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Abstract
Transferable deep representations for visual domain adaptation (DA) provides a route to learn from labeled source images to
recognize target images without the aid of target-domain supervision. Relevant researches increasingly arouse a great amount
of interest due to its potential industrial prospect for non-laborious annotation and remarkable generalization. However, DA
presumes source images are identically sampled from a single source while Multi-Source DA (MSDA) is ubiquitous in
the real-world. In MSDA, the domain shifts exist not only between source and target domains but also among the sources;
especially, themulti-source and target domainsmay disagree on their semantics (e.g., category shifts). This issue challenges the
existing solutions for MSDAs. In this paper, we propose Deep CockTail Network (DCTN), a universal and flexibly-deployed
framework to address the problems. DCTN uses amulti-way adversarial learning pipeline tominimize the domain discrepancy
between the target and each of the multiple in order to learn domain-invariant features. The derived source-specific perplexity
scores measure how similar each target feature appears as a feature from one of source domains. The multi-source category
classifiers are integrated with the perplexity scores to categorize target images. We accordingly derive a theoretical analysis
towards DCTN, including the interpretation why DCTN can be successful without precisely crafting the source-specific
hyper-parameters, and target expected loss upper bounds in terms of domain and category shifts. In our experiments, DCTNs
have been evaluated on four benchmarks, whose empirical studies involve vanilla and three challenging category-shift
transfer problems in MSDA, i.e., source-shift, target-shift and source-target-shift scenarios. The results thoroughly reveal
that DCTN significantly boosts classification accuracies in MSDA and performs extraordinarily to resist negative transfers
across different MSDA scenarios.

Keywords Multi-source domain adaptation · Cross-domain visual recognition · Domain shift · Category shift · Open-set
domain adaptation · Diverse transfer scenarios

1 Introduction

Considerable advances in deep representation learning have
recently improved the state-of-the-art approaches on a huge
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variety of machine vision problems (Krizhevsky et al. 2012;
Ren et al. 2015; Long et al. 2015; Liang et al. 2016; Xu
et al. 2015; Johnson et al. 2017; Ho and Gopalan 2014;
Kan et al. 2014; Zhang et al. 2019). These eyeball-catching
prospects can be greatly attributed to the availability of large
scale labeled datasets for supervised learning (Deng et al.
2009; Cordts et al. 2015). Nevertheless, these successes are
challenged by domain shift problem (Pan and Yang 2010),
since the traditional assumptions that their training dataset
and test set follow the same distributions are often violated.
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This poses a major obstacle in adapting predictive models
across domains and leads to a performance degradation on
target domains (Gretton et al. 2009).

To mitigate the negative effects caused by domain shift,
(unsupervised) Domain Adaptation (DA) (Pan and Yang
2010) arises to reduce the discrepancy between the source
and target domain distributions, typically by exploring
domain-invariant data structures or transferable represen-
tations, which endows the classifier with the consistent
classification ability on source and target examples (Tzeng
et al. 2015; Bousmalis et al. 2017; Gebru et al. 2017).
Most existing DA approaches are preconditioned on a sin-
gle source where labeled examples are identically drawn
from an individual source underlying distribution. This
setup is widely admitted in traditional DA researches, while
merely reflects a tip of the iceberg of realistic transfer
circumstances.

In a variety of real-world cases, we often witness data
drawn from multiple source domains. For instance, for
the sake of illness typicality, medical images are con-
ventionally collected from hospitals all over the country
in a long time. This application circumstances produce a
large amount of datasets that should be treated as a set
of multiple sources. Consequently, Multi-Source Domain
Adaptation (MSDA) has increasingly grabbed consider-
able attention in many applications (Yang et al. 2007;
Duan et al. 2012; Jhuo et al. 2013a), since reasonable
approaches might achieve more transfer learning perfor-
mance
gains.

Compared with the deep single-source DA with wit-
nessed progresses, scarce researches have been committed
to deep MSDA due to complex domain shift conditions.
Especially, domain shift exists not only between a target
and each source, but also across multiple source domains.
MSDA presents in an extensive variety of scenarios arous-
ing serious negative transfer influences (Pan and Yang 2010)
due to the category shifts across domains. For instance,
the categories distributed across multiple source domains
may not guarantee their class consistencies (Fig. 1b). In
this source-category-shift MSDA scenario, the shifts of
multi-source domains and their categories should be taken
into account. Another case is derived from the popular
single-source open-set DA research (Busto and Gall 2017),
where some part of categories in a target domain are not
included in source domains. These “outlier” categories are
traditionally unified as a negative class called “unknown”
(Fig. 1c). In our paper, this MSDA-extended open-set setting
is termed target-category-shift MSDA scenario. More gener-
ally, these two caseswould simultaneously occur and leads to
source-target-category-shift MSDA scenarios (Fig. 1d). All
these category-shift cases deteriorate the domain-shift dam-

ages to most existing DA algorithms and are nontrivial to
solve.

Attempting to overcome the domain-shift and category-
shift challenges, in this paper, we present Deep CockTail
Network (DCTN), a flexibly-deployed adversarial learning
framework to address MSDA problems across diverse trans-
fer scenarios. DCTN encapsulates category classifiers for
multi-source domains respectively, then the target category
predictor is formulated by integrating their category prob-
abilistic predictions on a target example with their source-
target perplexity scores. In particular, each of the perplexity
scores represents the domain-feature similarity between the
target and each source, thus, referring to the outcome each
source-target domain discriminator produces (source-target
domain discriminators are deployed to separate features
from the target and each source. Like other adversarial DA
approaches, domain discriminators of DCTN facilitates to
learn a domain-invariant feature extractor in a multi-source-
domain condition). Themore similarity between a source and
the target on their features, the more convincing this source-
specific classifier predicts the target example.Hence each tar-
get feature would be fed into multi-source classifiers, whose
predictions are reweighted by the source-specific perplex-
ity scores to classify this target example. Analogous to make
cocktail, it inspires our framework dubbed byDeep CockTail
Network.

