

Parameters & Training Settings N , α and γ is set as 8,
0.01 and 0.1 respectively. According to the discussion in [8],
we fix the value of T1 as 2 in this paper. Without specification,
T2 and T3 is set to 2 and 6 respectively; 8 residual blocks are
adopted. In the recurrent frame fusion part, the error back
propagation to the optical flow module is cut off to alleviate
the instability in training. The local frame fusion network is

pretrained for 2 × 105 iterations. Then the overall model is
trained for the other 1.5×105 steps. For the generic video SR
task, models are additionally finetuned for 5 × 104 iterations
using sequences of 512 × 512 ground-truth images randomly
cropped from the original 540 × 960 HR images. Batch size
in each training iteration is set as 4. We periodically (every
200 iterations) test the model in the validation set. The version
with the best performance is regarded as the final model.
4 TITAN Xp 12GB GPUs are utilized for training. Network
parameters are initialized by default in PyTorch.
Abbreviations For conciseness, we use the following abbrevi-
ations to mark variants/settings of our method: ‘SECNet’, self-
enhanced convolutional network as shown in Fig. 2; ‘LFFNet’,
local frame fusion network as described in Section III-B;
‘ERFFNet’, network formed from the enhanced frame fusion
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Fig. 7. Comparison of super-resolution algorithms in generic video super-resolution.

Fig. 8. Comparison of different variants of our method. ‘w.o.’ represents ‘without’ and ‘w.’ represents ‘with’. ‘cascaded’ means cascaded bidirectional
ConvLSTM is adopted for sfe strategy while ‘fused’ means fused bidirectional ConvLSTM is applied.

module (Section III-C) through using bicubicly upsampled
LR images and super-resolved images of previous frames
as inputs; ‘CLSTM’, ConvLSTM; ‘BCLSTM’, bi-directional
ConvLSTM; ‘rff ’, recurrent frame fusion; ‘sfe’, sequential
feature encoding.

B. Evaluation Metrics

PSNR and SSIM are employed to evaluate the performance
of video SR methods. PSNR is computed using the mean
squared error of image sequence {Yt} in comparison to {Gt },

PNSR=min(log10
R√∑N

t=1 ‖Yt −Gt‖2
2/(Ncr2hw)

, 100),

(11)

where R is the pixel range. R is set to 1 as all images are
normalized to [0,1].

SSIM is widely used for evaluating perceived quality of
digital images. In this paper it is calculated over individual
RGB images of videos. Given two patches x , y from super-
resolved and GT images respectively, the SSIM measure is
calculated as follows,

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
, (12)

where c1 = (0.01R)2, c2 = (0.03R)2. μx , σx and σxy is the
pixel average of x , standard deviation of x and covariance
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TABLE II

PERFORMANCE OF FACIAL VIDEO HALLUCINATION ON THE TESTING SETS OF VOXCELEB AND RAVDESS. ‘#PARAMETERS’ INDICATES NUMBER OF
TRAINABLE PARAMETERS IN EACH SR MODEL. ‘FPS’ INDICATES NUMBER OF FRAMES PROCESSED BY EACH METHOD PER SECOND

between x and y respectively,

μx =
d∑

i=−d

d∑

j=−d

wi j xi j /w, (13)

σ 2
x =

d∑

i=−d

d∑

j=−d

wi j (xi j − μx)
2/w, (14)

σxy =
d∑

i=−d

d∑

j=−d

wi j (xi j − μx)(yi j − μy)/w, (15)

where xi j is the pixel value at (i, j) in x . wi j = e
−(i2+ j2)

2ρ2

and w = ∑i=d
i=−d

∑ j=d
j=−d wi j . d represents the radius of the

patch. We use ρ = 1.5 and d = 5 here. The SSIM between two
images can be obtained through averaging the values of (12)
at all positions. For any image sequence, the average SSIM
across all frames is denoted as SSIMvh. To measure the quality
of recovered temporal structures, we also slice a video along
the horizontal axis and compute average SSIM of all images
spanned by the vertical and temporal axes, denoted as SSIMvt.

