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Abstract

The postprocessing method of ensemble forecasts is usually
used to find a more precise estimate of future precipitation,
because dynamic meteorology models have limitations in fit-
ting fine-grained atmospheric processes and precipitation is
driven more often by smaller-scale processes, while ensem-
ble forecasts can hit this precipitation at times. However, the
pattern of these hits cannot be easily summarized. The exist-
ing objective postprocessing methods tend to extend the rain
area or false alarm the precipitation intensity categories. In
this work, we introduce a multi-layer structure to simultane-
ously reduce the bias in forecast ensembles output by me-
teorology models and merge them to a quality deterministic
(single-valued) forecast using cross-grid information, which
differs quite dramatically from the previous statistical post-
processing method. The multi-layer network is designed to
model the spatial distribution of future precipitation of differ-
ent intensity categories (IC-MLNet). We provide a compar-
ison of IC-MLNet to simple average as well as another two
state-of-the-art ensemble quantitative precipitation forecasts
(QPFs) postprocessing approaches over both single-model
and multi-model ensemble forecasts datasets from TIGGE.
The experimental results indicate that our model achieves su-
perior performance over the compared baselines in precipi-
tation amount prediction as well as precipitation intensities
categories prediction.

Introduction
Weather forecasting is usually solved by numerical weather
prediction (NWP) models. Among all the atmospheric quan-
tities predicted by the NWP model, precipitation is one of
the most difficult to predict accurately. Errors in QPFs may
arise due to errors in the observations and the forecasting
model itself. Detailed knowledge of atmospheric moisture
and vertical motion fields is essential for predicting the lo-
cation and amount of precipitation, but these are difficult
to observe accurately. The NWP models cannot adequately
represent the cloud dynamics and microphysical processes
involved in precipitation generation(Ebert 2001).

To compensate for shortcomings in model physics,
weather centers have run a variety of carefully designed
NWP models to generate forecasts of future states of the
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atmosphere(Flowerdew 2012), knowing that different fore-
casts are likely to pick up different nuances in the predicted
weather, which formed ensemble forecasts. A single-model
ensemble forecast is a collection of forecasts from an NWP
model using slightly different initial conditions and model
variants(Gneiting 2014), which is based on the implicit as-
sumption that errors result primarily from uncertainties in
the initial conditions. A multi-model ensemble forecast is
a collection of outputs from different existing NWP mod-
els, which avoids the problem of systematic bias that oc-
curs when a single model is used and in addition to having
negligible cost. The average of either kind of ensemble usu-
ally has better skill, consistency, quality, and economic value
than other single-valued NWP forecasts of similar grid reso-
lution(Richardson 2000; Wandishin et al. 2001; Zhu et al.
2002; Kalnay 2003), except for rare events(Hamill et al.
2000).

However, the increasing number of ensemble members
still cannot reduce errors caused by insufficient detailed at-
mospheric observations. Therefore, the calibration of NWP
ensemble forecasts, as part of the precipitation postprocess-
ing, has become a necessary and crucial step for the daily
operational runs at numerical weather prediction centers. In
fact, forecasters with rich practical experience at the bench
routinely use multiple models for guidance, and this calibra-
tion is simply a formalization of this process.

In this paper, we use the real observation data of historical
time to calibrate the ensemble forecasts (see Figure 1) and
merge them to a “best estimate”. A significant challenge in
our study is that precipitation forms aloft, which is strongly

Figure 1: An ensemble forecast with 50 members (input) and
the corresponding observation (in red block, ground truth)
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affected by atmospheric vertical motions and depends on lo-
cal variables such as wind at various elevations, tempera-
ture, humidity, and atmospheric pressure, which cannot be
captured by atmospheric models and reflected in NWP fore-
casts. Because of this complexity, precipitation events of dif-
ferent ranges and different intensities have completely dif-
ferent causes of formation: large areas of precipitation rely
on large-scale air masses, while thunderstorms occur locally
in rising air surrounded by falling air. Therefore, it is diffi-
cult to simultaneously ensure the accuracy of the prediction
of the light precipitation area and that of the extreme precip-
itation amount.