Theoretically, we compare DCTNwith themethods based
on source distribution weighted combining rule (Mancini
et al. 2009), where the target distribution is supposed to
be represented as the weighted linear combination of mul-
tiple source distributions. This old-school MSDA theory
provides an adaptation upper bound of expected classifica-
tion error on the target domain. However, the multi-source
weight combination involves with crafting a set of source-
specific hyper-parameters by experiences; thus, it could not
keep abreast of the current advancing approaches. DCTN
does not rely on this mixture assumption. In contrast, the
learning algorithm of DCTN employs a multi-way adversar-
ial scheme to adaptively decide the multi-source balancing
rule according to their source-target perplexity scores. The
DCTN target category prediction maintains an expected
loss upper bound underlying a reasonable DA approxi-
mation presumption, yet free of specifying multi-source
hyper-parameters. More importantly, it can be developed
to suit the cases of source and target category shifts in
MSDA.

Overall, our work mainly contributes in three aspects:

– We investigate four representative MSDA scenarios, i.e.,
vanilla, source-category-shift, target-category-shift and
source-target-category-shift, and proposeDeep CockTail
Network (DCTN), to solve these challenging and com-
plex MSDA problems by a universal framework.

123



2330 International Journal of Computer Vision (2021) 129:2328–2351

Fig. 1 A brief illustration of Multi-Source (unsupervised) Domain
Adaptation (MSDA) scenarios and their hierarchical relation. a Vanilla
MSDAscenarios considermulti-source and target examples that exactly
share their categories. b Multi-source data are collected from source
domains where domain shift and categorical misalignment co-exist
between the source domains. c Multiple sources meet an open-set tar-
get domain (Saito et al. 2018) including some “unknown” categories

non-existent in the sources. d Source and target category shifts (b, c)
simultaneously occur in this scenario. Note that, b is derived from our
original version (Xu et al. 2018); c, d are first taken into account in this
paper. MSDA problems in these scenarios can be settled by our DCTN.
(For simplicity, we only reveal the cases with two source domains. Best
viewed in color.)

– Under two assumptions derived from our learning algo-
rithm, we develop the bound of the target instance loss in
DCTN. It explains why DCTN can success without rely-
ing on the source-distribution-weighted-combing rule.
Based on this, we develop the upper bounds of target
expected loss across all aforementioned MSDA scenar-
ios.

– We conduct extensive experiments on fourMSDAbench-
marks including diverse source-to-target transfer cases in
four different category shift scenarios. Our experimen-
tal results demonstrate the superiority and versatility of
DCTN.

The remainder of this paper can be concluded as fol-
lows. Related works are described in Sect. 2. Details of
problem setup on diverse MSDA problems are in Sect. 3
and our method is presented in Sect. 4. Experimental
results are given in Sect. 5. We conclude this paper in
Sect. 6.

2 RelatedWork

2.1 Domain Adaptation with a Single Source

Provided a source domain with ground truth and target
domainwithout labels, unsupervised domain adaptation (Pan
and Yang 2010; Gong et al. 2014; Shao et al. 2014; Xu
et al. 2016) aims to learn a model well-performed on a target
domain. Since the source and target belong to different distri-
butions, the technical problem in UDA is how to mitigate the
domain shift between them. Inspired by the two-sample test
(Gretton et al. 2007), various statistical discrepancy mea-
sures can be directly applied to regulate the domain shift
during optimization, e.g., shallow-model-based TCA (Pan
et al. 2011), JDA (Baktashmotlagh et al. 2016), deep-model-
based DAN (Long et al. 2015), CMD (Zellinger et al. 2017),
WMMD(Yan et al. 2017), RTN (Long et al. 2016), STN (Yao
et al. 2019), in which diverse statistical measures are used as
the regularizer to learn domain-invariant features.

Adversarial learning behaves effectively to learn more
transferable representations (Ganin et al. 2017; Tzeng et al.
2017). It determines a couple of networks and trains them
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in the opposite direction: a domain discriminator mini-
mizes the classification error to distinguish samples from
source and target, while domain mapping learns transfer-
able representations by confusing the domain discriminator.
These so-called adversarial DA algorithms are classed into
three branches. The first alternatively trains discriminator
and feature extractor so that the extractor is encouraged to
directly confuse the source and target. Namely, the proba-
bilistic discriminative decisions about learned transferable
representations should be consistent with [ 12 , 1

2 ], no matter
which domain the examples come from. The second pro-
poses a reversal gradient layer, which flips the gradient values
after its back-propagated from the discriminator. The oper-
ation allows a joint learning of discriminator and feature
extractor and is easy for implementation, which makes it
very popular in the adversarial domain adaptation. Finally,
GAN-style adversary (Goodfellow et al. 2014) also suits a
domain adaptation setting (Tzeng et al. 2017), which mostly
performs as an asymmetric transfer pipeline. Due to the flex-
ibility of adversarial learning framework, recent researches
about adversarial DA perform superiorly in visual recogni-
tion across domains (Long et al. 2016; Gebru et al. 2017)
and tasks (Motiian et al. 2017) and transfer structure learn-
ing (Bousmalis et al. 2017; Hoffman et al. 2016).

