
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Joint Learning of Neural Transfer and Architecture
Adaptation for Image Recognition

Guangrun Wang, Liang Lin, Rongcong Chen, Guangcong Wang, and Jiqi Zhang

Abstract—Current state-of-the-art visual recognition systems
usually rely on the following pipeline: (a) pretraining a neural
network on a large-scale dataset (e.g., ImageNet) and (b) fine-
tuning the network weights on a smaller, task-specific dataset.
Such a pipeline assumes the sole weight adaptation is able to
transfer the network capability from one domain to another
domain, based on a strong assumption that a fixed architecture
is appropriate for all domains. However, each domain with a
distinct recognition target may need different levels/paths of
feature hierarchy, where some neurons may become redundant,
and some others are re-activated to form new network structures.
In this work, we prove that dynamically adapting network
architectures tailored for each domain task along with weight
finetuning benefits in both efficiency and effectiveness, compared
to the existing image recognition pipeline that only tunes the
weights regardless of the architecture. Our method can be easily
generalized to an unsupervised paradigm by replacing supernet
training with self-supervised learning in the source domain tasks
and performing linear evaluation in the downstream tasks. This
further improves the search efficiency of our method. Moreover,
we also provide principled and empirical analysis to explain
why our approach works by investigating the ineffectiveness of
existing neural architecture search. We find that preserving the
joint distribution of the network architecture and weights is of
importance. This analysis not only benefits image recognition but
also provides insights for crafting neural networks. Experiments
on five representative image recognition tasks such as person
re-identification, age estimation, gender recognition, image clas-
sification, and unsupervised domain adaptation demonstrate the
effectiveness of our method.

Index Terms—Neural Architecture Adaptation, Structured
Learning, Deep Neural Networks; Image Recognition; Weight
Pretraining and Finetuning

I. INTRODUCTION

The success of ImageNet has enabled a standard paradigm
of image recognition. Specifically, neural networks are often
first pretrained on ImageNet to obtain a set of pretrained
weights (e.g., w1 in Fig. 1 (a)). Then, these pretrained network
weights are further finetuned on a smaller, task-specific dataset
to obtained the final optimal weights (e.g., w2, w3, w4 in Fig.
1 (a)). Such a paradigm has led to state-of-the-art performance
in almost all computer vision tasks, including person re-
identification (re-ID) [1], human attribute recognition (e.g., age
estimation and gender recognition) [2], and image classifica-
tion [3].

However, this paradigm of weight pretraining and finetuning
is not always effective, especially when the gap between the

G. Wang, L. Lin, R. Chen, G. Wang, J. Zhang are with the School of
Computer Science and Engineering, Sun Yat-sen University, Guangzhou, P.
R. China. L. Lin is also with DarkMatter AI Research, China. Email: wang-
grun@mail2.sysu.edu.cn.; linliang@ieee.org; Corresponding author: Liang
Lin.

source and target domain tasks is large. The reason behind that
is three-fold. First, different domains with distinct recognition
targets may need different levels/paths of feature hierarchy and
different network topological connectivity. For example, as is
known to all, DenseNet [4] achieves good performance on
CIFAR-10 while having poor performance on ImageNet. In
contrast, ResNets [5] obtain high top-1 accuracy on ImageNet
but have high error on CIFAR-10. Second, transferred to
the smaller dataset or simpler task, the architectures may be
towards shallower; on the contrary, transferred to challenging
tasks, the transferred architecture may be deeper. Third,
different adaptation tasks prefer different new operations. For
instance, the CIFAR-10 task likes operations that can perform
feature augmentation while the person re-identification task
prefers operations that capture global dependencies. In sum-
mary, the weight adaptation with the fixed network architecture
suffers from the limited transfer capability from one domain
into another. Usually, adapting specific neural network struc-
tures for different tasks is necessary to achieve state-of-the-
arts, as Fig. 1 (b) illustrates.

To guarantee each task a personalized network structure,
recently, many efforts have been made to manually [6], [7]
or automatically [8]–[10] design neural networks for different
tasks. Among these works, neural architecture search (NAS)
is well-known for searching for neural structures in an auto-
mated way [11]. However, the scheme of using NAS is quite
inefficient and time-consuming [8], [9], [12], which contains
three indispensable stages. The three phases include:
• Searching for a different architecture for each target task.
• Pretraining these architectures on ImageNet one by one.
• Finetuning them on the target tasks one by one.

These redundant phrases are caused by the isolated optimiza-
tion of the network architecture and network weights in NAS.

In this work, we propose a new transfer learning1 framework
called neural transfer and architecture adaptation (NTAA), to
address the above problems. We find that dynamically tuning
the network architectures tailored for each domain task along
with fine-tuning weight leads to more efficient and effective
transfer learning, compared to the existing adaptation pipelines
that only tune the weights regardless of the architecture back-
bone. Given a network architecture α0 whose network weights
have been pretrained on ImageNet, our NTAA comprises of
three main steps. i) We design a search space of network
architectures A such that the given architecture α0 can be seen

1Generally, transfer learning refers to reusing a model developed for a task
as the starting point for a model on a second task. In this work, transfer
learning specially represents using pre-trained neural networks on a large
image classification dataset for benefiting different image recognition tasks.

ar
X

iv
:2

10
3.

16
88

9v
1

 [
cs

.C
V

]
 3

1
M

ar
 2

02
1

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

as an instance in the search space A (i.e., α0 ∈ A). ii) We start
with α0, and jointly finetune the network weights and network
architecture within the space A. iii) The target architecture
α∗ is obtained after the optimization, based on which we
further finetune the network weights for some epochs. Our
method can be easily generalized to an unsupervised paradigm
by training the supernet in the source domain task in a self-
supervised manner and performing the linear evaluation in the
downstream tasks to search for the best architecture. Since
the supernet needs no fine-tuning during searching, and since
the self-supervised learning features have good generalization
ability [13], the unsupervised version’s search efficiency can
be significantly higher than the supervised one.

We further discuss the reason behind the effectiveness of our
NTAA and compare it with existing NAS approaches [11],
[14]. In addition to the aforementioned search inefficiency
[8]–[10], current NAS methods are also challenged with
search ineffectiveness [15]–[17]. In fact, NAS is far away
from being broadly practical in general image recognition.
Some recently proposed works [16], [17] suggest that the
performances of some NAS methods in certain scenarios are
even worse than random architecture selection. In this work,
we reveal the limitation of applying current NAS solutions
within the transfer learning from both the principled and
empirical perspectives. Solving a NAS model, essentially, is to
find a network architecture with the highest train-from-scratch
accuracy. The problem is very hard due to the intolerable
cost of training each architecture in the search space from
scratch. To simplify the problem, existing NAS solutions
often use under-trained or shared network weights to eval-
uate an architecture’s performance by implicitly assuming the
network architecture is independent of the network weights.
The inappropriate evaluation has led to the unreproducible
results of some existing NAS methods. On the contrary, our
NTAA formulates the optimization of the network weights
and architecture as a joint entity and solves the two parts
synchronously. In addition to providing support to NTAA, the
conducted analysis also benefits the future research of NAS.

Overall, the paper makes the following three contributions.
• We propose a general framework to adjust the network

weights along with the network architecture adaptation
synchronously. In a defined search space of network
architecture, our method searching for an optimal archi-
tecture reduces to selecting an appropriate operation from
the candidate operation set for each layer.

• Our method can be easily generalized to an unsupervised
paradigm, which further improves the search efficiency
of our method.

• We provide principled analysis to explain why our frame-
work works by investigating the ineffectiveness of exist-
ing solutions to NAS. We find that preserving the joint
distribution of the network architecture and weights is
of importance. This analysis not only benefits transfer
learning but also provides insights for NAS.

• We conduct extensive experiments on a variety of tasks,
i.e., person re-ID, age estimation, gender recognition, im-
age classification, and unsupervised domain adaptation.
On these tasks, we achieve state-of-the-art performance,

demonstrating the superiority of our learning framework.
The remainder of this work is organized as follows. We

review the previous works relevant to our method in Section II
and introduce the NTAA learning framework and its extension
in Section III. In Section IV, We provide the analysis to explain
the reasons of the effectiveness of NTAA in a principled way.
Section V presents the experimental results and comparisons.
Section VI concludes this paper.

II. RELATED WORK

Weight Pretraining and Finetuning (WP&F). There is
an overwhelming amount of deep-learning-based methods
borrowing the powers from pre-training neural networks on
large-scale datasets. Decades ago, Hinton et al., introduced
transfer learning into training neural networks, especially
under unsupervised learning scenarios [18]. Transfer learning
techniques attracted much interest since 2012 when large-
scale datasets such as ImageNet [19] were utilized in many
image recognition tasks. Pre-training models on ImageNet is
a key to achieve state-of-the-art performances in various tasks
such as object detection [20], semantic segmentation [21],
video recognition [22], person re-identification [1], human at-
tribute recognition [2], and image classification [3], [23]–[25].
Moreover, transferring from ImageNet not only benefits the
accuracies of the target tasks but also speeds up the learning
process [21], [23]–[25]. In addition to computer vision, weight
pretraining and finetuning is also used in other domains,
such as natural language processing (NLP). Language model
pretraining has shown remarkable improvement for many
NLP tasks, such as natural language inference, paraphrasing,
named entity recognition, and question answering. Notable
works include ELMo [26], OpenAI GPT [27], and BERT
[28]. ELMo [26] uses the pretrained representation as an
additional feature for ensembling. The way of transfer learning
in OpenAI GPT [27] and BERT [28] are more similar to
that of the standard transfer learning in computer vision, i.e.,
a backbone is pretrained in the source task whose network
weights are further finetuned for the target task. Compared
with the feature transferring in previous works, our NTAA
jointly optimizes the network architecture and neural weights.
Moreover, our framework can be also combined with existing
transfer learning methods.