Inspired by the spatial fractal feature of precipitation,
we propose a novel deep neural network, called IC-MLNet
(Intensity Categories Multi-Layer Networks) for producing
a deterministic precipitation forecast from NWP ensemble
precipitation forecasts, based on the following two types of
data: 1) the precipitation observation data collected by auto-
matic weather stations; 2) the ensemble forecasts data from
TIGGE (The International Grand Global Ensemble) dataset.
In view of the complex triggers of precipitation, we provide
a multi-layer network to reduce bias for light precipitation,
moderate precipitation, heavy precipitation and violent pre-
cipitation separately, then merge the calibrated results. In ad-
dition, as mentioned above, the diversity of ensemble can
compensate for the NWP errors to a certain extent, we try
to learn member context features of ensemble forecasts. The
non-local block instead of the traditional convolution was
utilized to capture the long-range dependencies in each cal-
ibration layer.

The contribution of this work is threefold:
• We present IC-MLNet, an multi-layer neural network for

ensemble precipitation forecasts postprocessing, which
simultaneously reduce the bias in ensemble forecasts and
merge them to a deterministic forecast. IC-MLNet out-
performs the widely used ensemble average as well as a
suite of state-of-the-art statistical ensemble postprocess-
ing methods, in terms of precipitation’s amounts, distri-
bution and intensity.

• The ability of IC-MLNet to outperform the previous
methods suggests the ability to leverage spatial informa-
tion and member context information in terms of generat-
ing the most likely deterministic forecast from ensemble
forecasts, while the improved ability beyond compared
single-layer structure points to the possibility of learning
the features of precipitation with different causes.

• IC-MLNet provides forecasters a scalable objective
method of choice to generate a deterministic forecast
based on ensemble forecasts (a single-value forecast re-
garded as a single member ensemble forecast) from dif-
ferent climate modeling groups across the world, run with
different initial conditions.

Related Work
A common example of calibrating and integrating ensem-
ble forecasts is Weighted Ensemble Average, where each
ensemble member is weighted inversely to its past fore-
cast error. (Zhi, Zhou, and Xu 2011) applied multi-model

superensemble (Krishnamurti et al. 2000; Krishnamurti,
Gnanaseelan, and Chakraborty 2007) approach to ensemble
average, proposed Weighted bias-removed Ensemble mean
(WEM), and verified its performance using TIGGE datasets.
Although WEM tries to explore the relationship between ob-
servations and ensemble forecasts in historical data, abnor-
mal results often occur (e.g., the precipitation in one point
is much larger than the surrounding area) as it is a linear
non-parametric method based on a single point.

The postprocessing methods run in operational centers
usually take the experience of forecasters into account. EN-
Semble pseudo-Bias-Corrected QPF(ENSBC) (Novak et al.
2014) permits forecasters adjust calculated weights, and
Best Percentile proposed by (Dai et al. 2016) is an improved
approach of Probability Matching (PM) (Ebert 2001) which
use the percentile values chosen by forecasters based on pre-
cipitation intensities rather than median to replace the sorted
ensemble average value. These methods are flexible but un-
stable, because the skill of forecasters varies and only a lim-
ited number of members can be referred. In addition, they
tend to choose the parameters that will produce more severe
precipitation, which increase the false alarm rate of results.
Also, these approaches are based on the single grid, ignoring
the spatial local differences of precipitation.

Methods
Problem Definition
Ensemble precipitation calibration and integration aims at
generating the most likely deterministic precipitation fore-
cast from the corresponding ensemble forecasts. Generally,
the deterministic forecast Y ∈ Rh×w is modeled as the out-
put of the following transforming:

Y = F(X; Θ) (1)

where X = {x1, · · · , xM} is the ensemble forecasts
with M NWP models and Ni forecasts per model, i.e.
xi ∈ Rh×w×Ni . F is the postprocessing model, here is IC-
MLNet, and Θ denotes the parameters of F . The precipita-
tion observation is used as the ground truth.

Basic Network Architecture
The proposed IC-MLNet (as shown in Figure 2) is a multi-
layer structure: precipitation with different intensity is pro-
cessed respectively, and each layer has a similar structure for
extracting features of different intensity categories.