Besides these mainstream branches of DA approaches,
there are also other diversemethods to learn domain-invariant
features: semi-supervisedmethod (Saito et al. 2017), domain
reconstruction (Ghifary et al. 2016), duality (Haeusser et al.
2017), alignments (Fernando et al. 2013; Zhang et al. 2017;
Sun et al. 2016), manifold learning (Gong et al. 2012), tensor
methods (Koniusz et al. 2017; Lu et al. 2017), feature norm
adaptation (Xu et al. 2019), etc.

2.2 Multi-source Domain Adaptation

The UDA approaches mentioned above mainly consider tar-
get domain versus single source domain. If multiple sources
are available, the domain shifts among sources should also
be considered. A-SVM (Yang et al. 2007) leverages the
ensemble of source-specific classifiers to fine-tune the tar-
get categorization model; The Domain Adaptation Machine
(Duan et al. 2012) introduces domain-dependent regularizer
term based on a smoothness assumption, and enforces target
classifier to make a similar decision to the relevant source
classifier. Domain reconstruction method (Jhuo et al. 2013a)
enforces different source domains to have jointly low ranks,
which forms a compact source set close to the target domain.

MSDA also develops with some theoretical supports
(Mancini et al. 2009; Blitzer et al. 2008; Ben-David et al.
2010). Blitzer et al. (2008) firstly provide the learning bound
for MSDA. Mancini et al. (2009) claims that an ideal tar-
get hypothesis can be represented by a distribution weighted
combination of source hypotheses. This methodology is so-

called source distribution weighted combining rule, closely
meaning that if the relations between target and each source
can be discovered, we are able to usemultiple source-specific
classifiers to obtain an ideal target class prediction.

Very recently, some approaches based on neural nets
attempt to address the MSDA problem. Zhao et al. (2018)
developed a new adversarial learning paradigm by iteratively
constructing zero-sum games between the target and one of
the source domains. Mancini et al. (2018) proposes a multi-
DA normalization layer that aligns multi-source domains in
the target. They indeed have facilitated the progresses in
MSDAwhereas presented several limitations. Inspired byXu
et al. (2018) and Peng et al. (2019) develops a discrepancy-
based DA algorithm to reweight the importances of multiple
domains. They have performed promising results in a vanilla
MSDA problem but if category shifts simultaneously exist
across domains, which commonly appears in practice, they
become unavailable.

2.3 Category-Shift Problems in Domain Adaptation

Most existing DA literatures consider DA problems in a
close-set DA setup, where source domain and target domain
exactly share their categories. This transfer precondition sim-
plifies the analysis of most DA algorithms, but is unable
to handle the situation where source and target categories
are different. Increasingly, a variety of researches in turn
focus on addressing these more challenging problems. For
examples, Kim et al. (2020) suggests a new DA paradigm
to address potential data-leakage issues. Cao et al. (2018)
and Cao et al. (2018) investigate the partial DA problem
where target categories presents as a proper subset of the
source categories. Distinctly, Saito et al. (2018) and Busto
and Gall (2017) investigate the open-set DA problem where
some of target categories are unknown in the source domain1.
(You et al. 2019) investigates universal domain adaptation
(UDA), i.e., the DA problem concluding the aforementioned
two scenarios. These existing category-shift transfer scenar-
ios, however, rely on a “single-source-domain” setting. In
contrast, diverse category shifts usually appear in practical
MSDA problems, which is the focus of this paper.

3 Overview of MSDA

In unsupervised domain adaptation, images from target
domain lack of annotation, hampers a straightforward usage
of supervised learning to acquire a classifier adaptive to
target distribution. Source domain offers categories infor-
mation via a circuitous route. Nevertheless, category-shift

1 More precisely, Saito et al. (2018) and Busto andGall (2017) consider
two different open-set problems.

123



2332 International Journal of Computer Vision (2021) 129:2328–2351

problem is aggravated inMSDAcomparedwith single source
domain adaptation. In this paper, we explore category-shift
problem forMSDA and summarize four representative adap-
tation scenarios, i.e., vanilla, source-category-shift, target-
category-shift and source-target-category-shift MSDAs. In
the following section, we will elaborate these four adapta-
tion scenarios in a principle way.

In the context of multi-source domain adaptation, source
domain images {(X j ,Y j )}Mj=1 are drawn from M different

source domains with underlying distributions {Pj (x, y)}Mj=1,

respectively. X j = {x j i }N j
i=1 represents N j images from

source j in total and Y j = { y j i }N j
i=1 corresponds to their

labels. Target domain images X(t) = {x(t)
i }N (t)

i=1 are drawn
from underlying distribution Pt (x, y)without label observa-
tionY(t). ForMSDA, images from source and target domains
are utilized for training; test images (Xtest ,Ytest ) are only
drawn from the target to evaluate the classifier adaptation
performance.

3.1 Vanilla MSDA

C j denotes a category set of labels in Y j for source domain
j , C (s) denotes the category set of the source domain, and
C (t) is the unobserved category set of our target domain. In
vanillaMSDA scenario, the category sets of multiple sources
({Ck}Mk=1) and the target (C

(t)) are consistent, namely,C (s) =
Ck (∀k ∈ [M] = {1, 2, . . . , M}) and C (t) holds C (s) =
Ck = C (t). This scenario presumes M source and target
domains customized by consistent category semantics.

3.2 Category-Shift Scenarios in MSDA

In a vanilla scenario, images darwn from different domains
share the samecategory set.Distinguished from this, category-
shift MSDA scenario advocates that the category sets from
different domains maybe also different. To this end, C (s) =
Ck = C (t) (∀ k ∈ [M] ) is generalized to suit different
scenarios.