The idea of using confidence values for operation shares the
merit of adaptation factors in [29]. There are two differences
between our confidence values for operation and the adaptation
factors in [29]. First, our confidence values are associated with
the selection for candidate operations, which result in different
network architectures, i.e., both the network architecture and
the network weights can be evolved with the confidence values
changing. In contrast, in [29], only the model weights can be
adapted with respect to the adaptation factors. Therefore, the
adaptation factor used in [29] is only a tool in standard transfer
learning, while our confidence value is a formulation for neural
architecture adaptation. Second, a low confidence value in our
method can lead to a straightforward removal of an operation
of a predefined architecture; however, a low adaptation factor
still assigns a small weight for a pretrained model weight.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

3x3 conv, w1

3x3 conv, w2

3x3 conv, w3

3x3 conv, w4

3x3 conv, w1

3x3 sepconv, w5

3x3 dilconv, w6

5x5 dilconv, w7

Target 2 Target 2

 (a) (b)

Source task

Target tasks

Source task

Target tasks

Fig. 1: Comparison between (a) weight pretraining and finetuning (WP&F) and (b) the proposed framework of neural transfer
and architecture adaptation (NTAA). In WP&F, only network weights are transferred to the downstream tasks, e.g., from
w1 in a source task to w2, w3, w4 in the target tasks. While in our NTAA, both the network weights and architecture are
transferred to the downstream tasks, e.g., from <3x3 conv,w1> in a source task to <3x3 sepconv,w2>, <3x3 dilconv,w3>,
<5x5 dilconv,w4> in the target tasks.

Neural Architecture Search (NAS). Recently, there has
been a growing interest in developing algorithmic solutions to
automate the manual process of designing a machine learning
algorithm. In particular, neural architecture search (NAS) is
expected to reduced the effort of human experts in network
architecture design [11], [30]–[33], [33]–[38]. However, there
is still an unsolved problem in NAS, i.e., how to efficiently
solve a NAS model. The most mathematically accurate so-
lution is to train each of the candidate architectures within
the search space from scratch and compare their performance.
The architecture with the most satisfactory performance is
regarded as the target architecture. However, this solution is so
extremely time-consuming as the search space is usually quite
large (e.g., > 1e20 [39]). To cope with this problem, many
works have explored to train only the candidate architectures in
a search sub-space by using reinforcement learning (RL) [11],
[40] or evolution learning [14] to guide the search direction.
For example, in the RL-based NAS, only the most potential
candidate architectures with the largest rewards are trained
because they are assumed to contain the target architecture.
These NAS algorithms have achieved remarkable performance.
However, they are still computationally demanding. For ex-
ample, obtaining a state-of-the-art architecture for CIFAR-10
required 1,800 GPU days of reinforcement learning [11] and
3,150 GPU days of evolution [14]. This indicates that training
the candidate architectures in the search sub-space (e.g., 1
million architectures) is still impractical, as training even one
architecture costs a long time (e.g., more than 10 GPU days
for a ResNet [5] on ImageNet).

To speed up NAS, the current methods have given up the
mathematically accurate solution. They propose not to train
each of the candidate architectures from scratch. Instead, they
propose to train different candidate architectures by sharing
the network weights [41]. Notable works include the weight-
sharing reinforcement learning methods [36], attention-based
differentiable methods (e.g., DARTS [42] and ProxylessNAS

[33]), and supernet-based methods [38], [43] in which a
supernet is built to represent the full search space and each
path is a stand-alone model. However, there is no theoretical
guarantee that weight-sharing methods should work. Actually,
as is suggested by [16], [17], many existing solutions to NAS
are not better than random architecture selection. In our work,
we explain the ineffectiveness of existing solutions to NAS in
a principled way.

Self-Supervised Learning. Recently, unsupervised learning
has recently shown remarkable progress in representation
learning, especially in natural language understanding and
computer vision. Notable works in natural language under-
standing include GPT [27] and BERT [28]. Among unsu-
pervised learning, the results of self-supervised learning are
most promising in the computer vision task. Specifically, self-
supervised learning in computer vision can be divided into
three groups, including low-level methods, mid-level methods,
and high-level methods. Low-level methods include de-noising
auto-encoders [44], context auto-encoders [45], or colorization
[46]. Mid-level methods include patch orderings [47], [48].
However, both low-level methods and mid-level methods have
poor performance in learning universal features. The most
successful methods are high-level methods, i.e., contrastive
learning methods. Notable works include MoCo [13], [49],
simCLR [50], and BYOL [51]. For example, on ImageNet,
the top-1 accuracy of BYOL is 74.3%, which is close to that
of supervised learning, i.e., 76.4%.

Despite the promising accuracy and high expectation, the
learning efficiency of self-supervised learning is low. Self-
supervised learning usually costs ten times longer time for
optimization than supervised learning. Specifically, for the task
of training a ResNet50 on ImageNet, the supervised method
costs about 100 epochs, while simCLR and BYOL cost 1,000
epochs, and CoCo v2 costs 800 epochs. The inefficiency of
existing contrastive learning is the unreliability of the momen-
tum encode. Specifically, the momentum encoder in existing

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

methods is an Exponential Moving Average (EMA) networks
of the encoder networks. However, the EMA networks are not
reliable in the earlier stage. Therefore, the learning efficiency
of existing self-supervised learning is low. On the contrary, in
our method, there is a reliable pretrained model. Using the pre-
trained model to replace the EMA networks in self-supervised
learning significantly improves the learning efficiency.

III. METHODOLOGY

We start by briefly reviewing the technical background
related to our work and then introduce our learning framework
in detail. An extension of our framework to an unsupervised
paradigm is further discussed, followed by more implementa-
tion details.

A. Preliminaries
Deep Neural Networks A deep model is written as:

Φ(X,W (1), · · · ,W (i), · · · ,W (K))

= ψK(· · ·ψi(· · ·ψ1(X ⊗W (1)) · · · ⊗W (i)) · · · ⊗W (K)),
(1)

where the whole neural network is formulated as a com-
plicatedly nonlinear function Φ(·). X is the input. W =
{W (1), · · · ,W (i), · · · ,W (K)} denotes the network weights. K
is the depth of the network. ⊗ denotes a convolution oper-
ation (e.g., vanilla convolution, separate convolution, dilated
convolution). ψ(·) denotes a nonlinear activation function (e.g.,
batch normalization + ReLU). For presentation simplification,
Eqn. (1) is re-written as:

ΦW,α(X) = (CW (K) · · · ◦ CW (i) · · · ◦ CW (1))(X), (2)

where CW (i) denotes a convolution operation using the net-
work weight W(i) as convolutional filters and ◦ denotes
a sequence of operations (e.g., convolution) in a network
architecture α. In the following, we use Ci to denote CW (i)

for notation simplification. Here, i denotes the i-th layer. In
other words, the network architecture α can be represented as:

α = CK · · · ◦ Ci · · · ◦ C1. (3)

Finally, a deep learning problem is an optimization problem
in the form of:

min
w
L(Y,ΦW,α(X)) + λ||W ||2 (4)

where L denotes the loss function. λ||W ||2 is a weight decay
term that regularizes the model to prevent overfitting. λ is a
hyper-parameter which is usually set as 1e−4.

Weight Pretraining and Finetuning Given a network α0,
pretraining is to train α0 from scratch on a source domain
task. After the pretraining, we obtained the pretrained network
weights W0. Then, a pretrained deep model can be written
as α0 = (C0

W
(K)
0

· · · ◦ C0

W
(i)
0

· · · ◦ C0

W
(1)
0

). Remarkably, in
computer vision, ImageNet has been proved to be transferable
to many other tasks. Therefore, ImageNet is considered as
the most commonly used source domain task. Moreover, the
pretrained ImageNet models are available online in the model
zoos of almost all the deep learning frameworks (e.g., Caffe,
Tensorflow, and Pytorch). Hence, the pretraining stage can be
omitted in both standard transfer learning and our method.

In the paradigm of weight pretraining and finetuning, the
network weights are tuned while the network architecture is

fixed when transferred to a target task. The goal of weight
pretraining and finetuning is to find the optimal weights W ∗ =
W0 +∆W ∗ for a fixed architecture α0 which is subject to the
condition that W is initialized as W0, i.e.,

∆W ∗ = arg min
∀∆W

L(Y,ΦW0+∆W,α0(X)) + λ||W0 + ∆W ||2

s.t.

{
W0 is pretrained in the source task

α0 is kept fixed

(5)

Note that αo keep unchanged before and after the optimization,
indicating that the network architecture is unlearnable during
the process of weight pretraining and finetuning.

Neural Architecture Search Neural architecture search
(NAS) is an AutoML technique, which aims at automatically
designing neural architectures for different tasks. NAS is not
defined for a transfer learning problem, i.e., NAS does not
exploit the pretrained weights obtained on a source task.
Formally, NAS is formulated as:

α∗ = arg min
∀α

(min
∀W

(L(Y,ΦW,α(X)) + λ||W ||2)) (6)

As shown, for each architecture α, we should train its network
weights from scratch to convergence.

B. Neural Transfer and Architecture Adaptation
Different from weight pretraining and finetuning, our

method is supposed to synchronously adjust the network
weights as well as network architecture. The formulation of
our method is as follows:

∆W ∗,∆α∗ = arg min
∀∆W,∀∆α

L(Y,ΦW0+∆W,α0+∆α(X))

+ λ||W0 + ∆W ||2

s.t.

{
W0 is pretrained in the source task
α0 is predefined for the source task

(7)

Here, we use ∆α to denote the modification between the
searched architecture and the architecture predefined for the
source task. We use α0+∆α to denote making a modification
∆α for the architecture α0. Our goal is to find optimal weights
W ∗ = W0+∆W ∗ and an optimal architecture α∗ = α0+∆α∗

which is subject to the conditions that W is initialized as W0

and α is initialized as α0.
As tuning the network weight is easy to understand, in the

following, we only focus on the adaptation of the network
architecture for notation simplification. Eqn. (7) can be sim-
plified as follows:

∆α∗ = arg min
∀∆α

L(Y,Φα0+∆α(X))

s.t. α0 is predefined for the source task
(8)

Integrating Eqn. (3) into Eqn. (8), adapting the architecture
from an initial architecture α0 to the target architecture α∗
can be finalized as follows:

∆C∗K ,...,∆C∗K ,...,∆C∗1 = arg min
∆CK ,··· ,∆Ci··· ,∆C1

L(Y, ((C0
K + ∆CK)

◦ · · · ◦ (C0
i + ∆Ci) ◦ · · · ◦ (C0

1 + ∆C1))(X))

s.t. C0
K , · · · , C0

i , · · · , C0
1 are predefined for the source task

(9)

Search Space Design. As discussed, our method is to make
a set of modification

{
∆CK , · · · ,∆Ci · · · ,∆C1

}
for the

predefined convolution operations
{
C0
K , · · · , C0

i , · · · , C0
1

}
.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

2

3

2

3
 2

3

 (a) (b) (c)

initial arch α0 target arch α∗ search space A

Fig. 2: An illustration of our framework: (a) the initial architecture; (b) the search space; (c) the target architecture.