C. Quantitative and Qualitative Analysis

1) Comparisons Against State-of-the-Art Methods: Com-
parisons between our final model SECNet and other state-
of-the-art methods are presented in Table II and III. In the
facial video hallucination task (Table II), we compare our
proposed method with several state-of-the-art SR methods
including GLN [25], LapSRNet [44], [2], SRResCNN [14],
SRResACNN [15], ESRCNN [17], BRCN [23], VESPCN [8],
SPMC [3], FRVSR [4] and VSR-DUF [21]. All methods
are trained using the same datasets and settings as described
in Section IV-A, except for these marked with ‘∗’ which

Fig. 9. Comparison with GAN-based methods. Both SRResACNN [15] and
ESRCNN [17] are trained under the guidance of GAN as introduced in their
original papers. (Best viewed in close-up).

adopt results released by the authors or generated by provided
models. To avoid defects nearby the image borders, input
LR images of VSR-DUF are padded with 2 pixels. We con-
duct T-test between every contrast method and our proposed
method (the last row of the table), to indicate improvement
significance. The t-statistic Ft and p-value Fp are presented
in the parentheses after PSNR and SSIMvh. Our SECNet
surpasses all previous methods. Practically it outperforms
the second best method FRVSR by 2.7% higher PSNR and
1.0% larger SSIMvh on VoxCeleb.

Comparison of our method against other video super-
resolution methods in Harmonic and VID4 datasets is reported
in Table III. The most peripheral 8 pixels are excluded when
computing PSNR and SSIM-s. The self-learned attention is
not used in this task. Again our method achieves the best
performance. The PNSR and SSIMvh of our model SECNet are
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Fig. 10. Comparison of averaged PSNR and SSIM in facial videos from individual persons. All 80 persons in the testing set of VoxCeleb are considered.
Our method performs consistently better than SPMC, FRVSR and VSR-DUF.

TABLE III

PERFORMANCE OF GENERIC VIDEO SUPER-RESOLUTION ON THE TESTING SETS OF HARMONIC AND VID4

respectively 0.90 and 0.0125 larger than those of the second
best method VSR-DUF in Harmonic dataset.

To discuss the efficacy brought by LFFNet, we also trans-
form the enhanced recurrent frame fusion module into an
independent SR model called ERFFNet. Apparently it is
inferior to SECNet as reported in Table II.

A qualitative comparison of facial video hallucination
between our method and other SR methods are shown
in Fig. 6. The super-resolved results from our method tend to
be more appealing and clearer than those from other methods
especially in the eye regions. The super-resolving quality in
generic single-shot video datasets is shown in Fig. 7. Our
method recovers the buildings (top image), digits (middle
image) and tiles (bottom image) more accurately. Comparison
with GAN-based methods [15] and [17] is presented in Fig. 9.

2) Performance Across Persons: Performance compari-
son in facial videos from independent persons is presented
in Fig. 10. It indicates our method consistently performs better
than SPMC, FRVSR and VSR-DUF across characters.

3) Performance Across Frames: We also report averaged
PSNR for t ∈ [1, 70] in Fig. 11, where the significance and

efficacy of our self-enhanced convolutional network can be
clearly observed. The PSNR-s of FRVSR and our proposed
models rise rapidly during the initial frames because both
reuses the estimated results of preceding frames recurrently.
However the rising period of SECNet is longer than FRVSR.
Overall, our method achieves the highest performance among
all considered state-of-the-art SR methods.

4) Discussions of Temporal Fusion Strategies: The facial
video super-resolution performances of our final models
using one-way, cascaded and fused BCLSTM-s are presented
in Table IV. Self-attention is not used in all of our models
in this subsection. To study the effectiveness of recurrent
frame fusion (abbr. rff ) and sequential feature encoding (abbr.
sfe), we trained models without using recurrent frame fusion
which means that T2 is set to 0, or not using past features to
enhance the feature representation of current frame. Compared
to the model not using rff or sfe, adopting any of rff and sfe
brings significant improvement. For example the adoption of
sfe (equipped with cascaded BCLSTM) and rff gives rise to
results with 0.39dB and 0.62dB higher PSNR-s respectively
than the version in which neither is utilized. Turning off
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Fig. 11. Comparison of averaged PSNR at different frames. The PSNR of our method rises quickly as it runs forward from the beginning. Afterwards it
steadily maintains at a higher PSNR rate than other methods.