Specifically, in the source-category-shift scenario,C (s) =
Ck = C (t) (∀ k ∈ [M] ) turns to C j �= Ck and
C (t) = ⋃M

j=1 C j . C j ∩ Ck indicates the public classes
between sources j and k. C j ∩ Ck �= C j ∪ Ck refers to the
source category shift. In the target-category-shift scenarios,
C (s) = ⋃M

j=1 C j = C (t) becomes C (s) = ⋃M
j=1 C j �= C (t).

Resumbling the spirit of the recent open-set single-source
DA researches (Busto and Gall 2017; Saito et al. 2018),
we consider a target-category-shift MSDA scenarios holding
C (s) = ⋃M

j=1 C j ⊂ C (t). The categories in C (t)/
⋃M

j=1 C j

are conventionally unified and treated as an “unknown” cat-
egory cu . The MSDA is supposed to preclude the target

examples belonging to cu = C (t)/
⋃M

j=1 C j and correctly

categorize the rest into {C j }Mj=1.
Finally, in source-target-category-shift scenario, the afore-

mentioned category shifts simultaneously occur.This encour-
ages us to address the both challenges by aunified framework.

4 Deep CockTail Networks (DCTNs)

Irrespective of either vanilla or the other multi-source trans-
fer scenarios, MSDAs remain challenging to tackle and
moreover, few researches are investigated under deep DA
background. In this section,we introduceDeepCockTail Net-
work (DCTN), an adversarial domain adaptation framework
specified for MSDA. The framework is tailor-designed to
address a vanilla MSDA problem yet ought to be noted that,
DCTN could also be flexibly deployed to adapt the target
domains in the source-category-shift, target-category-shift
and source-target-shift-open-set scenarios by amildly recon-
figuring the learning pipeline.

In Sect. 4.1, we elaborate the basic pipeline of DCTN
and the principle how DCTN predicts target data categories
in diverse scenarios. In Sect. 4.2, we present the alternat-
ing learning algorithm of DCTN. In Sect. 4.3, we unveil the
theoretical insight behind DCTN.

4.1 Framework

DCTN consists of four components: three subnets, i.e., fea-
ture extractor, (multi-source) domain discriminator, (multi-
source) category classifier, and an unlearnable cocktail target
category predictor to classify target examples (Fig. 2).

Feature extractor F incorporates a deep convolution
neural network as the backbone, and maps images from M
sources and the target into a common feature space. Apart
fromweight-shared architecture for all the domains, the joint
adversarial learning with subsequent domain discriminators
contributes F to learning both target-source-specific rela-
tions and domain-invariant features.

(Multi-source) domain discriminator D is built uponM
source-specific discriminators {Dj }Mj=1 for adversary. Given
an image x, the domain discriminator D receives the fea-
ture F(x), and then each source-specific discriminator Dj

(∀ j ∈ [M]) classifies respectively whether x originates from
the source j or the target. The data flow coming from each
source does not trigger those discriminators belonging to
other source domains,while for the data flow fromeach target
instance x(t), the domain discriminator D yields M source-
specific discriminative outcomes {Dj (F(x(t)))}Mj=1 between
the target and theM sources, respectively. They are leveraged
to update the discriminator D, and provide the target-source
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Fig. 2 The overview of Deep CockTail Network (DCTN). Our frame-
work receives multi-source instances with annotated ground truth and
adapts to classify the target samples. We confine the problem with only
source j and k for simplicity. (i) The feature extractor maps target,
source j and k into a common feature space. (ii) The category classifier
receives target feature and produces the j th and kth classifications based
upon the categories in source j and k respectively. (iii) The domain dis-
criminator receives features from source j , k and target, then offers the
kth advesary between target and source k, as well as the j th advesary

between target and source j . The j th and kth advesary provide the
source- j ,k perplexity scores to reweight the j th and kth classifications
correspondingly. (iv) The cocktail target category predictor integrates
all reweighted classification results, so as to predict the target examples’
categories across diverse category-shift scenarios. Since the samples
from multi-source domains merely produce the training losses, their
flows (outputs) are omitted to mainly illustrate the whole process of
identifying target samples for simplicity. (Best viewed in color.)

perplexity scores {s(x(t); F, Dj )}Mj=1 defined as

s(x(t); F, Dj ) = − log(1 − Dj (F(x(t)))). (1)

s(x(t); F, Dj ) implies how similar x(t) is as a sample drawn
from source j .

(Multi-source) category classifierC is amulti-output net
composed ofM source-specific category classifiers {C j }Mj=1.
Each classifier is a softmax classifier configured by the cate-
gory set that corresponds to its source. The category classifier
takes an image mapping from feature extractor as input. For
each image from source j , only the gradient derived fromC j

is activated for the parameter updating. For a target image x(t)

instead, all source-specific classifiers provide M categoriza-
tion results {C j (F(x(t)))}Mj=1, contributing to the parameters
updating of C .

Cocktail target category predictor is the key compo-
nent to categorize target examples. Specifically, given a target
sample x(t), our cocktail target category predictor takes its
source perplexity scores {s(x(t); F, Dj )}Mj=1 to re-weight

{C j (F(x(t)))}Mj=1, and then integrates them for classification.
Here we specify the classification principle in four MSDA
scenarios:

1. In a vanilla MSDA scenario, the category sets of a tar-
get domain and M source domains are consistent. Hence

target category predictor is formulated by re-weighting
source-specific classifier prediction with target-source
perplexity scores:

Ct (x(t)) :=
M∑

j=1

s(x(t); F, Dj )
∑M

k=1s(x
(t); F, Dk)

C j
(
F(x(t))

)
, (2)

where Ct (x(t)) denotes category probability forecast by
the target predictor, and each entry of Ct (x(t)) denotes
the integrated probability of x(t) belonging to a specific
category.