Therefore, we need to design a search space for the modifica-
tion

{
∆CK , · · · ,∆Ci · · · ,∆C1

}
. That is, we need to design

a search space A = {O1, · · · ,Oi, · · · ,OK} such that:

∆CK ∈ OK , · · · ,∆Ci ∈ Oi, · · · ,∆C1 ∈ O1. (10)

How to form the architecture search space in a reasonable
way is an active problem in NAS. Conventionally, in NAS,
the search space is formed by defining candidate operations
for each layer. Inspired by NAS, we define the modification Ci
(0 ≤ i ≤ K) as replacing the predefine convolution operation
C0
i by another operations selected from a candidate operation

set Oi. By definition, each Oi consists of three types of
operations:
• Convolution: 5×5, 3×3, and 1×1 convolution, denoted

as oi1, oi2, and oi3, respectively.
• Pooling: 3×3 max pooling, 3×3 average pooling, global-

ization operation, denoted as oi4, oi5, and oi6, respectively.
• Others: identity, and noise disturbing, denoted as oi7 and
oi8, respectively.

where globalization indicates broadcasted global average pool-
ing, and noise disturbing indicates adding a gaussian noise
to the features. Here i denotes the i-th layer. Note that the
operations in pooling and others are weight-free, indicating
that choosing these two types of operations makes the network
shallower.

It is important to note that, different from NAS, some of the
predefined convolution operations may stay unchanged after
the architecture transfer. Therefore, we must ensure that α0 ∈
A, i.e., all Ois (0 ≤ i ≤ K) should meet the condition of
C0
i ∈ Oi (0 ≤ i ≤ K).
Finally, searching for an optimal architecture reduces to se-

lecting an appropriate operation from the candidate operation
set for each layer. With the definition of the search space, our
method is defined as an optimization problem as follows:

∆C∗K ,...,∆C∗K ,...,∆C∗1 = arg min
∆CK ,··· ,∆Ci··· ,∆C1

L(Y, ((C0
K + ∆CK)

◦ · · · ◦ (C0
i + ∆Ci) ◦ · · · ◦ (C0

1 + ∆C1))(X))

s.t.

{
C0
K , · · · , C0

i , · · · , C0
1 are predefined for the source task

∆Ci ∈ Oi

.

(11)
Fig. 2 shows the relationship of the initial architecture α0, the
target architecture α∗, and the search space A, in which the
initial architecture α0 can be seen as an instance in the search
space A (i.e., α0 ∈ A).

(Rule of thumb) How to design a reasonable search space is
an active problem in NAS. Conventionally, in NAS, the search
space is created by defining candidate operations for each layer

and considering the topological connectivity of the network.
These two aspects have been taken into account in our method.
Among these aspects, predefining candidate operations is pre-
ferred in most of the existing NAS methods [30]–[43]. There
is no instruction or guide for how to select the proper types
of candidate operations. But spontaneously, current works on
NAS (e.g., [30]–[43]) all consider the following three types
of operations as candidates, i.e., convolution, pooling, and
identity. Our search space is consistent with existing methods.
Defining different search spaces can result in different possible
consequences in search cost and model efficiency. First, defin-
ing too many candidate operations can increase the search cost.
For example, if we double the number of candidate operations
in our search space, the required GPU memory can be beyond
what our machine can offer. Second, too large search space
can lead to lousy architecture rating, which randomizes the
performance of architecture search, as is suggested by [15],
[52] below. Third, having different types of convolution can
lead to different efficiency. For example, replacing vanilla
convolution with MBConv can improve model efficiency but
reduces the model accuracy. One possible Rule of Rhumb
on search space design may be searching for a search space,
which is an unexplored / rarely-explored area in AutoML. For
example, we can first define a vast search space consisting of
almost all possible spaces. Then, we divide the search space
into some search sub-spaces (i.e., 1,000 subspaces). Next, we
sample architectures from these sub-spaces and pre-evaluate
their performance. Last, the combination of the sub-spaces
achieving higher pre-evaluation accuracies is considered as our
final search space.

Formulation of Architecture Optimization. As discussed
in Eqn. (11), searching for an optimal architecture reduces
to selecting an appropriate operation from the candidate op-
eration set for each layer. However, selecting an operation
from the candidate set is discrete and non-differentiable, which
cannot be optimized by DNNs. To address this problem, we
relax the hard selection problem into a soft one. Specifically,
we associate each candidate operation in O with a confidence
value P ∈ [0, 1], with P = 1 indicating that the corresponding
operation is definitely adopted. We assume that p can be
learned in a data-driven manner. For example, for the i-th layer
(0 ≤ i ≤ K), the probability of selecting a 3×3 convolution is
defined as:

P(Ci = oi2) =
exp(θoi2

)

exp(θoi1
) + exp(θoi2

) + · · ·+ exp(θoi8
)
. (12)

where θoi2 denotes a learnable parameter measuring the prob-
ability of selecting a 3×3 convolution for the i-th layer. The

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

probability of selecting other operations are similarly defined.
Then, the neural network as a complicated function in the
searching process is defined as:

Φθ(X) = (E
[
oK
]
◦ · · ·E

[
oi
]
◦ E
[
o1
]
)(X). (13)

where E
[
oi
]

denotes an expectation of multiple choice, which
is further defined as:

E
[
oi
]

=

8∑
t=1

P(Ci = oit)
[
oit
]

(14)

Moreover, in Eqn. (12), as C0
i has been pretrained to have a

stronger capacity than other operation in Oi at the begining,
we initialize the θC0

i
to be ones while initializing the other θs

inOi to be zeros. So far, all the learnable parameters have been
introduced, including W associated with the network weights
and θ associated with the network architecture. Both W and
θ are optimized by:

W ∗, θ∗ = arg min
w

L(Y,ΦW,θ(X)) + λ||W ||2, (15)

where ΦW,θ(X) is calculated by:

ΦW,θ(X) = (E
[
oKWoK

]
◦ · · ·E

[
oiWoi

]
◦ E
[
o1Wo1

]
)(X). (16)

where oiWoi
has the same meaning as oi, indicating the

network weights of the operation oit is denoted as Woit
.

Inspired by the weight decay term, we include a operation
regularization term (λ

∑
θ∈α0

θ− λ∑θ∈A\α0
θ) to regularize

the network capacity. Here \ denotes the set difference. In
particular, λ

∑
θ∈α0

θ discourages initial architectures, while
−λ∑θ∈A\α0

θ encourage the newly-introduced operations,
especially the identity and the noise disturbing operations
that reduce the network complexity. Finally, our learning
framework is cast to an classical optimization problem:

W ∗, θ∗=arg min
w

L(Y,ΦW,θ(X)) + λ(||W ||2 +
∑
θ∈α0

θ −
∑

θ∈A\α0

θ),

(17)
which can be optimized using stochastic gradient descend.

Obtaining the target architecture α∗ reduces to selecting an
operation Ci from the candidate operation set Oi for each
layer. After searching, we have obtained θs that measures the
probability of selecting an operation for the i-th layer. Hence,
the optimal operation is the one with the maximum probability:

C∗i = arg max
∀1≤j≤8

θoij . (18)

The target architecture α∗ is obtained, based on which we
further finetune the network weights for some epochs.

C. Extension to Unsupervised Learning

Our framework can be easily generalized to a unsupervised
paradigm. This needs minimal adjustment. For the presentation
simplicity, we first introduce the definition of a supernet, which
is a general concept widely used in the NAS community [31]–
[33], [36], [38], [42], [53]. Formally, a supernet is a directed
acyclic super-graph covering a whole search space with each
node representing the feature maps and each edge representing
a connection between the nodes with a particular operation
(e.g., a convolution). Each subnet in the supernet represents a
candidate architecture in the search space.

With the supernet definition, our supervised NTAA de-
scribed in the previous section can be summarized into three
steps. Step 1: A search space A is designed such that the
given architecture α0 can be seen as an instance in the search
space A (i.e., α0 ∈ A). This indicates we design a supernet
containing α0 as its subnet. Step 2: We start with α0, and
jointly finetune the network weights and network architecture
within the space A. This indicates we train the supernet
in which the subnet α0 has been pretrained in the source
task. Step 3: The target architecture α∗ is obtained after the
optimization, based on which we further finetune the network
weights for some epochs. This indicates we obtain an optimal
subnet from the supernet and finetune its network weights.

We can extend our supervised architecture search to a fast
architecture search for different tasks by slightly modifying
Step 2. The NEW Step 2 is as follows: Before jointly
optimizing the network architecture and network weights
as supervised NTAA does, we first train the supernet in
a unsupervised manner to obtain universal representations
[13]. This universal supernet, called Super α0, is used to
replace the original α0. It is saved and is ready for all the
downstream tasks without re-training in the future. Then, we
perform the linear evaluation in the downstream tasks to jointly
optimize the network architecture and the head weights, i.e.,
we initialize all θs in Eqn. (12) to be ones and freeze the
backbone network weights, only learning θs and the network
weights in the last layer (e.g., the ten-class classifier weights
for CIFAR-10).

Except for Step 2, Steps 1 and 3 in the unsupervised
NTAA are the same as those in the supervised NTAA without
modification. For example, we perform Step 3 to search for the
best architecture α∗ and further finetune the network weights
for some epochs.

Our method of training the supernet in a self-supervised
manner is novel and is different from all of the existing
self-supervised learning methods. Our self-supervised learning
method fits our NTAA perfectly. Specifically, the momentum
encoder in existing methods, such as MoCo v1 [13], MoCo
v2 [49], and BYOL [51] are all Exponential Moving Average
(EMA) networks of the encoder networks. However, the EMA
networks are not reliable in the earlier stage (see Figure 3).
Therefore, the learning efficiency of existing self-supervised
learning is low. On the contrary, in transfer learning, there
is a reliable pretrained model. Using the pretrained model
to replace the EMA networks in self-supervised learning
significantly improves the learning efficiency. Following [13]
and [49], our loss function is also defined as InfoNCE:

Lq,k+,{k−} = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑
k−

exp(q · k−/τ)
, (19)

where q is a query feature, k+ is the feature of a positive
sample, and {k−} are the features of the negative samples.

