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Abstract. Differentiation of colorectal polyps is an important clin-
ical examination. A computer-aided diagnosis system is required to
assist accurate diagnosis from colonoscopy images. Most previous studies
attempt to develop models for polyp differentiation using Narrow-Band
Imaging (NBI) or other enhanced images. However, the wide range of
these models’ applications for clinical work has been limited by the lag-
ging of imaging techniques. Thus, we propose a novel framework based
on a teacher-student architecture for the accurate colorectal polyp clas-
sification (CPC) through directly using white-light (WL) colonoscopy
images in the examination. In practice, during training, the auxiliary
NBI images are utilized to train a teacher network and guide the student
network to acquire richer feature representation from WL images. The
feature transfer is realized by domain alignment and contrastive learning.
Eventually the final student network has the ability to extract aligned
features from only WL images to facilitate the CPC task. Besides, we
release the first public-available paired CPC dataset containing WL-NBI
pairs for the alignment training. Quantitative and qualitative evaluation
indicates that the proposed method outperforms the previous methods
in CPC, improving the accuracy by 5.6% with very fast speed.

1 Introduction

Colorectal cancer (CRC) is one of the most common malignancies with a high
mortality rate around the world [1]. Colorectal polyps are recognized as indi-
cators of CRC, and they are roughly classified into two categories: hyperplas-
tic and adenomatous [2]. Hyperplastic polyps are benign while adenomatous
polyps have a high possibility of malignant transformation. Considering only
the latter ones are required for surgical resection, precise differentiation is impor-
tant to decrease unnecessary resection and unsuitable treatment. Colonoscopy is
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Fig. 1. The proposed teacher-student approach for polyp classification only utilizing
WL images during inference. To improve the WL image based polyp differentiation
accuracy, we adopt domain alignment to shift the distribution from WL features to
NBI features during training, with the assistance of corresponding paired NBI images.

the preferred detection and diagnostic tool for colorectal polyps. However, due
to varying illumination conditions, similar tissue representation, and occlusion,
it is usually difficult to discriminate between benign and pre-cancerous polyps
by conventional white-light (WL) observation, even for well-experienced endo-
scopists [3]. Therefore, an accurate and objective computer-aided classification
system is demanded to assist clinical work.

Recent studies have achieved promising performance in colorectal polyp clas-
sification (CPC) by employing deep learning-based methods. Most works prefer
to use datasets containing Narrow-Band Imaging (NBI) or Blue Light Imaging
(BLI) images, owing to the enhanced visibility and superior performance [7].
For example, Usami et al. [11] proposed to distinguish benign/malignant polyps
using WL, dye, and NBI images. In [2], authors achieved the highest accuracy
of 95% by combining WL, BLI, and Linked Color Imaging (LCI) modalities.

Nevertheless, the widely used colonoscopy devices only have WL and NBI
modes. Moreover, the acquisition of those advanced images is required to switch
manually when polyps have been detected, while it usually suffers from missing
detection in real clinic scenarios. Thus, the colorectal polyp detection using only
WL endoscopy images is important but has not drawn sufficient attentions.
Recently, Yang et al. [12] reported the classification results using WL images
with the accuracy 79.5%. As shown, there is a large gap for the classification
accuracy between using WL endoscopy images and enhanced images.

In this paper, we propose a novel framework as illustrated in Fig. 1 to facili-
tate the CPC task from WL colonoscopy images. To enhance low representative
WL features, we adopt domain alignment to minimize the distance between WL
and NBI feature distributions. Better feature representation in NBI images is
transferred to the student network through domain alignment using adversar-
ial learning and contrastive learning. Our main contributions are summarized
in three-fold: (1) Through experiments, we prove that the CPC accuracy using
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WL images is nearly 10% lower than that of using NBI images (88.9%) as input.
Based on this observation, we define a new scheme that exploits NBI features to
improve the WL-based classification results. (2) We propose a teacher-student
model with GAN-based domain alignment and contrastive learning strategies to
improve CPC. (3) We further release the first public-available polyp classifica-
tion dataset named CPC-Paired, including WL-NBI image pairs. Our method
achieves state-of-the-art performance (i.e., ∼ 6% improvement).