Figure 2: IC-MLNet Architecture (L = 3). BC module is
bias correction module. ⊕ denotes element-wise sum. The
purple dashed lines represent supervised pairs.
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First, the input ensemble is stacked and sorted in the
member dimension before feeding into the network. Sorting
among members is a routine operation of previous nonpara-
metric methods, in order to eliminate the interference of the
member order on the results, and it does not reduce precipi-
tation events. We do this also for the sake of scalability, and
do not want the network to learn the dependencies between
members for a certain dataset.

X = sort(stack(X)) (2)

here sort and stack represent the sorting and stack opera-
tion. X ∈ Rh×w×n and n =

∑M
i=1Ni is the total number

of input forecasts.
The basic network consists of L (L = 1, 2, ...) layers.

Each layer has a bias correction module to generate the pre-
cipitation scenario residual of corresponding intensity, and
then we fuse these fractal features and output the final deter-
ministic forecast. This procedure can be expressed as:

Fl = fext(Il), Il = X ≥ cl (3)
Rl =Ml(Fl) + αRl+1, l < L RL =ML(FL) (4)

Yl = βffuse(Rl) +median(Il) (5)

where ≥ represents the element-wise greater than, and cl
represents the intensity threshold of precipitation category.
We use general thresholds of “light rain”, “moderate rain”,
“heavy rain”, and “violent rain” in operational centers here,
that is: c1 = 0.1mm · day−1, c2 = 10.1mm · day−1,
c3 = 25.1mm · day−1 and c4 = 50.1mm · day−1.Ml de-
notes the bias corrected module in l-th layer, Il ∈ Rh×w×n,
Fl ∈ Rh×w×c and Yl ∈ Rh×w are the layer input, extracted
feature and output.Rl ∈ Rh×w×c denotes the forecast resid-
ual of the layer, which is added with median of Il, and the
optimal weights α, β are automatically learned during train-
ing. fext, ffuse denote the feature extraction function and
fusion function, here (see Figure 2) are a 3 × 3 convolu-
tional layer and a 1 × 1 convolutional layer. Therefore, our
final output of IC-MLNet is

Y = F(X; Θ) = Y1 (6)

Given a training set
{
X(i), Ŷ (i)

}K

i=1
, where K is the

number of training samples (batch size) and Ŷ (i)is the
ground truth observation of the ensemble forecasts X(i), An
MSE loss function is used where the optimization objective
is defined as:

arg min
Θ

(L(Θ)) (7)

L(Θ) =
1

K

K∑
i=1

∥∥∥Ŷ (i) −F(X(i); Θ)
∥∥∥2

2
(8)

here we are required to learn the parameter set Θ of basic
end-to-end IC-MLNet.

Bias Correction Module
We now present the details of our bias correction module.

Bias correction module used to model a non-linear func-
tion calibrate the error between ensemble and ground truth

Figure 3: Details of bias correction module (left) and non-
local block (NLB) Nl. Fl is input feature, ⊗ and ⊕ denotes
matrix multiplication and element-wise sum, respectively.
We set c′ < c to reduce computation, and gray fonts rep-
resent the changing shapes of the features

using long-range spatial dependence. Here, we use the resid-
ual dense structure(Zhang et al. 2018) including non-local
blocks, instance normalization (IN) and ReLU (see Figure 3
(left)). Non-local block is introduced in Non-Local Network
(Wang et al. 2018) and shows powerful learning ability for
video classification and image recognition. Non-local block
can capture long-range and channel-wise dependencies di-
rectly by computing interactions between any two positions.
For this multi-layer structure, the feature context informa-
tion is an important reference for distinguishing different
precipitation intensities, non-local block can help each layer
generate features that better matches their intensity cate-
gories.

As shown in Figure 3, all convolution layers in the orig-
inal residual dense structure are replaced with non-local
blocks, and for the great differences among samples, we use
instance normalization. In the non-local block, we simply
use the 1× 1 convolution in space dimension as unary func-
tion, the Embedded Gaussian function as the pairwise func-
tion, and the softmax function as normalization factor.