Remark 1: Our unsupervised NTAA can improve search
efficiency due to two reasons. First, Our Super α0 is saved
and is ready for all the downstream tasks without re-training.
That is, when performing architecture search for a specific
task, we can reuse the trained supernet. As most of the
search time of NAS lies in the supernet training, our method
significantly reduces the time’s cost of architecture search
for different downstream tasks. Second, the self-supervised

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

encoder

momentum
encoder

memory bank

x loss

other
models

pretrained
model

memory bank

x losssupernet

 (a) MoCo (b) Our self-supervised learning method

Fig. 3: Training Super α in a self-supervised manner. (a) MoCo v1 [13] and v2 [49]; (b) Our self-supervised learning.

learning features has good generalization ability [13], which
accelerates the linear evaluation and the final finetuning.

D. Implementation Details

Conventionally, in NAS, the search space is formed by
defining candidate operations for each layer and considering
the topological connectivity of the network. These two aspects
have been taken into account in our method. In section III-B,
we have discussed the details of defining candidate operations
for each layer. For ease of understanding, we have omitted
the topological network connectivity in the search space A.
Actually, the number of layers and connection between units
have been taken into account in our method.
• There is a candidate skip connection in our search space.

Specifically, as Fig. 2 (b) shows, in our search space A,
a skip layer operation is also allowed to enrich the search
space. Actually, each layer is supposed to be connected
with preceding three layers, i.e., both α = C4 ◦ C3 ◦
C2 ◦ C1 and α = C4 ◦ C1, α = C3 ◦ C1 are allowed.
there is a candidate skip connection in our search space
(Fig. 2 (b)). Therefore, the topological connectivity and
the number of layers have also been taken into account
in our architecture search.

• Our candidate operation sets includes Pooling, identity,
and noise disturbing. Note that these operations are
weight-free, indicating that choosing these operations can
reduce the depth of the searched architecture. Therefore,
the depth of our searched architecture can be further made
multifarious.

IV. PRINCIPLED ANALYSIS ON THE EFFECTIVENESS

In the following, we provide the principled analysis to
explain the reason behind the effectiveness of our NTAA by
comparing it with the existing NAS approaches. Here, we start
by discussing the defect of NAS and the ineffectiveness of
directly applying NAS methods in the transfer learning.

A. Ineffectiveness of NAS

We have presented the formulation of NAS in Eqn. (6),
from which we can find that the challenge of NAS lies in the
inner term of Eqn. (6), i.e., min

∀W
(L(Y,ΦW,α(X)) + λ||W ||2),

which requires us to train each of the candidate architectures in
the search space A from scratch to convergence to obtain the
optimal W ∗. However, this is infeasible as training even one
ResNet costs 10 GPU days, not to mention there are more than
1e20 architectures in the search space [39]. To cope with this
problem, under-training [11], [40] and co-training [15], [31]–
[33], [36], [38], [42], [53] have been proposed. Under-training
is to train each architecture for a few epochs (e.g., five epochs)
and use the performance at the 5th epoch to evaluate the
architecture. Such architecture rating is inaccurate due to the
insufficient training. Therefore, co-training is proposed. Co-
training is to train different candidate architectures by sharing
the network weights in a supernet. Currently, co-training is the
most commonly-used method in NAS. However, co-training
is still ineffective because the architecture rating based on the
subnet disengaged from supernet is inaccurate [15]–[17], [54].

In the following, we analyze the inaccurate rating of weight-
sharing NAS by using the tool of generalization boundedness.

Theorem 1: (Generalization boundedness). Let η be the
learning rate, S be the number of the candidate operations
for each layer, and T be the training iterations. Let R be the
misclassification error, L be the loss function, and W be the
learnable parameters. Then, for any candidate architecture j,
the misclassification error is upper bounded by:

min
t∈
[
T
]E[R(Wt,j)

]
≤ O

(ln2(T) + ln(ST)

T

)
. (20)

Proof sketch. Since the expected loss is independent from
sampled data, we have:

E
Dt+1

[
L(Wt)

]
= E
Dt,Bt

[
L(Wt)

]
= E
Dt

[
L(Wt)

]
. (21)

As the loss upper-bounds the error rate [55], we have:

E
W1,DT

[1

T

T∑
t=1

R(Wt)
]
≤ E

Wt,DT

[1

T

T∑
t=1

L(Wt)
]

≤ E
Wt,DT ,BT

[1

T

T∑
t=1

Lt(Wt)
]

(by Eqn. (21))

≤ EW1

[
‖W1 − U‖2F

]
ηT

+
2

T

T∑
t=1

E
W1,DT ,BT

[
L(t)
t (U)

]
.

(22)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

Let U = W1 − λV with ‖V ‖F ≤ 1 and λ = c1 ln(2ηT) +√
c2 ln(c3η

√
ST 2) with c1, c2, and c3 being constants. Since

‖W1 − U‖2F = ‖W1 −W1 − λV ‖2F = λ2‖V ‖2F ≤ λ2,

we have:
EW1

[
‖W1−U‖2F

]
ηT ≤ λ2

ηT . Since L(t)
t (U) ≤ λ2

2ηT and

L(t)
t (U) ≤ c4

√
S, we have: E

[
L(t)
t (U)

]
≤ (1 − σ) λ2

2ηT +

σc4
√
S ≤ λ2

2ηT + σc4
√
S ≤ λ2

2ηT + 1
2ηT ≤ λ2

ηT , where σ ,
1

2c4
√
SηT . This finally yields:

min
t∈
[
T
]R(Wt,j) ≤

3λ2

ηT
≤ O

(ln2(T) + ln(ST)

T

)
, (23)

which completes the proof.
Remark 2: (Inaccurate rating in existing NAS). Theorem

1 shows that the misclassification error (usually measuring
the generalization ability) of the weight-sharing solution has
an upper bound related to the search space size (i.e., S). This
might provide an explanation for the inaccurate rating problem
in existing NAS. Specifically, for the models learned by the
weight-sharing solution, increasing the search space size (i.e.,
S) would lead to a larger upper bound of the misclassification
error and thus the poorer generalization ability.

A poor generalization ability implies that the architecture
rating based on the weight-sharing solution might not be
predictive of the true rating of a neural architecture. Suppose
an architecture has a good ground-truth rating, but its gener-
alization ability based on the weight-sharing solution is poor,
and thus its validation accuracy is low. Then, this architecture
might have a bad predicted rating.

In summary, the large search space might be the cause of the
ineffectiveness of existing NAS because a large search space
would result in a poor generalization ability of the weight-
sharing solution and further would lead to the inaccurate
rating of the network architecture, which finally leads to the
ineffectiveness of NAS.

B. Effectiveness of NTAA

By comparing Eqn. (6) and Eqn. (7), we reveal that a NAS
model aims at searching for an optimal architecture that can
be trained from scratch. Therefore, good architecture rating
is necessary to ensure the ability of a network to be trained
from scratch. Differently, our NTAA synchronously optimizes
the network weights and network architecture, which needs no
architecture rating.

Generally, NTAA is better compatible with the transfer
learning scenarios in a principled way compared with tradi-
tional NAS solutions. In particular, Eqn. (7) shows that our
NTAA combines the network weights and architecture learning
with a joint distribution, and optimizes them synchronously.
After the joint optimization, an optimal pair {architecture
(α∗), weights (W∗)} indicating a good adaptation for transfer
learning tasks is obtained. Note that obtaining {α∗, W∗} in
Eqn. (7) does not necessarily indicate obtaining an optimal
solution to NAS in Eqn. (6). Specifically, although {α∗, W∗}
has good accuracy in transfer learning using our NTAA, it
may not be obtained by NAS method, because W∗ may be
inaccessible when the architecture α∗ is trained from scratch.

Actually, training from scratch is required by the definition
of NAS as Eqn. (6) suggests. The inaccessibility of W∗ has
also been discussed in the theory of lottery ticket hypothesis
[56]–[58].

C. Advantage of NTAA from the Practical Perspective

The above analysis has shown the advantage of our NTAA
over existing NAS methods. From the practical perspective,
our NTAA aims at improving the fundamental and universal
problem of standard transfer learning, while NAS aims at
searching for an effective architecture for different tasks.
Limited by the number of training examples and the huge cost
of annotation, many tasks (e.g., person re-ID, age estimation,
gender recognition, and image classification) should be first
trained on large-scale datasets (e.g., ImageNet) to obtain
transferable representations and subsequently fine-tuned on the
specific task. Directly searching architectures for these tasks
lead to a suboptimal solution. On the contrary, our NTAA
exploits both the power of standard transfer learning and NAS,
achieving a better performance.

V. EXPERIMENTS

To justify the effectiveness of NTAA, we have conducted
extensive experiments on a wide range of computer vision
tasks such as person re-ID, age estimation, gender recogni-
tion, image classification, and domain adaptation. Our goal
is to tune the standard backbone, including ResNet50 [5],
ResNet101 [5], InceptionV2 [59], VGG [60], AlexNet [19],
and the recently proposed EfficientNet [3].

A. Comparison with Weight Pretraining and Finetuning in
Person Re-Identification

We first evaluate the effectiveness of our NTAA in the
well-known transfer learning task, i.e., re-ID, which has been
extensively studied in recent years [61], [62]. It refers to the
problem of re-identifying individuals across cameras. Solving
re-ID problems is very challenging but has many applications
in video surveillance for public safety. Recent state-of-the-
art re-ID models are all built upon standard transfer learning
techniques [1], [63]–[69]. Specifically, a standard ResNet-50 is
first pretrained on ImageNet, and then the network weights are
tuned to the re-ID domain for adaptation. For the evaluation,
the test set is further divided into a gallery set of images and
a probe set. We use the Rank-1, Rank-5, Rank-10, and mAP
as the evaluation metric, which are standard metrics in re-ID.
Note that all the compared methods only reported the Rank-1
and mAP metric on CUHK03. We are not able to access to
their Rank-5 and Rank-10 results. Therefore, we only compare
the Rank-1 and mAP results on CUHK03.