2. In category-shift MSDA scenarios, categories across M
source and a target domains are not always shared. There-
fore, we modify Eq. 2 to suit all cases. Specifically, each
source classifier is obligated to classify those categories
in its corresponding source. DCTN is expected to iden-
tify “unknown” cu excluded by categories of M-source
domains. To this, we activate all the source classifiers to
identify the target examples in cu . So Eq. 2 turns to

Ct (c|x(t)) :=
∑

C (t)
j

s(x(t); F, Dj )
∑

C (t)
k

s(x(t); F, Dk)
C j

(
c|F(x(t))

)
,

(3)
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where C j
(
c|F(x(t))

)
represents the softmax prediction

of the j th source classifier C j
(
F(x(t))

)
, i.e., the proba-

bility that x(t) belongs to c.
C (t)

j derived from C (t) in Eq. 2 further includes the

categories that M sources do not contain, e.g., C (t)
j =

C j ∪ {cu}. So C j
(
F(x(t))

)
turns into a (|C j | + 1)-slot

softmax category predictor, in order to synchronically rec-
ognize the categories in C j and the “unknown” cu . Note
that only the sources including cwould join the perplexity
re-weighting to classify c.

4.2 Learning

DCTN follows an alternative adaptation pipeline given a pre-
trained feature extractor and category classifier. At the very
beginning of learning, we adopt source images to train the
feature extractor F and the category classifier C . Those net-
works and the cocktail target classifier then predict categories
for all target images2 and annotate those with high confi-
dences. Thus, we obtain the pre-trained feature extractor and
category classifiers via fine-tuning with labeled multi-source
images and pseudo-labeled target images. With pre-training,
DCTN employs a multi-way adversary scheme to learn a
mapping shared by all domains; then the feature extractor
and the category classifiers are jointly trained with multi-
source labeled and target pseudo-labeled images. These two
stages repeat until the maximal epoch is reached.

4.2.1 Multi-way Adversarial Adaptation

Multi-way adversarial adaptation in DCTN is proposed to
obtain domain-invariant features. It is formulated as follows:

min
F

max
D

V (F, D;C) = Ladv(F, D) + Lcls(F,C), (4)

where the first term denotes our multi-way adversarial loss
and the second term indicates cross-entropy losses for source-
specific classification; C are frozen to offer stable values in
the gradients. This multi-way adversarial loss are defined as

Ladv(F, D) = 1

M

M∑

j

[
Ex∼X j [log Dj (F(x))]

+ Ex(t)∼Xt
[log(1 − Dj (F(x(t))))]

]
.

(5)

The optimization based on Eq. 5 is solely used to train D.
Since the feature extractor F learns the mapping with respect
to the multiple source domains and the target domain, the
domain distributions simultaneously changes in adversary,

2 Since the domain discriminator hasn’t been trained, we take the uni-
form distribution simplex weight as the perplexity scores.

which results in an oscillation that spoils our feature extrac-
tor. Regarding such concern, when source and target feature
mappings share their architectures, the domain confusion can
be introduced to substitute the adversarial objective (Tzeng
et al. 2017), which performs stably to learn F . Inspired by
this, we have obtained the multi-domain confusion loss:

Ladv(F, D) = 1

M

M∑

j

[
Ex∼X jLc f (x; F, Dj )

+ Ex(t)∼Xt
Lc f (x(t); F, Dj )

]
,

(6)

where

Lc f (x; F, Dj ) = 1

2
log Dj (F(x))

+ 1

2
log(1 − Dj (F(x))).

(7)

Thus, DCTN updates its feature extractor F by optimizing
the objective Eq. 4 w.r.t. Eq. 6.

Online hard source-domain batch mining When sam-
pling mini-batches, the multi-way adversarial adaptation
stochastically receives m examples from M sources respec-
tively to update the feature extractor F in each iteration.
However, the images drawn from different source domains
would be not always helpful for boosting the adaptation, and
as the model training proceeds, redundant source images
would turn to draw back the previous adaptation perfor-
mance. Thus we design a simple yet effective hard domain
batch mining technique to improve the training efficiency.
Specifically, in each iteration, DCTN randomly draws m
target examples {x(t)

i }mi=1 and m source examples for each
source, i.e., {{x1,i }mi=1, · · · , {xM,i }mi=1}. So there are totally
m(M + 1) images for training DCTN per iteration. We
keep the discriminator training as described in Eq. 4. As
for feature extractor training, we independently consider
the adversary between the target and each source. Given
this,

∑m
i {− log Dj (F(x j,i )) − log[1 − Dj (F(x(t)

i ))]} can

be viewed as the “difficulty” degree to distinguish x(t)
i from

m images of the source j . Therefore, if F performs worst
to transform target features to confuse the source j∗, it
leads to j∗ = argmax

j∈[M]
∑m

i {− log Dj (F(x j i )) − log[1 −
Dj (F(x(t)

i ))]}. Based upon the domain confusion loss, we
use the source j∗ and the target examples in the mini-batch
to train the feature extractor F . This technique is concluded
by Algorithm 1.

4.2.2 Target Discriminative Adaptation

Resembling the spirit of existingwork about adversarialDAs,
the multi-way adversarial adaptation process does not con-
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Algorithm 1Mini-batch Learning via online hard source-domain
batch mining

Input:Mini-batch {x(t)
i , {x j i , y j i }Mj=1}mi=1 sampled from Xt and

{(X j ,Y j )}Mj=1 respectively; feature extractor F ; domain discrimi-
nator D; category classifier C .
Output: Updated F ′.
1: Determine source j∗ ∈ [M], where

j∗ = argmax
j

∑m
i − log Dj (F(x j i ))−log[1−Dj (F(x(t)

i ))];

2: Compute L
j∗
adv

= ∑m
i Lc f (x j∗,i ; F, Dj∗) +

Lc f (x
(t)
i ; F, Dj∗);

3: Replace Ladv in Eq. 4 withL j∗
adv

and update F by Eq. 4.
4: return F ′ = F .