Multi-supervised IC-MLNet
To further explore the features at different precipitation in-
tensities, inspired by (Tai et al. 2017), we supervise outputs
from all layers during training (Figure 2). The loss function
of our multi-supervised IC-MLNet can be formulated as,

Ŷl = Ŷ ≥ cl (9)

L(Θ)=
w

K

K∑
i=1

∥∥∥Ŷ (i)
1 − Y (i)

1

∥∥∥2

2

+
1− w
K

K∑
i=1

∥∥∥∥∥Ŷ (i)
l −

L∑
l=2

Y
(i)
l

∥∥∥∥∥
2

2

(10)

wherew denotes the loss weight, which is a hyperparame-
ter determined by the distribution of precipitation values. As
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shown in Figure 4, light precipitation events in our datasets
account for 0.77 of all precipitation events, i.e. w = 0.77.

Figure 4: Distribution of daily precipitation amounts in
single-model dataset

Experiments
This section describes the experiments performed to demon-
strate the effectiveness of IC-MLNet when applied to a
single-model and a multi-model ensemble forecasts dataset.

Datasets
Ensemble Forecasts Data The ensemble data we used
is from TIGGE dataset1. Our single-model dataset (Smod)
contains 50 members, which is an ensemble forecast from
the ECMWF Center, while multi-model dataset (Mmod)
consists of 4 deterministic forecasts from UKMO, NCEP,
JMA and ECMWF. Both datasets have 0.25◦ × 0.25◦ grid
data in the area [21.0◦N ∼ 29.0◦N, 109.5◦E ∼ 117.5◦E]
(as shown in Figure 5(a)). 366-hour forecasts are released
by TIGGE at UTC0000 and UTC1200 every day, but only
the 24-h total precipitation in 6 ∼ 30, 12 ∼ 36, 18 ∼ 42 and
24 ∼ 48 forecast hours are used.

Observation Data Observation data is collected from
7247 automatic stations2 in [21.0◦N ∼ 29.0◦N, 109.5◦E ∼
117.5◦E], and spans January 2013–December 2016 (except
2014), which includes three flood seasons (May to October).

1https://apps.ecmwf.int/datasets/data/tigge/
2http://data.cma.cn/en/?r=data/detail&dataCode=A.0012.0001/

(a) Experimental Area (b) Gridded Precipitation

Figure 5: Experimental area ([21.0◦N ∼
29.0◦N, 109.5◦E ∼ 117.5◦E]) (left). Formatted pre-
cipitation observation (right).

We use mean interpolation to make the observation
data the same format as the ensemble forecasts (as shown
in Figure 5(b)). Any dates with missing observations or
missing forecasts are removed, and the remaining fore-
cast–observation pairs are quality controlled to remove un-
physical values. For this study, if any one or more ensemble
members are missing on a date, we remove that date from
the dataset. Also, we remove data which has zero precipita-
tion at all grids in both ensemble members and observations.

The remaining single-model dataset contained 4160 sam-
ples, of which (16.2%, 5.4%) had greater than (10, 25)
mm · day−1 precipitation, while multi-model dataset has
3785 samples.

Experimental Setup
We choose 90% samples as training data, and the other 10%
as validation data. The training set and the validation set
are separated in time, which is in line with the operational
forecasting, and their precipitation value distribution should
be consistent with the whole dataset (2 winters and 3 flood
seasons). For this reason, we do not use random 10-fold
crossover experiments.

We finally take the validation data from 20160416 to
20160613, the precipitation intensity distribution of which is
closest to the overall data. We perform 5 runs of each setting
to obtain the optimal detial structures of IC-MLNet: the net-
work contains r residual dense structures, d dense blocks per
residual dense structure, and b non-local blocks per dense
block. The average of 5 outputs from the experiment with
the same setting is regarded as the final performance. We
enumerate r, d, b = 1, 2, 3, 4, and find that as long as the
total number of non-local block is greater than 2, the exper-
imental results only differ by 0.1%(RMSE)∼0.7%(HSS) in
each metric, which is approximately equal to the spread of
results among repeated runs, and there is no one experiment
that outperform others in all metrics. Therefore, we choose
the setting with the shortest running time, i.e. r = d = 1,
b = 2.