Market-1501 We first conduct experiments on the Market-
1501 [84], which is one of the largest databases for re-ID.
This database contains 32,668 images of 1,501 pedestrians
captured from 6 different cameras. The dataset is split into
two parts: 12,936 images with 751 identities for training and
19,732 images with 750 identities for testing. In testing, 3,368
hand-drawn images with 750 identities are used as probe set
to identify the correct identities on the testing set.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

TABLE I: Comparison on a Person Re-identification task
(Market-1501). (WP&F: weight pretraining and finetuning;
SOTA: state of the art; R-1,5,10: Rank-1,5,10; +E: random
erasing; +R: re-ranking; UNTAA: unsupervised NTAA)

Transfer Methods R-1 R-5 R-10 mAPtype
MSCAN [63] 80.31 n/a n/a 57.53

DF [64] 81.0 n/a n/a 63.4
SSM [65] 82.21 n/a n/a 68.80

SVDNet [66] 82.3 n/a n/a 62.1
GAN [67] 83.97 n/a n/a 66.07
PDF [68] 84.14 n/a n/a 63.41

TriNet+E+R [69] 86.67 93.38 n/a 81.07
Omin [70] 94.8 n/a n/a 84.9

JointDG [71] 94.8 n/a n/a 86.0
IANet [72] 94.4 n/a n/a 83.1

WP&F CASN+PCB [73] 94.4 n/a n/a 82.8
CAMA [74] 94.7 98.1 n/a 84.5

(SOTA) MHN-6 [75] 95.1 98.1 n/a 85.0
AANet [76] 93.9 n/a n/a 83.4
P 2-Net [77] 95.2 98.2 n/a 85.6
PGFA [78] 91.2 n/a n/a 76.8

ISP [79] 95.3 98.6 n/a 88.6
CBN [80] 94.3 97.9 98.7 83.6
SNR [81] 94.4 n/a n/a 84.7

M3+R50 [82] 95.4 n/a n/a 82.6
PCB [83] 91.2 96.5 97.3 76.7

NTAA
PCB + NTAA 94.5 97.9 98.3 84.8

PCB + UNTAA 94.5 98.0 98.4 85.0
NTAA + SE 95.6 98.2 98.9 85.6

Comparison with weight pretraining and finetuning. In
Table I, we compare with 21 representative methods of weight
pretraining and finetuning, which is also the current best
models on Market-1501, including MSCAN [63], DF [64],
SSM [65], SVDNet [66], GAN [67], PDF [68], TriNet [69],
TriNet + Era. + Re-ranking [1], PCB [83], Omin [70], JointDG
[71], IANet [72], CASN+PCB [73], CAMA [74], MHN-6
[75], AANet [76], P 2-Net [77], PGFA [78], ISP [79], CBN
[80], SNR [81], and M3+ResNet50 [82]. All settings of
the above methods are consistent with the common training
settings. Our NTAA achieves a rank-1 accuracy of 94.5% with
an improvement of 3.3% over its baseline. It also surpasses
other competitors by a clear margin. As Omin [70] introduces
an Omni-Scale features which contains multi-scale feature and
SE global dependencies [85], for fair comparison, we also
equip our search architecture with global SE features. The
results in Table I show that our NTAA outperforms OSNet by
a large margin. This comparison verifies the effectiveness of
NTAA on re-ID tasks.

CUHK03 We further conduct experiments on the CUHK03
dataset [86], which is another of the largest databases for re-
ID. This database contains 14,096 images of 1,467 pedestrians.
Each person is observed by two disjoint camera views and
is shown in 4.8 images on average in each view. We follow
the 767/700-split setting of using CUHK03 [1], where 767
individuals are regarded as the training set, and another 700
individuals are considered as the testing set without overlap.

Comparison with weight pretraining and finetuning. Actu-
ally, all the state-of-the-art models in the re-ID domain uses
the technique of weight pretraining and finetuning. Therefore,
comparing with the methods of weight pretraining and fine-

TABLE II: Comparison on a Person Re-identification task
(CUHK03) (bs: batch size; WP&F: weight pretraining and
finetuning; SOTA: state of the art; R-1: Rank-1; +E: random
erasing; +R: re-ranking; UNTAA: unsupervised NTAA)

Transfer Type Methods R-1 mAP
SVDNet [66] 41.5 37.3

Omin [70] 72.3 67.8
TriNet + Era. [1] 55.5 50.74

Omin [70] 72.3 67.8
Auto-ReID [9] 73.3 69.3

WP&F CASN+PCB [73] 71.5 64.4
CAMA [74] 66.6 64.2

(SOTA) MHN-6 [75] 71.7 65.4
M3+R50 [82] 66.9 60.7

TriNet+E (Our reproduction) 62.0 57.6
TriNet+E+R (bs = 32) 61.2 55.4

NTAA

TriNet+E+NTAA 64.6 61.5
TriNet+E+UNTAA 66.1 63.2

TriNet+E+R+NTAA(bs = 32) 65.0 61.8
TriNet+E+R+NTAA + longer 71.6 66.1

NTAA + SE 74.8 69.8

tuning is equivalent to compare with the current best models
on CUHK03. In Table II, we compare with ten representa-
tive standard transfer learning methods, including Omni [70],
SVDNet [66], TriNet + Era. [1], TriNet + Era. + Reranking [1],
Auto-ReID [9], CASN+PCB [73], CAMA [74], MHN-6 [75] ,
and M3+ResNet50 [82]. All the settings of the above methods
are consistent with the common training settings. Our NTAA
has achieved a new benchmarking state of the art. Specifically,
NTAA achieves a rank-1 accuracy of 74.8%. We also highlight
NTAA surpasses its baseline by a clear margin (e.g., 65.0%
vs. 61.2%). This verifies the effectiveness of NTAA on re-ID
tasks.

Results of Unsupervised Paradigm We also report the
performance of our unsupervised NTAA transfer on both
Market-1501 and CUHK03. As shown in Table I and Table II,
our unsupervised NTAA obtains slightly higher accuracy than
the supervised NTAA. For example, the rank-1 accuracies of
the unsupervised NTAA and supervised NTAA on CUHK03
are 66.1% and 64.6%, respectively. The improvement may be
attributed to the universal features learned by self-supervised
learning. This comparison verifies the effectiveness of our
unsupervised NTAA in addressing transfer learning problem.

Computational Complexity There are two rounds of run-
ning in our framework, each of which contains 100 epochs.
In the first round, our goal is to tune the architecture. For the
supervised paradigm, the search takes 5 hours on a sole GPU
on Market-1501. In the second round, our goal is to finetune
the network weights based on the optimized architecture. This
round takes 3 hours on a single GPU.

For the unsupervised paradigm, the search stage takes 2
hours on a sole GPU on Market-1501, which cuts the search
time of the supervised paradigm by half. This is due to two
reasons. First, Our Super pretrained model is saved and is
ready for all the downstream tasks without retraining. That is,
when performing architecture search for a specific task, we
can reuse the trained supernet. As most of the search time lies
in the supernet training, our method significantly reduces the
time’s cost of architecture search for the downstream tasks.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

TABLE III: Effectiveness / ineffectiveness of NAS on Market-
1501. (R-1,5,10: Rank-1,5,10)

Type Methods R-1 R-5 R-10 mAP

NAS DARTS 91.7 96.9 97.5 77.2
SPOS 91.9 96.9 97.7 77.3

Random Selection - 91.6 96.8 97.5 77.2

Second, the self-supervised learning features has good gener-
alization ability [13], which accelerates the linear evaluation.

B. Effectiveness Analysis in Person Re-Identification

In the following, we conduct empirical studies to verify
the effectiveness of our NTAA compared with existing NAS
approaches.

We use two representative NAS methods as the competi-
tors, including DARTS [42] and single-path-one-shot (SPOS)
method [38]. These two methods are the current state-of-the-
art methods, which reports the best performance on ImageNet
with a considerably acceptable computational cost. DARTS
is an attention-based and differentiable method that densely
connects the candidate operations with attention scores during
the search process. Then the edges with weak attention are
removed after searching, forming the target architecture. SPOS
uses a supernet to represent the full search space, and each
path is a stand-alone model. All the experiments in this section
are conducted on Market-1501. We have the following three
comparisons.

Effectiveness / ineffectiveness of NAS. We evaluate the
effectiveness of NAS in the same search space as our NTAA
mentioned in Section III-B. We evaluate our method and
others with the following setting. i) We randomly sample four
architectures from search space with a uniform distribution
and train them from scratch. The accuracies are averaged to
represent the capacity of random architecture selection. ii) We
use DARTS and SPOS to search for the target architectures in
the search space, respectively. Then, the search architectures
are trained from scratch. Note that here, our goal is to analyze
the effectiveness/ineffectiveness of NAS but NOT to push the
state-of-the-art. Therefore, all models have not been pretrained
by ImageNet.

The results in Table III provides three insights. First, the
accuracies of the NAS models are not significantly better
than that of random architecture selection, indicating that
the solution to NAS maybe not effective. In particular, the
accuracies of DARTS and random selection are similar, while
SPOS obtains slightly better results than both DARTS and
random architecture selection. Considering that NAS models
have spent lots of computational costs to search for the
architecture, we regard the solution to NAS in this problem as
ineffective. Second, although SPOS has made several efforts
to improve the shared weights, the accuracy of SPOS is
just slightly better than that of DARTS. This indicates that
improving the solution to NAS has a long way to go. Third,
the accuracies in Table III are significantly lower than that
in Table I. The degradation is due to the lack of ImageNet
pretraining, verifying the importance of exploiting both the
network weights and network architecture as our NTAA does.

TABLE IV: NAS v.s. NTAA for transfer learning on Market-
1501. (R-1,5,10: Rank-1,5,10)

Type Methods R-1 R-5 R-10 mAP

NAS + transfer DARTS 93.2 97.4 98.2 81.1
SPOS 93.4 97.6 98.3 81.6

NTAA - 94.5 97.9 98.3 84.8
TABLE V: Can the optimal weights of NTAA searched by
NAS? (Market-1501) (R-1,5,10: Rank-1,5,10)

Method R-1 R-5 R-10 mAP
NTAA 94.5 97.9 98.3 84.8

Retrain NTAA’s architecture 92.0 96.9 97.9 77.4

Superiority of NTAA over NAS. In addition, we compare
the accuracies of NAS and NTAA on Market-1501. In our
method, the architecture has first exploited the ImageNet
pretraining, and then the architecture and the weights are
jointly optimized in the downstream task. However, ImageNet
pretraining is absent in the NAS counterparts. In the NAS
counterparts, the architecture is searched in the downstream
task, and then the weights are trained in the downstream
task. For a fair comparison, after the architecture search in
the NAS counterparts, we perform ImageNet pretraining for
the searched architecture before finetuning the weights in
the downstream task (i.e., Market-1501) following using the
standard transfer learning pipeline [1], [63]–[69], [83]. The
results are reported in Table IV. As shown, our NTAA obtains
a 1.1% higher accuracy than NAS models (94.5% vs. 93.4%
for NTAA vs. SPOS). There are two reasons behind the
improvement of our method over others. First, as explained
Section IV, our NTAA better accords with the goal and setting
of transfer learning. Second, there is a gap between existing
NAS solutions and transfer learning. In particular, the target
architecture is searched for on the target task (i.e., person re-
ID). But the target architecture can not be directly used on the
target task until it has been pretrained on the source task (i.e.,
ImageNet classification).