2 Related Work

Domain Alignment (DA). DA methods aim to align feature distributions
between the source and target domains. Deep CORAL [9] defines a loss function
to constrain the distance between the source and target domains in deep layer
activations. In [6], correlation alignment is connected with entropy minimiza-
tion to provide a solid performance. The above methods are applicable when
target labels cannot be accessed. Other methods turn to minimize the differ-
ence between the source and target distributions in a shared feature space. The
joint maximum mean discrepancy (JMMD) [4] is introduced to learn a transfer
network by aligning the joint distributions of the network activations in domain-
specific layers. Adversarial learning is adopted in domain adaptation to learn rep-
resentations that the discriminator cannot distinguish between domains [10,13].
In this paper, we adopt this concept to align the features in different domains.

3 Method

3.1 Adversarial Learning for Domain Alignment

Inspired by [8], we adopt generative adversarial networks (GAN) to align the
WL features with NBI features. As shown in Fig. 2, a teacher-student scheme is
designed for the feature alignment. More specifically, we first pretrain a teacher
feature extractor by only utilizing NBI images for CPC, where rich features can
be extracted from NBI images to classify polyps. Then, we fix the teacher extrac-
tor to output NBI features Xp for aligning features Xa from student extractor.
Particularly, the student extractor aims to extract features from WL images for
polyp classification. However, the WL features Xa extracted from WL image
are unsatisfactory for accurate polyp classification, rather than the features Xp

from NBI images. Hence, to improve the classification accuracy of WL images,
a discriminator D is introduced to align the WL features Xa with the rich NBI
features Xp. The discriminator is optimized to distinguish between aligned WL
features Xa and NBI features Xp (i.e., NBI features are real and WL features
are fake). As same with the GAN training manner, the discriminator D and
student extractor are optimized alternatively. Therefore, the adversarial loss La

supervises the student extractor to align its output with the teacher’s (i.e., NBI
features Xp), which is shown in Eq. 1 where CE is the cross-entropy loss, Ynbi

indicates real label and takes 1 in practice.
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Fig. 2. The overview pipeline of the proposed method. First, we pretrain teacher and
unaligned extractors by utilizing NBI images and WL images separately, which is shown
in grey parts. To align the WL features Xa with more representative NBI features, an
alignment loss La is designed to optimize the student extractor by introducing a dis-
criminator for adversarial learning. Particularly, the discriminator aims to distinguish
WL and NBI features. Section 3.1 illustrates details about alignment loss. Finally, the
aligned accurate features Xa are fed in fully connected layer F1 for polyp classification.
Moreover, we exploit the contrastive learning loss Lt to shift the aligned WL features
Xa much closer to NBI features Xp and far from the unaligned WL features Xn, which
is introduced in details in Sect. 3.2. The blue arrow path indicates the inference phase.
(Color figure online)

La = CE(D(Xa), Ynbi) = −log(D(Xa))Ynbi (1)

3.2 Contrastive Learning on CPC

As shown in Fig. 2, to further facilitate the model convergence and boost the per-
formance, we design a novel contrastive loss Lt to take advantage of contrastive
learning. More specifically, a naive unaligned feature extractor is pretrained to
extract WL features Xn for CPC by only utilizing WL images as input. Then,
the contrastive loss Lt can be formulated to supervise the student extractor to
generate more representative features which are more similar to NBI features
Xp and dissimilar to WL features Xn. Particularly, we take NBI features Xp as
positive samples and unaligned WL features Xn as negative samples. To opti-
mize aligned features Xa, the Kullback-Leibler (KL) divergence is adopted to
constrain the distribution distance from Xa to WL features Xn (i.e., negative
samples) and NBI features Xp (i.e., positive samples) in high-level semantic
space, which is shown in Eq. 2. And F2 is the fully connected (FC) layer to take
feature maps for probability vectors generation, which is pretrained with the
teacher extractor for classifying NBI images.
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Algorithm 1: WL Image CPC via Domain Alignment
Input: NBI Images Inbi; Paired WL Images Iwl; CPC Label Y ; Test WL