The networks are trained using Adam optimizer on a 4-
GPU machine and each GPU has 4/6(Smod/Mmod) clips
in a mini-batch (so in total with a mini-batch size of 16/24
clips). We train our models for 80 epochs in total, starting
with a learning rate of 0.001 and reducing it by a factor of
2 at every 20 epochs. In our models, the best results are ob-
tained when we set feature number c, c′ in non-local block
as 64, 16 on single-model dataset, 32, 16 on multi-model
dataset. Table 1 shows more running details for Smod.

We use bias, mean absolute error (MAE), root mean
squared error (RMSE) and Nash-Sutcliffe model efficiency
coefficient (NSE) to evaluate the performance of various al-

GPU Training time Inference time

4 Tesla V100 2.19 h/run, 24
mSec/sample

3.0 mSec/sample

Table 1: Running details.

14969



i
j 1 2 · · · L Total

1 n(1, 1) n(1, 2) · · · n(1, L) NF (1)
2 n(2, 1) n(2, 2) · · · n(2, L) NF (2)
· · · · · · · · · · · · · · · · · ·
L n(L, 1) n(L, 2) · · · n(L,L) NF (L)

Total NO(1) NO(2) · · · NO(L) N

Table 2: Multi-category contingency table.

gorithms:

Bias =
n∑

i=1

yi

/
n∑

i=1

ŷi

NSE = (1−
n∑

i=1

‖ŷi − yi‖22)

/
n∑

i=1

‖ŷi − ȳ‖22

where y is the prediction values (outputs, ŷ is observed val-
ues (labels), and ȳ denotes the average of observed values.
NSE is used to quantify how well a model simulation can
predict the outcome variable, ranges from negative infinity
to 1, and the perfect score is 1.

We also introduce some unique evaluation indicators for
precipitation categories prediction. First, we maintain a
multi-category contingency table (as shown in Table 2) for
each forecast map. In this table, L is the number of pre-
cipitation intensity categories (in this work, we have None
[0.0, 0.1)mm ·day−1, Light [0.1, 10.1)mm ·day−1, Moder-
ate [10.1, 25.1)mm ·day−1, Heavy [25.1, 50.1)mm ·day−1

and Violent [50.1,∞)mm · day−1 five categories, i.e. L =
5), n(i, j) denotes the number of forecasts in category i that
had observations in category j ,NF (i)denotes the total num-
ber of forecasts in category i, NO(j)denotes the total num-
ber of observations in category j, and N is the total number
of forecasts. Then we compute the evaluation indicators:

Acc = 1
N

L∑
i=1

n(i, i)

HSS =

1
N

L∑
i=1

n(i,i)− 1
N2

L∑
i=1

NF (i)NO(i)

1− 1
N2

L∑
i=1

NF (i)NO(i)

Accuracy indicates the fraction of the forecasts in the correct
category, but it is heavily influenced by the most common
category. Heidke skill score measures the fraction of correct
forecasts after eliminating those forecasts which would be
correct purely due to random chance, and ranges from minus
infinity to 1. 0 indicates no skill and 1 is the perfect score.

Baseline Algorithm
We compare the performance of IC-MLNet against the fol-
lowing four algorithms.

EM(Ensemble Mean) takes the average of all ensemble
members as prediction. However, previous studies (Pan et al.
2015)(Kong, Droegemeier, and Hickmon 2006) have shown
that after simple averaging, the forecast values at heavy rain-
fall thresholds are smoothed out, and the precipitation areas
are falsely confluent.

PM(Probability Matching)(Ebert 2001) first sorts the en-
semble mean and the original ensemble forecasts separately
to obtain two sequences, and then segments the ensemble se-
quence evenly (each contains n values, n is the number of en-
semble members), and finally replaces the mean sequences
of corresponding segments’ median to obtain a deterministic
forecast. PM synthesizes the results of the ensemble forecast
and usually get more accurate prediction than EM.

BP(Best Percentile)(Dai et al. 2016) is an improved PM
method: the mean sequences in PM are replaced with the
percentiles chosen by the forecaster, rather than the median.
The BP method is more flexible, but forecasters usually can’t
identify the best percentile, so they tend to false alarm heavy
precipitation (For details, please refer to the precipitation
distribution experiment).