According to the above principled analysis, our NTAA
can produce the optimal pair of {α∗,W∗} that can not be
searched by existing NAS methods. Accordingly, we provide
some empirical studies for demonstrating the superiority of
our NTAA. We use the optimal optimal pair of {α∗,W∗}
(i.e., the state-of-the-art model) in Table I and Table IV as our
reference. Specifically, we employ the architecture α∗ while
discarding the network weights W∗. The network weights
are reset as randomly initialized weights. Then we retrain
the architecture α∗ from scratch. The converged accuracy is
compared with our NTAA in Table V. We can observe a
significant performance degradation of the retrained model
compared with our NTAA. The inaccessibility of W∗ has
also be noticed by [56]–[58], proving the importance of our
NTAA in synchronously learning the network weights and the
architecture in the same way as our NTAA.

C. Image Classification

We further evaluate our NTAA on the CIFAR-10 [87], which
consists of 10 categories. The models are trained on the 50,000
training images and evaluated on the testing 10,000 images.
CIFAR-10 is chosen for the following reasons. First, the data

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

(a)Source task:

ImageNet (8 layers)

(b)Target 1: CIFAR-10 (1 layer)

(d)Target 3: CUHK03 (4 layers)

(c)Target 2: CIFAR-100 (3 layers)

Disturbed

1x1Conv. 3x3Conv.

Globalization

Shortcut

Tra
ns
fer

Transfer

Transfer

Fig. 4: An example of visualization of the neural architecture adaptation from the pre-training on ImageNet to different image
recognition tasks (best view in color).

volumes of CIFAR-10 are far less than that of ImageNet.
Pretraining on ImageNet may provide performance gains.
Second, CIFAR-10 has fewer categories than ImageNet, which
consists of 1,000 categories. Learning on more complicated
tasks may enable more transferable representations. Finally,
the resolution of CIFAR-10 is less than that of ImageNet.
Specifically, CIFAR Images are 32×32 pixels, while ImageNet
images are 500 ×X pixels, where X denotes the width of a
rectangle. There is a pattern gap between large images and tiny
images, making the finetuning problem more challenging. We
examine the error rate. The representative residual networks
(e.g., ResNet50 [5] / ResNet101 [5] / ResNet152 [5] / Incep-
tionV2 [59] / VGG [60]) are chosen as our backbones. NTAA
is performed by employing the standard protocol [42].

To demonstrate the effectiveness of our NTAA, we explore
two representative standard transfer learning methods, i.e.,
full standard transfer learning and partial standard transfer
learning. Specifically, a network is first pretrained on the
ImageNet dataset. Then, for the full standard transfer learning,
we tune all the network weights on CIFAR-10; for the partial
standard transfer learning, only the network weights in the
high-level layers are tuned. Note that the architectures are keep
fixed for standard transfer learning, which is different from
our NTAA. Besides, another baseline is also introduced, i.e.,
training from scratch on CIFAR-10 without any pretraining
steps. The performances of the three baseline models are
presented in Table VI.

We have four observations from Table VI for all the
backbones. First, both the full and partial standard transfer
learning brings a clear gain when compared with training from
scratch (e.g., 3.90% / 3.72% vs. 6.61% for ResNet50). This
reflects the importance of pretraining network weights.

Second, the partial standard transfer learning has a slightly
better performance than the full standard transfer learning. We
believe this observation is of importance because it presents
insights into transfer learning. 1) the data volume of the target
domain is usually smaller than that of the source domain.
Consequently, the large network architecture may lead to
overfitting. 2) The network architecture can be divided into
a general part and a specific part. Loosely, the lower layers
may be general, while the high-level layers may be specific.
Therefore, fixing the low-level layers while finetuning the
high-level layers (i.e., partial standard transfer) leads to an
improvement.

Third, our NTAA surpasses both the full and partial stan-
dard transfer learning. For example, in ResNet50, our NTAA
achieves an error rate of 2.43%, which is 1.47% and 1.29%
lower than the full and partial standard transfer learning,
respectively. The superiority of our NTAA over the standard
transfer learning is attributed to the architecture adaptation.
Specifically, in our method, the general and specific part are
adaptively learned, while in partial standard transfer learning,
they are handcrafted and fixed.

Fourth, the depth of our NTAA is significantly less than
all baseline models (e.g., 33 vs. 50 in ResNet50), indicating
that our NTAA has a more efficient neural architecture. The
above observations verify the superiority of our NTAA over
the standard transfer learning pipelines.

Computational Complexity Both the search & training
process contain 600 epochs. The search takes 1.3 days on 4
GPUs. The training takes 1.9 days on a single GPU.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

TABLE VI: The comparison of NTAA and the standard transfer learning scheme.

Method ResNet50 ResNet101 InceptionV2 VGG19
Error Depth Error Depth Error Depth Error Depth

Train from scratch 6.61 50 6.53 101 4.27 - 7.09 19
weight pretraining full 3.90 50 3.85 101 3.79 - 6.58 19

and finetuning partial 3.72 50 3.71 101 3.63 - 6.55 19
NTAA 2.43 (±0.04) 33 2.39 (± 0.05) 65 2.30 (±0.05) - 6.33 (± 0.18) 13

TABLE VII: Age estimation & gender recognition on Adience.

Method Age Accuracy Gender Accuracy
Train from scratch 53.5% 93.8%

pretraining and finetuning 56.4% 94.1%
Levi Hassner [90] 44.1% 82.5%

LMTCNN [89] 44.3% 85.2%
WRN [91] 57.4% 93.9%

WRN* [92] 59.7% 94.6%
NTAA 64.3% 95.5%

D. Age Estimation & Gender Recognition

To investigate the effectiveness of our NTAA in more com-
plicated tasks, we adopt age estimation and gender recognition
tasks on Adience [88], which is very challenging due to the
extreme variations, e.g., low resolution, occlusions, pose and
expression variations. Adience consists of 26k unconstraint
images of 2,284 person IDs, whose ages range from 0 to 60+.
Images in the Adience dataset are taken in the wild, making
the evaluation on Adience meaningful.

We use the standard evaluation protocol on Adience to
measure the top-1 accuracy [89]. Also, following the standard
settings, we do not use an additional face alignment technique.
In contrast, the official aligned version of faces are used in our
experiment. The images are resized to 256×256, and a random
crop or a center crop of 224 × 224 pixels are applied during
the training and testing, respectively.

We use the recently proposed EfficientNet-B4 [3] as the
initial architecture α0. As EfficientNet-B4 [3] uses MBConv
as its cell, which does not contain a vanilla convolution,
we revise our search space A by replacing the 5 × 5 and
3 × 3 vanilla convolution in the candidate operation sets
with 5 × 5 and 3 × 3 separate convolution. We train the
EfficientNet-B4 [3] for 150 epochs with a cosine learning
rate schedule. The batch size is set as 32. Two baselines are
adopted, including training from scratch and standard transfer
learning. For training from scratch, the initial learning rate
is set as 0.1. For standard transfer learning and our NTAA,
the initial learning rate is set as 3e-3. Experimental results in
Table VII shows that our NTAA has a large gain over the two
baselines, especially on age estimation (64.3% vs. 56.4% for
NTAA vs. weight pretraining and finetuning), verifying the
effectiveness of our NTAA. We further compare our method
with four state-of-the-art methods, including Levi Hassner
[90], LMTCNN [89], WRN [91], and WRN* [92]. We can
see that our NTAA outperforms the competitors by a large
margin (e.g., 4.6% improvement on age estimation). These
comparisons demonstrate the effectiveness of our NTAA.

E. Unsupervised Domain Adaptation

We finally validate the effectiveness of our method on
the unsupervised domain adaptation task on DomainNet [93],

TABLE VIII: Domain adaptation on DomainNet.

Metric Models Accuracy p-value
Single Best Source Only 26.4 (±0.70) 0.0066+ NTAA Source Only 28.4 (±0.68)

Source Combine Source Only 32.9 (±0.54) 0.0002+ NTAA Source Only 34.5 (±0.60)
Oracle AlexNet 58.0 (±0.53) 0.0079+ NTAA AlexNet 61.1 (±0.54)

which is currently the largest benchmark for multi-source
unsupervised domain adaptation. Specifically, it contains about
0.6 million images belonging to 6 domains and 345 categories.
The problem definition of standard transfer learning is clearly
different from that of domain adaptation. Standard transfer
learning means that a backbone of a model is trained on a
large source dataset and is finetuned on a small target dataset.
Note that the source task is different from the target task in
standard transfer learning. For example, the source task is
image classification, while the target task is age recognition.
Both the source domain and the target domain have training
data and testing data. In contrast, domain adaptation means
that a model is trained on the source domain and is tested
on the target domain. In domain adaptation, the source task
is the same as the target task (e.g., both are 1000-category
classification). Moreover, the source domain only contains the
training set, and the target domain only contains test set.

The difference between standard transfer learning and do-
main adaptation makes it infeasible to compare our method
and domain adaptation method on DomainNet. Although we
cannot compare our method with domain adaptation methods,
we can compare our method with the single-source method,
single-best method, and the oracle method on Domain. As
shown in Table VIII, our method outperforms the baselines
remarkably. The present study confirms that our method is
promising in closing the domain gap. This indicates a promis-
ing direction in searching for architecture in unsupervised
domain adaptation tasks, which is our future work.