Images Is

1 Pretrain Extractorteacher and FC F2 by Inbi only;
2 Pretrain Extractorunaligned by Iwl only;

3 //Training Phase

4 For Iinbi, I
i
wl, Y

i in {Inbi, Iwl, Y }
5 //Extract Features

6 Xp ←− Extractorteacher(I
i
nbi)

7 Xa ←− Extractorstudent(I
i
wl)

8 Xn ←− Extractorunaligned(I
i
wl)

9 //Train Discriminator D
10 Minimize Loss CE(D(Xp), 1) + CE(D(Xa), 0)

11 //Train Student Extractor

12 Minimize CPC Loss Lc = CE(F1(Xa), Y
i)

13 Fix D and Minimize Alignment Loss La = CE(D(Xa), 1)
14 Minimize Contrastive Loss Lt ← Triplet(Xp, Xa, Xn)
15 End

16 //Inference Phase

17 Ŷ ←− F1(Extractorstudent(Is))

18 Output: CPC Prediction Ŷ

KLmargin(F2(Xa), F2(Xp)) ≤ KLmargin(F2(Xa), F2(Xn)) (2)

Finally, the triplet loss Lt is defined for contrastive learning in Eq. 3, where µ is
a hyper-parameter we set as 0.85 in practice.

Lt = max(KL (F2(Xa), F2(Xp)) − KL (F2(Xa), F2(Xn)) + µ, 0) (3)

3.3 Loss Function

The overall training loss L = Lc + La + Lt contains three parts. First, a con-
ventional cross-entropy loss Lc = CE(F1(Xa), Y ) is applied to supervise student
extractor and FC layer F1 for binary classification (i.e., hyperplastic or adenoma-
tous), where Y is the ground truth. Then, the alignment loss La and contrastive
loss Lt are utilized to align the WL features with NBI features, which make use
of GAN and contrastive learning separately. Three loss functions are optimized
jointly with equal weights. The Algorithm 1 illustrates the whole training and
inference procedures.
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4 Experiments and Results

4.1 Implementation Details

We implement our work by PyTorch. All models were trained for 500 epochs
by Adam optimizer with learning rate 10−3 and weight decay 10−8 on single
Nvidia V100 GPU. We randomly split the dataset into training and validation
set by ratio 8:2 for training and evaluation. The training batch size is 16. We
adopt random flipping and rotation for data augmentation. Additionally, we
apply 5-fold cross-validation for all experiments, which randomly generates 5-
fold train-valid settings.

4.2 Dataset and Preprocessing

We conduct the experiments on our CPC-Paired dataset1. The paired data
means each WL image has a corresponding NBI image with the same polyp
label. For each modal, a total of 307 adenomatous and 116 hyperplastic images
are included. Our dataset consists of two parts: collated data from ISIT-UMR
Colonoscopy Dataset [5] and clinical data collected from the hospital. ISIT-UMR
Colonoscopy Dataset contains 76 short video sequences with category informa-
tion. For our CPC task, we choose 21 hyperplastic lesions and 40 adenomas
sequences. Each lesion in the video is recorded using both NBI and WL. We
extract paired frames from videos to build an available dataset. The eventual
collated data covers 102 adenomatous and 63 hyperplastic images in each modal.
In addition, we collected 258 WL-NBI image pairs from 123 patients consisting of
205 adenoma images and 53 hyperplastic polyp images. We further annotate the
bounding box of polyps to crop the corresponding area and scale it to 448 × 448
as input for the CPC task.

4.3 Network Architecture

In our framework, three extractors share the same backbone design. The back-
bone can be popular network architectures (e.g., VGG, ResNet50, Inception-V3).
More specifically, each extractor is utilized to mapping the original NBI Inbi or
WL images Iwl to a high-level feature space with the shape 2048 × 14 × 14
(e.g., ResNet50 backbone). Finally, each extractor is followed with a single FC
layer to predict the final polyp class. In the pretrain stage, extractors and FC
layers are optimized jointly(e.g., teacher extractor and FC layer F2) which will
be fixed during the alignment training phase. The discriminator D consists of
two convolution layers and two fully connected layers which aims to distinguish
aligned WL features Xa and NBI features Xp.