WEM(Weighted Bias-removed Ensemble Mean) (Zhi,
Zhou, and Xu 2011) uses the deviation of forecasts and ob-
servation of training set to correct the forecasts of validation
set:

FWEM = Ō +

n∑
i=1

(Ei

/
n∑

i=1

Ei)(Fi − F̄i)

where Ō, Ei, F̄i is the mean of observations, the reciprocal
of the mean error, and the mean of forecasts on the train-
ing set, and Fi is the predictions on the validation set. Fur-
thermore, to evaluate the effectiveness of individual com-
ponents of our model, we also include its several variants
for the comparison: IC-MLNet-noMS: Multi-Supervision
is not included in the basic network, IC-MLNet-conv: Non-
local block is completely replaced by a 3 × 3 convolution
layers, IC-MLNet-noS: Ensemble forecasts are not sorted
before feeding into the network, IC-MLNet-single: There
is only one layer in bias correction module, and input fore-
casts are not classified to different categories.

We use the same training set and validation set for all
baseline algorithms as IC-MLNet. Source code is available
at https://github.com/kia-kia/IC-MLNet

Results
Main Performance Analysis
Precipitation Amounts Prediction Table 3 shows that
IC-MLNet achieves the best performance in terms of all pre-
cipitation amounts evaluation metrics on both datasets. Our
model shows 17.8%, 35.0%, 9.7% and 75.2% improvement
in terms of MAE, Bias, RMSE and NSE, respectively, on
Smod compared to the best results of baseline approaches.
Similarly, IC-MLNet enhances the performance by 17.9%,
37.9%, 9.2% and 71.7% on Mmod in terms of MAE, Bias,
RMSE and NSE, respectively. Furthermore, we observe that
the simplest EM has an excellent performance among base-
line methods in the prediction of precipitation amounts, but
our model surpasses it.

We evaluate the effectiveness of each individual compo-
nent of IC-MLNet with an ablation study. As described in
Section 4.3, each variant is different from the proposed IC-
MLNet by removing one tested component. Table 3 shows
that replacing the non-local block with a 3 × 3 convolution
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Smod Mmod

Precipitation amounts Categories Precipitation amounts Categories

MAE Bias RMSE NSE Acc HSS MAE Bias RMSE NSE Acc HSS

EM 6.1073 1.2733 11.5020 0.1971 0.5330 0.2653 7.1607 1.2991 12.5314 0.1891 0.5041 0.2528
PM 6.4901 1.2794 13.2375 -0.0635 0.5616 0.3179 7.5511 1.3006 14.2221 -0.0445 0.5247 0.2865
BP 10.1254 1.5740 24.2992 -2.5834 0.5852 0.3525 8.8641 1.2714 18.6596 -0.7980 0.5593 0.3238

WEM 6.8066 1.2497 44.9405 -11.2570 0.5559 0.3407 8.9343 1.3767 39.4014 -7.0168 0.5027 0.2817

IC-MLNet-noMS 5.0587 0.8279 10.4532 0.3368 0.6007 0.3897 5.9652 0.8871 11.3747 0.3243 0.5623 0.3384
IC-MLNet-noS 5.0759 0.8117 10.4325 0.3395 0.6015 0.3862 6.0985 0.7802 11.8890 0.2631 0.5743 0.3496
IC-MLNet-conv 5.3474 0.9007 10.7197 0.3181 0.5819 0.3469 5.9330 0.8734 11.4105 0.3208 0.5756 0.3642
IC-MLNet-single 5.0870 0.8054 10.5575 0.3228 0.6129 0.3912 5.9914 0.8535 11.5338 0.3070 0.5451 0.2942

IC-MLNet-Mtest - - - - - - 6.1480 1.0032 11.8875 0.2631 0.5381 0.2920
IC-MLNet-Stest 5.3457 0.9054 11.1979 0.2541 0.5943 0.3427 - - - - - -

IC-MLNet 5.0185 0.8176 10.3863 0.3453 0.6030 0.3914 5.8773 0.7899 11.3828 0.3246 0.5784 0.3681

Table 3: Performance results of precipitation amounts and intensity categories on Smod and Mmod.