F. Visualization of Architecture Adaptation.

To investigate how the same architecture is transferred to
different domain tasks, we visualize the target architectures
α∗ in the three tasks (CIFAR-10, CIFAR-100, and CUHK03),
respectively. These tasks share the same initial architecture
α0, which is a ResNet50 pretrained on ImageNet. Due to
the space limitation, only the 3rd to 10th layers are exhibited
in Fig. 4, where we have two observations. First, transferred
to the smaller dataset or simpler task, the architectures are
towards shallower. For example, CIFAR-10 is the simplest task
among the above benchmarks, which has only ten categories.
Therefore the transferred architecture in CIFAR-10 is shallow-
est (only one layer). On the contrary, the more challenging

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

person re-identification task on CUHK03 with 767 training
categories has a deeper transferred architecture (4 layers).
Second, in addition to removing the redundant depth, different
adaptation tasks prefer different new operations. For instance,
the CIFAR-10 task enables more noise disturbing operations
than the others. This may attribute to the tiny volume of
CIFAR-10 dataset, which requires noise disturbing as data
augmentation. The above observations confirm the fact that
each domain task with a distinct recognition target may need
different levels/paths of feature hierarchy, as our NTAA does.

G. Analysis of Stableness and Robustness

To validate whether our results are statistically significant,
we perform the architecture adaptation for four times and
report the means and the error bars. The results are reported in
Table VI and VIII. We can find that our method is stably better
than the competing methods. For example, using ResNet50
on CIFAR-10, our NTAA outperforms the method of weight
pretraining and finetuning by 1.3%; but the error bar of our
method is only 0.04%. This statistical significance verifies the
robustness and effectiveness of our method.

Apart from the means and error bars, another useful tool
to eliminate the randomness in our conclusion is a statistical
test. Although no previous work reports a statistical test, a
statistical test really does provide new insight into the NAS.
It can serve as a new metric to evaluate NAS’s effectiveness,
which is quite important to the NAS community. To conduct
a statistical test, we perform the following five steps. Step
1: State the null hypothesis, i.e., we have H0: There is no
significant difference between our method’s performance and
the competitors. Step 2: State the alternate hypothesis, i.e.,
we have H1: There is a significant difference between our
method’s performance and the competitors. Step 3: State the α
value. We use the default 0.05 as the α value. Step 4: Perform
variance test in the domain adaptation task on DomainNet.
Although the mean accuracy of our NTAA is significantly
higher than the competitors, we still challenge whether the
superiority of our NTAA is caused by randomness. Therefore,
we decide to perform a variance test. We run the architecture
transfer experiments four times and use the results to calculate
the p-values of the variance test 2. The statistical test results
are reported in Table VIII. As shown, the p-values are 0.0066,
0.0002, and 0.0079. Step 5: Since the p-values are less than
the α level 0.05, we have to reject the null hypothesis and
accept the alternate hypothesis. This indicates that our NTAA
is robust and effective.

VI. CONCLUSION

In this paper, we have proposed a novel learning frame-
work called neural transfer and architecture adaptation (i.e.,
NTAA), which is capable of jointly adapting network weights
and network architecture into new domains. The principled
analysis has been discussed to explain the reason behind the
effectiveness of NTAA by comparing it with the existing
solutions to NAS. We have highlighted that preserving the

2This can be simply done by using the anova1 function in MATLAB.

joint distribution of the network architecture and weights is of
importance. Our experiments show that the proposed NTAA
outperforms state-of-the-art methods on four computer vision
tasks while achieving remarkable accuracy improvements.

In future work, a promising direction is to develop a more
powerful inference such as the stochastic Monte Carlo algo-
rithms for exploring the optimal neural network architectures.

ACKNOWLEDGEMENT

This work was supported in part by the National Key
Research and Development Program of China under Grant
No. 2018YFC0830103, in part by Major Project of Guangzhou
Science and Technology of Collaborative Innovation and In-
dustry under Grant 201605122151511, in part by the National
Natural Science Foundation of China (NSFC) under Grants
61876045 and 61836012, and in part by Zhujiang Science
and Technology NewStar Project of Guangzhou under Grants
201906010057.

REFERENCES

[1] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” in The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, 2020, pp. 13 001–13 008.

[2] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in ICCV, 2015, pp. 3730–3738.

[3] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in ICML, 2019, pp. 6105–6114.

[4] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, 2017, pp. 2261–2269.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[6] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, 2020, pp. 10 778–10 787.

[7] Z. Zhang, C. Lan, W. Zeng, X. Jin, and Z. Chen, “Relation-aware global
attention for person re-identification,” in 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, 2020, pp. 3183–3192.

[8] Y. Chen, T. Yang, X. Zhang, G. Meng, C. Pan, and J. Sun, “Detnas: Neu-
ral architecture search on object detection,” CoRR, vol. abs/1903.10979,
2019.

[9] R. Quan, X. Dong, Y. Wu, L. Zhu, and Y. Yang, “Auto-reid: Searching
for a part-aware convnet for person re-identification,” in 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, 2019, pp. 3749–3758.

[10] C. Liu, L. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and F. Li,
“Auto-deeplab: Hierarchical neural architecture search for semantic
image segmentation,” in IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, 2019, pp. 82–92.

[11] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in ICLR, 2017.

[12] G. Wang, J. Lai, W. Liang, and G. Wang, “Heterogeneous model
transfer between different neural networks,” 2021. [Online]. Available:
https://openreview.net/forum?id=7xArdn FKtV

[13] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, 2020, pp. 9726–9735.

[14] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in AAAI, 2019, pp. 4780–4789.

[15] C. Li, J. Peng, L. Yuan, G. Wang, X. Liang, L. Lin, and X. Chang,
“Block-wisely supervised neural architecture search with knowledge
distillation,” in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020,
2020, pp. 1986–1995.

https://openreview.net/forum?id=7xArdn_FKtV

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

[16] C. Sciuto, K. Yu, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating the
search phase of neural architecture search,” in ICLR, 2020, pp. 7132–
7141.

[17] A. Yang, P. M. Esperança, and F. M. Carlucci, “NAS evaluation
is frustratingly hard,” in 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
2020.

[18] G. E. Hinton, T. J. Sejnowski et al., “Learning and relearning in
boltzmann machines,” Parallel distributed processing: Explorations in
the microstructure of cognition, vol. 1, pp. 282–317, 1986.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of Conference
on Neural Information Processing Systems 2012, December 3-6, 2012,
Lake Tahoe, Nevada, United States, 2012, pp. 1106–1114.

[20] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in NIPS, 2015,
pp. 91–99.

[21] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” TPAMI, vol. 40, no. 4, pp.
834–848, 2018.

[22] Y. Wu and K. He, “Group normalization,” in ECCV, 2018, pp. 3–19.
[23] X. Shu, J. Tang, G. Qi, Z. Li, Y. Jiang, and S. Yan, “Image classification

with tailored fine-grained dictionaries,” IEEE Trans. Circuits Syst. Video
Technol., vol. 28, no. 2, pp. 454–467, 2018.

[24] J. Tang, X. Shu, Z. Li, G. Qi, and J. Wang, “Generalized deep transfer
networks for knowledge propagation in heterogeneous domains,” ACM
Trans. Multim. Comput. Commun. Appl., vol. 12, no. 4s, pp. 68:1–68:22,
2016.

[25] X. Shu, G. Qi, J. Tang, and J. Wang, “Weakly-shared deep transfer net-
works for heterogeneous-domain knowledge propagation,” in Proceed-
ings of the 23rd Annual ACM Conference on Multimedia Conference,
MM ’15, Brisbane, Australia, October 26 - 30, 2015, 2015, pp. 35–44.

[26] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June
1-6, 2018, Volume 1 (Long Papers), 2018, pp. 2227–2237.

[27] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding with unsupervised learning,” in Technical report,
OpenAI, 2018.

[28] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[29] S. N. Tran and A. S. d’Avila Garcez, “Adaptive transferred-profile
likelihood learning,” in 2016 International Joint Conference on Neural
Networks, IJCNN 2016, Vancouver, BC, Canada, July 24-29, 2016, 2016,
pp. 2687–2692.

[30] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, “Progressive neural architecture search,” arXiv
preprint arXiv:1712.00559, 2017.

[31] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic neural architec-
ture search,” ICLR, 2019.

[32] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Va-
jda, Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search,” arXiv preprint
arXiv:1812.03443, 2018.

[33] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” ICLR, 2019.

[34] K. Maziarz, A. Khorlin, Q. de Laroussilhe, and A. Gesmundo,
“Evolutionary-neural hybrid agents for architecture search,” CoRR, vol.
abs/1811.09828, 2018. [Online]. Available: http://arxiv.org/abs/1811.
09828

[35] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet:
Platform-aware neural architecture search for mobile,” CoRR, vol.
abs/1807.11626, 2018. [Online]. Available: http://arxiv.org/abs/1807.
11626

[36] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” in ICML, 2018.

[37] C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hut-
ter, “Nas-bench-101: Towards reproducible neural architecture search,”
ICML, 2019.

[38] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single
path one-shot neural architecture search with uniform sampling,” CoRR,
vol. abs/1904.00420, 2019.

[39] C. Jiang, H. Xu, W. Zhang, X. Liang, and Z. Li, “SP-NAS: serial-
to-parallel backbone search for object detection,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, 2020, pp. 11 860–11 869.

[40] B. Baker, G. Otkrist, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in ICLR, 2017.

[41] H. Cai, C. Gan, and S. Han, “Once for all: Train one network and
specialize it for efficient deployment,” in NIPS, 2019.

[42] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” ICLR, 2019.

[43] X. Chu, B. Zhang, J. Li, Q. Li, and R. Xu, “Scarletnas: Bridging the gap
between scalability and fairness in neural architecture search,” CoRR,
vol. abs/1908.06022, 2019.

[44] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” in Machine
Learning, Proceedings of the Twenty-Fifth International Conference
(ICML 2008), Helsinki, Finland, June 5-9, 2008, 2008, pp. 1096–1103.

[45] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, 2016, pp. 2536–2544.

[46] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part III, 2016, pp.
649–666.

[47] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual repre-
sentation learning by context prediction,” in 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015, 2015, pp. 1422–1430.

[48] M. Noroozi and P. Favaro, “Unsupervised learning of visual represen-
tations by solving jigsaw puzzles,” in Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Netherlands, October 11-
14, 2016, Proceedings, Part VI, 2016, pp. 69–84.

[49] X. Chen, H. Fan, R. B. Girshick, and K. He, “Improved baselines with
momentum contrastive learning,” CoRR, vol. abs/2003.04297, 2020.