Algorithm 2 Learning algorithm for DCTN

Input: N source labeled datasets {X j ,Y j }Mj=1; target unlabeled
dataset Xt ; initiated feature extractor F ; multi-source category
classifier C and domain discriminator D; confidence threshold γ ;
entropy threshold ζ ; maximal adversarial iteration β.
Output: well-trained feature extractor F∗, domain discriminator
D∗ and multi-source category classifier C∗.
1: Pre-train C and F
2: while not converged do
3: Multi-way Adversarial Adaptation:
4: for 1:β do
5: Sample mini-batch from {X j }Mj=1 and Xt ;
6: Update D by Eq. 4;
7: Update F by Algorithm 1;
8: end for
9: Target Discriminative Adaptation:
10: Samples X(p)

t ⊂ Xt with pseudo labels Y(p)
t ;

11: Update F and C by Eq. 9.
12: end while
13: return F∗ = F;C∗ = C/CR; D∗ = D.

sider the category variation during learning. Nomatter which
MSDAscenario is considered,DCTNundergoes the identical
adversarial process. Though it is able to produce domain-
invariant features, it does not insure their abilities to classify
a target domain. Ben-David et al. (2010) demonstrate that, to
accommodate a source classifier in the target, DA algorithms
requires the category classifier working well on different
domains. But in case of a variety of MSDA scenarios, their
classifiers should account for the categorical mis-alignment
acrossM sources and the target, to prevent the damage caused
by the non-consistent category sets across M sources and the
unobserved categories (“unknown”) in the target domain.

To achieve a universal target category predictor, we incor-
porate target examples to learn classifiable features with
source data via discriminatively fine-tuning {C j }Mj=1. We
develop a switchable strategy to select and annotate target
samples. To this, the feature extractor F and multi-source
classifiers {C j }Mj=1 are trained with multi-source labeled

samples and these pseudo-labeled target examples. In par-
ticular, we use the target category predictor obtained in the
previous iteration to annotate each target sample.Afterwards,
the strategy selects suitable target examples X(p)

t and anno-
tate them with pseudo labels Y(p)

t .
Specifically, DCTN incorporates two criteria to identify

target samples with high confidences and low uncertainties,
respectively. First, for each target sample, DCTN considers
the category with the highest prediction probability accord-
ing toEq. 3. If the probability is larger than a threshold γ > 0,
this target samplewouldbe selected as a high-confidence can-
didate. Second, DCTN further takes the classfication entropy
of Eq. 3 to identify the candidates with low uncertainties. In
vanilla and source-category-shift scenarios, only the target
samples with high confidences and low uncertainties would
get pseudo labels and join the fine-tuning. In the scenarios
with target category shifts, DCTN additionally incorporate
the target sampleswith low uncertainties and categorize them
into the unknown class cu . The pseudo-labeling strategy is
summarized as follows

y(t) =

⎧
⎪⎨

⎪⎩

1c=argmax
C s∪{cu }

{Ct (c|x(t))}
Ent(Ct (x(t))) < ζ and

Ct (c|x(t)) > γ

1cu Ent(Ct (x(t))) ≥ ζ,

(8)

where 1c denotes the one-hot representation of the label w.r.t.
the category c. Ent(Ct (x(t))) denotes the target category pre-
diction entropy of x(t). If x(t) does not satisfy Eq. 8, it would
be ignored in the discriminative adaptation phase. The dis-
criminative adaptation objective is defined as

min
F, C

Lcls(F,C) =
M∑

j

E(x, y)∼(X j ,Y j )

[
L (C j (F(x)), y)

]

+ E
(x(t), ŷ(t)

)∼(X(p)
t ,Y(p)

t )
⎡

⎣
M∑

j=1

L (C j (F(x(t))), ŷ(t)
)

⎤

⎦ ,

(9)

whereL denotes the cross-entropy loss between predictions
and (pseudo) labels; (X(p)

t ,Y(p)
t ) represent the selected target

data and their pseudo labels, which are leveraged to update
F and {C j }Mj=1.

The hyper-parameters γ and ζ are very important in our
annotation strategy. For γ , DCTN incorporates the threshold
close to 1 in order to ensure the high prediction probability
to the pseudo label of each selected target example dur-
ing training. While it does not suit ζ . Concretely, after the
first iteration in the alternative learning, some target images
would be selected as belonging to the unknown classes,
which further join to fine-tune the feature extractor, enabling
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each source-classifier to identify the unknown target classes.
As the unknown classes can be gradually identified by our
source-classifiers, their entropy value would become lower
than those in the initial stage. A fixed threshold is not able
to detect this change. To this, if DCTN uses a low entropy
threshold ζ , the scheme will mistreat more known-class
images as unknown classes; while if DCTN uses a high
entropy threshold, the number of selected unknown-class tar-
get images would progressively decrease, even leading to no
images selected into the unknown class for discriminative
adaptation in the later stages. The both cases would harms
the final performance of DCTNs. To overcome this problem,
DCTN tend to choose a top x%. It implies that ζ is a vir-
tual threshold and no matter how the training progresses, the
uncertain target samples will be selected in a certain number.
The detailed setup of γ and ζ is found in the “Appendix”.

4.3 Theoretical Analysis

In this section, we dive deeper into DCTN from a theoretical
perspective.