will result in the biggest performance degradation both on
Smod and Mmod, which shows that learning ensemble per-
centile contextual features is crucial to distinguish precip-
itation of different intensities. Moreover, in our relatively
shallow network, 3 × 3 conv is limited in the capturing of
long-range spatial features due to its small receptive field.
Comparing IC-MLNet with IC-MLNet-noS shows the im-
pact of sorting operation on the performance. We find that it
brings more improvements in Mmod than Smod, but neither
is prominent, indicating that the randomness of the member-
ship order will affect the fitting ability of the network, which
is consistent with previous studies. However, unexpectedly,
compared with the Smod generated by random initial con-
ditions, the member context features of the Mmod with the
members ordered according to the NWP models are more
difficult to capture. This may be because: first, the number
of Mmod members is smaller and it is easier to be disturbed
by irrelevant factors; second, the difference in forecasts gen-
erated by different NWP models is more complex to capture
than that in forecasts generated by the same NWP model un-
der random initial conditions. We find that multi-supervision
and multi-layer structure provides least performance gain for
both cases, yet, they also contribute to the prediction of pre-
cipitation amounts, hinting at the benefit of precipitation in-
tensity stratified learning. Additionally, we observe that our
models (variants of IC-MLNet) mostly outperform baselines
in terms of precipitation value prediction, which indicates
they better learn the complex spatial relationships between
grids.

Precipitation Intensities Prediction Obviously, all algo-
rithms (our networks and baselines) show the dilemma of
accuracy in precipitation amounts prediction and intensity
categories prediction: EM no longer has the advantage in
the prediction of precipitation categories, the best perform-
ing method in the baselines is BP, which is unsatisfac-
tory in amounts prediction. Nevertheless, IC-MLNet also
achieves more excellent performance in predicting cate-
gories. It shows 3.0% and 11.0% improvement in terms of
Accuracy and HSS, respectively, on Smod, while enhances

the performance 3.4% and 13.7% on Mmod.
In addition, comparing IC-MLNet with IC-MLNet-single

and IC-MLNet-noMS shows the introduction of multi-
supervision and multi-layer structure makes network pays
more attention to the learning of different intensity features
and obtains more accurate results while correcting the cen-
tral tendency. And we find that they provide less improve-
ment on Smod compared to Mmod. That suggests inputs
with fewer members benefits more from this increased de-
pendence, because it can extract further information. Sort
operation and long-range contextual dependency is still in-
formative in both cases since their removal (IC-MLNet-
noS, IC-MLNet-conv) results in obvious reduction of per-
formance.

Statistical Test We also perform statistical test on the
results with marginal improvement (< 10%). Results of
5 runs of EM and BP that performed the best in base-
lines are collected. As shown in Table 4, we use Bayesian
correlated t-test (rope = 0.01) to assess the significance
of the achieved improvements in RMSE and Acc. Hy-
pothesis testing shows that compared with BP and EM,
IC-MLNet’s improvement in RMSE is credible because
P(IC−MLNet�) > 0.99. Similarly, it is also obvious that
IC-MLNet outperforms EM in ACC. However, the im-
provement to BP is not clear. Nonetheless, the probabil-
ity that IC-MLNet has good performance is close to 0.99
on Smod, and the probability that it has equal performance
is much smaller: P(IC−MLNet=BP ) = 0.0124 on Smod
and P(IC−MLNet=BP ) = 0.254 on Mmod. This indicates

Smod Mmod

RMSE P(IC−MLNet�EM) 1.000 1.000
P(IC−MLNet�BP ) 1.000 1.000

Acc P(IC−MLNet�EM) 1.000 1.000
P(IC−MLNet�BP ) 0.987 0.746

Table 4: Results of Bayesian correlated t-test.
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(a) Smod (b) Mmod

Figure 6: HSS and Acc results w.r.t change in the number of
network layers L.

that we preliminarily found a postprocessing method which
can maintain the accuracy of intensity categories prediction
when correcting ensemble forecasts errors.