1 https://drive.google.com/drive/folders/1e2t5HhQf08sTAE CPRNVgpi6YUKgQSHn?
usp=sharing.

https://drive.google.com/drive/folders/1e2t5HhQf08sTAE_CPRNVgpi6YUKgQSHn?usp=sharing
https://drive.google.com/drive/folders/1e2t5HhQf08sTAE_CPRNVgpi6YUKgQSHn?usp=sharing
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Table 1. The comparison between our approach and the previous best method in [12].
From the comparison, we can clearly notice that our approach surpasses the previous
approach with a large margin(e.g., ∼ 6%) among all backbones. ‘FOLD X’ indicates
the different cross-validation split settings. ‘Speed’ indicates the inference time per
image in millisecond. The ‘Mean’ averages the accuracy among all split settings, which
gains 5.6% improvement by our approach and exactly proves the superior performance
of the proposed alignment method.

Backbone Speed FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 Mean

Yang [12] VGG 20.62 ms 78.2% 79.5% 77.3% 78.0% 77.9% 78.2%

Our 79.4% 81.1% 78.5% 79.1% 80.1% 79.7%

Yang [12] InceptionV3 30.72 ms 81.1% 82.1% 80.5% 82.0% 81.3% 81.5%

Our 84.6% 85.7% 83.1% 85.3% 84.4% 84.6%

Yang [12] ResNet50 17.07 ms 79.5% 80.5% 78.0% 80.3% 78.8% 79.7%

Our 85.9% 86.1% 84.2% 85.8% 85.2% 85.3%

Our w/o DA ResNet50 17.07 ms 82.6% 83.3% 81.1% 83.7% 83.3% 82.9%

Our w/o CL 83.0% 84.1% 83.5% 84.4% 84.0% 84.0%

4.4 Results

Extensive experiments are conducted to demonstrate the superior performance
of the proposed approach. Particularly, by 5-fold cross comparison in Table 1, we
can observe that our method outperforms previous state-of-the-art approach [12]
among all folds. Specifically, we improve the accuracy on all backbones including
VGG, Inception-V3 and ResNet50, which proves the generality of the proposed
model. We obtain the best performance of our approach with ResNet50 back-
bone (i.e., the highest classification accuracy 85.3%, and 5.6% improvement on
the mean score compared to the previous method). The ablation study further
examines the gains of each component within the proposed approach as shown
in Table 1. ‘Our w/o DA’ indicates removal of alignment loss and ‘Our w/o
CL’ indicates ablation of contrastive loss. The CPC accuracy degradation of the
ablation study exactly proves the effectiveness of each proposed component.

The qualitative analysis is shown in Fig. 3. Particularly, we extract aligned
WL features Xa, unaligned WL features Xn and NBI features Xp for compari-
son. Obviously, the aligned WL features are more similar to NBI features than
unaligned ones, which further demonstrates the superiority of aligned features
and improvement of the proposed alignment approach.
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Fig. 3. The visualization comparison between WL feature, aligned feature, and NBI
feature. From the comparison, we can obviously notice that the aligned feature (third
row) is more similar to the NBI feature (fourth row) and less similar to the WL feature
(second row), which exactly prove the effectiveness of the proposed domain alignment
and contrastive learning approaches for domain shifting from WL to NBI. The aligned
WL feature not only contains the original WL information but also provides more
essential NBI domain representation for polyp classification.

5 Conclusion

For the purpose of investigating CPC, we release a polyp classification dataset
CPC-Paired. To the best of our knowledge, this is the first public-available
dataset including WL-NBI image pairs for this task. To improve the CPC accu-
racy of white-light (WL) images, we propose a teacher-student model for shifting
the feature domain of WL images to NBI images which will be more represen-
tative for the CPC. Particularly, the novel alignment loss and contrastive loss
are constructed to supervise the student model to generate more satisfactory
features for the CPC. Extensive experiments consist of comparison, ablation
study, and qualitative visualization, which sufficiently illustrate the effectiveness
and superiority of our approach (i.e., 5.6% accuracy improvement beyond the
previous state-of-the-art approach on average).
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