We first provide some notation and a brief introductin
of distribution weight combining rule, which our method
is inspired from. However, we find it needs to craft some
source-specific hyper-parameters and is insuitablewhen neu-
ral networks are basic models. Therefore, we develop a
newmethodology connected with DCTN. By choosing more
appropriate assumptions, it derives the learning adaptation
upperbounds with regards to different MSDA problems.

4.3.1 Reviewing Distribution Weighted Combining Rule

Let {P j }Mj=1 and Pt denote source and target distribu-

tions3, respectively. Given an instance x, {P j (F(x))}Mj=1
and Pt (F(x)) denote the probabilities of x drawn from
{P j }Mj=1 andPt , respectively. Following source distribution
weighted combining rule (Mancini et al. 2009), the target dis-
tribution denotes amixture ofmulti-source distributions with
the coefficients by normalized source distributions weighted
by an implicit simplex � = {λ : λ j ≥ 0,

∑M
j=1 λ j = 1}Mj=1,

namely, Pt (F(x)) = ∑M
c∈Ck

λkPk(F(x)). For simplicity,

we consider the vanilla MSDA case so that C (t) = Ck ,
∀k ∈ [M]. Under the assumption in Mancini et al. (2009),
an ideal target classifier Ct (c|x(t)) is derived by integrating
source classifiers {C j (c|F(x(t)))}Mj=1:

Ct (c|x(t)) =
M∑

j=1

λ jP j (F(x(t)))

Pt (F(x(t)))
C j (c|F(x(t))). (10)

3 Since each sample x corresponds to an unique class y, {P j }Mj=1 and

Pt can be viewed as an equivalent embedding from {Pj (x, y)}Nj=1 and
Pt (x, y) that we have discussed.

Therefore we frame it into DA theory to further give its inter-
pretation. In more specific,X represents the input (feature)
space; f : X → R denotes the target function to learn (refer
to the labels); h : X → R denotes the hypotheses inH with
respect to a specific underlying distribution (correspond to
the classifier); L : R × R → R denote a classification loss
function. The MSDA learning objective function is formu-
lated as

min
h∈H

L (P, h, f ) = Ex∼P [L(h(x), f (x))], (11)

where according to the definition of {P j }Mj=1 and Pt , x
denote the feature of x that x ∼ P(F(x)). We would like
to write it as x ∼ P(x) in our analysis. Suppose M source
hypotheses {h1, · · · , hM } correspond to {P1, · · · ,PM } and
thus, for all j ∈ [M], L (P, h, f ) ≤ ε, (ε > 0), source
distribution weight combining rule holds an upper bound of
target expected loss:

Proposition 1 (Mancini et al. 2009) Given a target distri-
bution Pt as a mixture Pλ of multiple source distributions
{P j }Mj=1 w.r.t.,λ, the expected loss of its mixture hypoth-
esis hλ is at most ε w.r.t. any target function f , i.e.,
L (Pλ, hλ, f ) ≤ ε, where

Pt (x) = Pλ(x) =
M∑

j=1

λ jP j (x), ∀λ ∈ �, (12)

and

hλ(x) =
M∑

j=1

λ jP j (x)

Pt (x)
h j (x). (13)

The mixture hypothesis hλ corresponds to Ct (c|x(t)) in
Eq. 10. The theorem demonstrates that, if we are able to find
optimal hyper-parameters λ ∈ �, the target distribution can
be represented as a mixture of multiple source distributions
in Eq. 12, and the target classifier is certified to keep an upper
bound of target distribution.

Equation 10 becomes a common assumption in many
existing MSDA algorithms. However, � in practice is
implicit and always unobservable. In this case, it would
not be a good assumption to learn transferable features in
DCTN.

4.3.2 Instance DA Loss in DCTN

Similar with Eq. 10, our target predictor in DCTN integrates
M source-target relations with perplexity scores to reweight
and aggregate the target category predictions from M cate-
gory source classifiers. However, the multi-source perplexity
scores are completely built on the discriminative results
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according to the multi-way adversarial learning principle
instead of a presumed simplex in distribution weight com-
bining rule. AlthoughDCTNdoes not rely on the distribution
weight combining rule, some meaningful upper bounds are
also held to guarantee its target classification.

Specifically, according to Eqs. 2, 3, the cocktail target
category predictor refers to a hypotheses ht :

ht (x) =
M∑

j=1

− log(1 − D∗
j (x))

∑M
k=1 − log(1 − D∗

k (x))
h j (x), (14)

where D∗
j (∀ j ∈ [M]) denotes the optimal domain discrimi-

nator with respect to the source j and the target.
Distinct from Eq. 10 where F is fixed, multi-way adver-

sarial learning encourages DCTNs to learn domain-invariant
features.

Lemma 1 ∀ j ∈ [M], the optimal D j corresponds to

D∗
j (x) = P j (x)

P j (x) + Pt (x)
, (15)

so that

ht (x) =
M∑

j=1

log
(
1 + P j (x)

Pt (x)

)

∑M
k=1 log

(
1 + Pk (x)

Pt (x)

)h j (x). (16)

Note that ht is proposed to classify target examples in the fea-
ture space, i.e., xt = F∗(xt ), where F∗ is the optimal feature
extractor obtained by ourmulti-way adversarial learning, and
xt ∼ Xt . Since target feature xt is drawn from Pt , it is rea-
sonable to assume P j (xt ) ≤ Pt (xt ) (P j (xt ) denotes the
probability of the target feature xt drawn from the source
j). Due to the adversarial DA manner, for ∀ j ∈ [M], P j

has been enforced to approach Pt . Given this, it would be
appropriate to suppose a source-specific approximation ratio
α j ∈ (0, 1) to describe the source- j-to-target adaptation,
namely,

Assumption 1 (Multi-way adversarial learning) Provided a
well-trained feature extractor F∗, ∀ j ∈ [M], it corresponds
to an approximate ratio α j ∈ (0, 1) so that ∀xt ∈ X , there
exists α jPt (xt ) ≤ P j (xt ) ≤ Pt (xt ).