Multi-layer Analysis
We further evaluate the performance of IC-MLNet with re-
spect to the change in number of layers L. We report re-
sults for L ∈ {1, 2, 3, 4, 5} in Figure 6. When L = 5 add
the threshold c5 = 100.1. The best performances are ob-
tained when L = 4 for both Smod and Mmod in terms of
HSS. As L increases until the optimum value, the perfor-
mance generally increases, and adding layers after reaching
the best value will significantly degrade performance. These
results suggest working with different intensities separately
contribute to the category prediction, but if we increase the
number of layers too much, it will interfere with the learning
of precipitation events occurrence.

However, the best performances are obtained on Smod in
terms of Acc when L = 1. This is because Acc is not sen-
sitive to the false alarm rate, and often affected by the more
frequent categories, and the single-layer network tends to
forecast no precipitation as well as light precipitation events.
Moreover, the impact of L on forecast accuracy is not as no-
table as those in Mmod. This situation may occur because a
larger number of members is beneficial to the reduction of
precipitation forecast errors, so the increased precipitation
intensity feature information cannot bring obvious accuracy
gain.

Precipitation Distribution Analysis
We compare the performance of IC-MLNet and baselines
in the prediction of the spatial distribution of precipitation
amounts. Figure 7(a) shows the RMSE of daily precipitation
predicted by different methods on two data sets. The pre-
diction results of IC-MLNet are closest to the observations.
Furthermore, we note that WEM’s results are visually the
best of the baselines. Its notably poor overall performance
in RMSE (Table 3) is attributed to some outliers, but these
points can be easily excluded by the forecasters, hence it
remains widely used. Our approach, which is also based on
historical information (training data) but with no obvious ab-
normal value, goes beyond it. In addition, the mean RMSE
of BP in some areas is particularly large, which is caused by
its tendency to forecast heavy precipitation: the False Alarm
Ratio (light/ moderate/ heavy/ violent) of each method on
Smod is EM (0.2135/ 0.4243/ 0.6139/ 0.7930); BP (0.1129/

(a) RMSE of precipitation amounts.

(b) ETS of precipitation events.

(c) ETS of heavy precipitation events.

Figure 7: The precipitation spatial distribution. The first row
shows results of single-model dataset and the second row
shows that of multi-model dataset.

0.3300/ 0.6573/ 0.8952); ICMLNet (0.0691/ 0.3127/ 0.4683/
0.7357)

Figure 7( b) and 7( c) shows the spatial distribution of ETS
of precipitation occurrence and heavy precipitation events.
ETS measures the fraction of a precipitation event of speci-
fied intensity that are correctly predicted, which range from
−1/3 to 1(larger is better). We can find that compared
to baselines, the improvement of IC-MLNet is more pro-
nounced in the prediction of yes/no precipitation than in ex-
treme events (heavy rain). In addition, its prediction accu-
racy is regionally different, i.e., its performance in coastal
areas is worse than that in interior areas.

Scalability of IC-MLNet
The ensemble precipitation postprocessing methods need to
be extended to other datasets from different NWP models.
We test scalability by computing prediction accuracy of IC-
MLNet on Mmod, and it is trained on cut-Smod (IC-MLNet-
Mtest). We select 4 members of Smod randomly to form cut-
Smod, which is performed 5 times to reduce the deviation of
the results. Also, IC-MLNet-Stest is trained on Mmod, and
tested on cut-Smod. As shown in Table 3, the performance of
the model is still superior to most baselines in both precipita-
tion amounts and precipitation intensity prediction. Figure 7
shows that its spatial distribution features are also preserved.
However, due to the dependence of the neural network on
the training set, its accuracy has decreased compared to the
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method tested on native data set (IC-MLNet).

Conclusion
Post-processing of weather forecast is a daily step that every
operational center will carry out. The post-processing cali-
bration provides the Weather Center with a lighter and more
concise method that can improve the accuracy of the forecast
and meet the requirements of users than updating current
complicated numerical models. We proposed an ensemble
precipitation forecasts postprocessing model focusing on in-
tensity category features to generate a most likely determin-
istic forecast from the corresponding ensemble forecast. The
multi-layer architecture was developed to correct the errors
of ensemble forecasts by capturing the spatial features of
different intensity categories and learning the precipitation
with complex formation. Extensive experimental results on
two different datasets have shown its superior performance
over previous algorithms on prediction of precipitation’s dis-
tribution, amounts and intensity categories and it is of good
scalability.
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