TABLE IV

COMPARISONS OF DIFFERENT FUSION STRATEGIES ON VOXCELEB

rff or sfe causes dramatically drop to all metrics. For example
abandoning rff leads to decrease of 0.53dB for PSNR, in the
framework using cascaded BCLSTM as sfe strategy. In con-
clusion, any of recurrent frame fusion and sequential feature
encoding can benefit facial video hallucination independently.
Adopting both of them leads to better results as they are able to
complement each other. Besides, the bidirectional sfe strategies
outperform one-way strategies. Qualitative comparison of our
method using different temporal fusion strategies is presented
in Fig. 8.

Two alternative temporal fusion strategies are tried to
replace the BCLSTM based recurrence module. The convo-
lutional non-local operation [16] can be applied to exploit
temporal dependencies. The feature aggregation method in
[45] can also be applied to fuse temporal features based on
attention maps which are calculated between the feature of
the reference frame and features of previous frames. Optical
flow fields are used to align features of previous frames to
the reference frame. The comparison is enclosed in Table IV.
Considering the computation load of the non-local operation,
T3 is set to 2. The fused BCLSTM performs better than the
above two temporal fusion methods. Additionally, we can
replace the CLSTM with the recurrent unit in [23], forming
a variant of our method which produces results with 0.26dB
lower PSNR.

5) Discussions of Attention Strategies: We discuss the
performance of using pairwise attention calculated with the
non-local operation [16], channel-wise and spatial attentions

TABLE V

COMPARISONS OF DIFFERENT ATTENTION STRATEGIES ON VOXCELEB

TABLE VI

PERFORMANCES OF USING DIFFERENT T2 AND T3 IN THE

VALIDATION SET OF VOXCELEB

computed by squeeze-and-excitation (SE) [42]. The non-local
operation is integrated into the 4-th and 8-th residual blocks.
The quantitative comparisons on VoxCeleb dataset are pre-
sented in Table V. Using squeeze-and-excitation based atten-
tion achieves better results than using non-local pairwise
attention. The spatial attention slightly benefits the super-
resolved results while incorporation of additional channel-wise
attention fails to bring further improvement.

6) Choices for T2 and T3: The results of choosing different
T2 and T3 are reported in Table VI. All experimental results
are obtained from testing in the validation set of VoxCeleb.
The cascaded BCLSTM is adopted to implement sfe. Using
2 previous frames produces better results than using 1 previous
frame, but more frames do not help improving super-resolution
performance which might be caused by the increased difficulty
in learning the dependency between current and previous
frames. Increasing T3 from 0 to 2 brings gain of 0.19dB in
PSNR. Adopting different values 2, 4 and 6 for T3 leads to
almost equivalent performance.

7) Choices for Number of Residual Blocks: We present the
performances of using various numbers of residual blocks
in Table VII. Using 8 residual blocks achieves the best
performance, while 16 blocks can not bring better results.
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TABLE VII

COMPARISONS OF VARIANTS USING DIFFERENT NUMBERS OF
RESIDUAL BLOCKS ON VOXCELEB

V. CONCLUSION

To solve the facial video hallucination problem, we have
proposed a self-enhanced convolutional network, which uti-
lizes recurrent frame fusion and sequential feature encoding
based on ConvLSTM to take advantage of both spatial and
temporal information from past video frames. Furthermore a
local frame fusion network is utilized to involve in informa-
tion from future frames. Our method achieves state-of-the-
art performance in both facial video hallucination and more
generic single-shot video SR tasks. In the future, it deserves
in-depth research to exploit deliberately devised attentions in
facial video hallucination, based on facial priors, motion units,
expressions, etc.
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