[50] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” CoRR,
vol. abs/2002.05709, 2020. [Online]. Available: https://arxiv.org/abs/
2002.05709

[51] J. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya,
C. Doersch, B. Á. Pires, Z. D. Guo, M. G. Azar, B. Piot,
K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own
latent: A new approach to self-supervised learning,” CoRR, vol.
abs/2006.07733, 2020. [Online]. Available: https://arxiv.org/abs/2006.
07733

[52] X. Chu, B. Zhang, R. Xu, and J. Li, “Fairnas: Rethinking evaluation
fairness of weight sharing neural architecture search,” CoRR, vol.
abs/1907.01845, 2019.

[53] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: one-shot model
architecture search through hypernetworks,” in ICLR, 2018.

[54] Anonymous, “Exploring single-path architecture search ranking
correlations,” in Submitted to International Conference on Learning
Representations, 2021, under review. [Online]. Available:
https://openreview.net/forum?id=J40FkbdldTX

[55] P. Mianjy and R. Arora, “On convergence and generalization of dropout
training,” in Advances in Neural Information Processing Systems 33 pre-
proceedings (NeurIPS 2020), 2020.

[56] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

[57] R. V. Soelen and J. W. Sheppard, “Using winning lottery tickets in
transfer learning for convolutional neural networks,” in International
Joint Conference on Neural Networks, IJCNN 2019 Budapest, Hungary,
July 14-19, 2019, 2019, pp. 1–8.

[58] A. S. Morcos, H. Yu, M. Paganini, and Y. Tian, “One ticket to win
them all: generalizing lottery ticket initializations across datasets and
optimizers,” CoRR, vol. abs/1906.02773, 2019.

[59] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR, 2015, pp. 1–9.

[60] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

http://arxiv.org/abs/1811.09828
http://arxiv.org/abs/1811.09828
http://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1807.11626
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.07733
https://openreview.net/forum?id=J40FkbdldTX

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 15

[61] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani,
“Person re-identification by symmetry-driven accumulation of local
features,” in CVPR. IEEE, 2010, pp. 2360–2367.

[62] D. Gray and H. Tao, “Viewpoint invariant pedestrian recognition with an
ensemble of localized features,” in ECCV. Springer, 2008, pp. 262–275.

[63] D. Li, X. Chen, Z. Zhang, and K. Huang, “Learning deep context-aware
features over body and latent parts for person re-identification,” in CVPR,
2017, pp. 384–393.

[64] L. Zhao, X. Li, Y. Zhuang, and J. Wang, “Deeply-learned part-aligned
representations for person re-identification.” in ICCV, 2017, pp. 3239–
3248.

[65] S. Bai, X. Bai, and Q. Tian, “Scalable person re-identification on
supervised smoothed manifold,” in CVPR, 2017.

[66] Y. Sun, L. Zheng, W. Deng, and S. Wang, “Svdnet for pedestrian
retrieval,” in IEEE International Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, 2017, pp. 3820–3828.

[67] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled samples generated by
GAN improve the person re-identification baseline in vitro,” in ICCV,
2017, pp. 3774–3782.

[68] C. Su, J. Li, S. Zhang, J. Xing, W. Gao, and Q. Tian, “Pose-driven deep
convolutional model for person re-identification,” in ICCV. IEEE, 2017,
pp. 3980–3989.

[69] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” arXiv preprint arXiv:1703.07737, 2017.

[70] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature
learning for person re-identification,” in CVPR, 2019.

[71] Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz, “Joint
discriminative and generative learning for person re-identification,” in
CVPR, 2019, pp. 2138–2147.

[72] R. Hou, B. Ma, H. Chang, X. Gu, S. Shan, and X. Chen, “Interaction-
and-aggregation network for person re-identification,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, 2019, pp. 9317–9326.

[73] M. Zheng, S. Karanam, Z. Wu, and R. J. Radke, “Re-identification with
consistent attentive siamese networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, 2019, pp. 5735–5744.

[74] W. Yang, H. Huang, Z. Zhang, X. Chen, K. Huang, and S. Zhang,
“Towards rich feature discovery with class activation maps augmentation
for person re-identification,” in IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019, 2019, pp. 1389–1398.

[75] B. Chen, W. Deng, and J. Hu, “Mixed high-order attention network for
person re-identification,” in 2019 IEEE/CVF International Conference
on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, 2019, pp. 371–381.

[76] C. Tay, S. Roy, and K. Yap, “Aanet: Attribute attention network for
person re-identifications,” in IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, 2019, pp. 7134–7143.

[77] J. Guo, Y. Yuan, L. Huang, C. Zhang, J. Yao, and K. Han, “Be-
yond human parts: Dual part-aligned representations for person re-
identification,” in 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, 2019, pp. 3641–3650.

[78] J. Miao, Y. Wu, P. Liu, Y. Ding, and Y. Yang, “Pose-guided feature
alignment for occluded person re-identification,” in 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, 2019, pp. 542–551.

[79] K. Zhu, H. Guo, Z. Liu, M. Tang, and J. Wang, “Identity-guided human
semantic parsing for person re-identification,” in Proc. of European
Conference on Computer Vision (ECCV), 2020.

[80] Z. Zhuang, L. Wei, L. Xie, T. Zhang, H. Zhang, H. Wu, H. Ai, and
Q. Tian, “Rethinking the distribution gap of person re-identification with
camera-based batch normalization,” in Proc. of European Conference on
Computer Vision (ECCV), 2020.

[81] X. Jin, C. Lan, W. Zeng, Z. Chen, and L. Zhang, “Style normalization
and restitution for generalizable person re-identification,” in Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020, 2020.

[82] J. Zhou, B. Su, and Y. Wu, “Online joint multi-metric adaptation from
frequent sharing-subset mining for person re-identification,” in Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020, 2020.

[83] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond part models:
Person retrieval with refined part pooling (and a strong convolutional
baseline),” in ECCV, 2018, pp. 480–496.

[84] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
person re-identification: A benchmark,” in ICCV, 2015.

[85] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
CVPR, 2018, pp. 7132–7141.

[86] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing
neural network for person re-identification,” in CVPR, 2014, pp. 152–
159.

[87] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” , 2009.

[88] E. Eidinger, R. Enbar, and T. Hassner, “Age and gender estimation of
unfiltered faces,” IEEE TIFS, vol. 9, no. 12, pp. 2170–2179, 2014.

[89] J. Lee, Y. Chan, T. Chen, and C. Chen, “Joint estimation of age and
gender from unconstrained face images using lightweight multi-task
CNN for mobile applications,” in IEEE 1st Conference on Multimedia
Information Processing and Retrieval, MIPR 2018, Miami, FL, USA,
April 10-12, 2018, 2018, pp. 162–165.

[90] G. Levi and T. Hassner, “Age and gender classification using convolu-
tional neural networks,” in CVPR Workshops, 2015, pp. 34–42.

[91] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in BMVC,
2016.

[92] P. R. López, D. V. Dorta, G. Cucurull, J. M. Gonfaus, F. X. Roca, and
J. G. Sabaté, “Pay attention to the activations: a modular attention mech-
anism for fine-grained image recognition,” CoRR, vol. abs/1907.13075,
2019.

[93] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment
matching for multi-source domain adaptation,” in 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, 2019, pp. 1406–1415.

Guangrun Wang is currently a Ph.D. candidate
in the School of Data and Computer Science, Sun
Yat-sen University, Guangzhou, China. He received
the B.E. degree from Sun Yat-sen University in
2014. From 2015 to 2017, he was a visiting scholar
with the Department of Information Engineering,
The Chinese University of Hong Kong. His research
interests include machine learning and computer
vision. He is the recipient of the 2018 Pattern
Recognition Best Paper Award and one ESI Highly
Cited Paper.

Liang Lin (M’09-SM’15) is a Full Professor at
Sun Yat-sen University. He served as the Executive
R&D Director and Distinguished Scientist of Sense-
Time Group from 2016 to 2018, taking charge of
cutting-edge technology transfer into products. He
has authored or co-authored more than 200 papers
in leading academic journals and conferences (e.g.,
TPAMI/IJCV, CVPR/ICCV/NIPS/ICML/AAAI). He
is an associate editor of IEEE Trans, Human-
Machine Systems, and IET Computer Vision. He
served as Area Chairs for numerous conferences

such as CVPR and ICCV. He is the recipient of numerous awards and honors
including Wu Wen-Jun Artificial Intelligence Award for Natural Science,
ICCV Best Paper Nomination in 2019, Annual Best Paper Award by Pattern
Recognition (Elsevier) in 2018, Best Paper Dimond Award in IEEE ICME
2017, Google Faculty Award in 2012, and Hong Kong Scholars Award in
2014. He is a Fellow of IET.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 16

Rongcong Chen received his B.E. degree from
the School of Mathematics, Sun Yat-sen University,
Guangzhou, China, in 2017, where he is currently
pursuing his Master’s Degree in computer science
with the School of Data and Computer Science. His
current research interests include computer vision
and machine learning.

Guangcong Wang is pursuing a Ph.D. degree in
the School of Data and Computer Science, Sun Yat-
sen University, Guangzhou, China. He received the
B.E. degree in communication engineering from Jilin
University (JLU), Changchun, China, in 2015. His
research interests are computer vision and machine
learning. He has published several works on person
re-identification, weakly supervised learning, semi-
supervised learning, and deep learning.

Jiqi Zhang is currently an undergraduate student
in the School of Data and Computer Science, Sun
Yat-sen University, Guangzhou, China. His research
interests include machine learning and computer
vision.

	I Introduction
	II Related Work
	III Methodology
	III-A Preliminaries
	III-B Neural Transfer and Architecture Adaptation
	III-C Extension to Unsupervised Learning
	III-D Implementation Details

	IV Principled Analysis on the Effectiveness
	IV-A Ineffectiveness of NAS
	IV-B Effectiveness of NTAA
	IV-C Advantage of NTAA from the Practical Perspective

	V Experiments
	V-A Comparison with Weight Pretraining and Finetuning in Person Re-Identification
	V-B Effectiveness Analysis in Person Re-Identification
	V-C Image Classification
	V-D Age Estimation & Gender Recognition
	V-E Unsupervised Domain Adaptation
	V-F Visualization of Architecture Adaptation.
	V-G Analysis of Stableness and Robustness

	VI Conclusion
	References
	Biographies
	Guangrun Wang
	Liang Lin
	Rongcong Chen
	Guangcong Wang
	Jiqi Zhang