α jPt (xt ) ≤ P j (xt ) implies the upper bound of the dis-
crepancy betweenPt andP j in the optimized feature space.
α j closer to 1 indicates the source j and the target more dif-
ficult to tell apart. xt is drawn from a target domain rather
than a source domain. To this end, it is more reasonable to
assumeP j (xt ) ≤Pt (xt ). Beyond this, we also consider the
pseudo-labeling strategy in discriminative adaptation, lead-
ing to another assumption about pseudo-labeled examples:

Assumption 2 (Pseudo-labeled discriminative adapatation)
Given a well-trained feature extractor and M source-specific
classifiers, after each multi-way adversarial DA updates, tar-
get examples hold ρ ∈ (0, 1) as a probability of false labels
by the pseudo-labeling strategy.

which states ρ × 100%-at-least target examples whose cat-
egories are correctly forecast by our pseudo-annotating
strategy. Based upon the assumptions, we develop an upper
bound of a target classification error in terms of a given target
feature xt .

Proposition 2 Suppose the converged feature extractor F∗
satisfying Assumptions 1 and 2. Given a target feature xt , its
classification loss L (Pt , ht , f )(x) in DCTN can be upper
bounded as follows:

L (Pt , ht , f )(x) ≤ 1
∑M

k=1 log(1 + αk)

M∑

j=1

P j (x)L
(
h j (x), f (x)

)
,

(17)

where L
(
h j (x), f (x)

)
indicates an instance loss of the j th

source classifier.

The target instance bound of DCTN is composed of a target
feature’s bounds on all source classifiers with its correspond-
ing probabilities that it belongs to these sources. It indicates
that, the closer a target feature is located at a source center,
the higher its probability belongs to this source. So as long
as there is a source suits well to a target feature (the adver-
sarial learning and classification fine-tuning perform well in
this source), the DCTN performance would be guaranteed
since the classification bound and the probability that the
target feature belongs to this source have jointly dominated
the bound. It demonstrates the connection between DCTN
and those methods based on multi-source mixture assump-
tion to a target sample. However, DCTN do not rely on it
since the probability that a target sample belongs to a source
is based on their transferable features automatically obtained
by adversarial learning instead of pre-given by human expe-
rience.

4.3.3 Vanilla MSDA

Based on the target instance loss with respect to ht in Eq. 17,
we provide the MSDA generalization bound of DCTN in the
vanilla scenario:

Proposition 3 Suppose the converged feature extractor F∗
satisfying Assumptions 1 and 2. For all j ∈ [M], the source
maintainsL (P j , h j , f ) ≤ ε j , (ε j > 0). Then the expected
loss of a mixture hypothesis ht defined by Eq. 14 is at most
ε′ w.r.t. any target function f : L (Pt , ht , f ) ≤ ε′, where
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ε′ = 1
∑M

k=1 log(1 + αk)

⎛

⎝(1 − ρ)
∑

j∈[M]
ε j + Mρ

⎞

⎠ (18)

Equation 18 denotes a surrogate target loss produced by
the target category predictor [Eq.(2)], since it is not directly
implemented to train the feature extractor F and M-source
classifiers {C j }Mj=1. Equation 18 implies some guidances in
transfer learning. Concretely, if it holdsαk → 0, ∀k ∈ [M],
then ε′ → 0 and learning DCTN will fail. As long as
some of source domains successfully approach the target
(∃k ∈ [M], αk → 0), ε′ could provide a meaningful
upper bound to reflect the MSDA process. Especially, when
∀k ∈ [M] it holds αk → 1, Eq. 18 would turn into a normal
classification bound over the average ofM-source classifiers.
In terms of ρ, it shows the worst case about the mismatched
categories in MSDA.

4.3.4 Category-Shift MSDAs

Though Eq. 18 is discussed in a vanilla MSDA scenario,
the category predictor with source shifts also resembles the
spirit. Concretely, we found that

Ct (c|x(t)) =
∑

c∈C j

s(x(t); F, Dj )
∑

c∈C k
s(x(t); F, Dk)

C j
(
c|F(x(t))

)

=
∑

c∈C j
s(c|x(t); F, Dj )C j

(
c|F(x(t))

)

∑
c∈C k

s(c|x(t); F, Dk) + ∑
c/∈C k

s(c|x(t); F, Dk)

+
∑

c/∈C j
s(c|x(t); F, Dj )C j

(
c|F(x(t))

)

∑
c∈C k

s(c|x(t); F, Dk) + ∑
c/∈C k

s(c|x(t); F, Dk)

=
∑

j∈[M]

s(c|x(t); F, Dj )C j
(
c|F(x(t))

)

∑
k∈[M] s(c|x(t); F, Dk)

.

(19)

Given this, Eq. 3 could be viewed as the class-specific
learner extended from Eq. 2. If {Ct (c|x(t)), c = 1, ..., M}
denotes a simplex with respect to all classes in the target
domain, Eq. 3 turns into the special case of Eq. 2, thus, fol-
lowing the similar analysis.

In a MSDA problem with target category shifts, we con-
duct an upper bound of the target surrogate loss derived from
Proposition 3. Let ρ′ denote the proportion of target data
wrongly labeled by our unknown-class discovery strategy,

Proposition 4 Suppose the converged feature extractor F∗
satisfying Assumptions 1 and 2. For all j ∈ [M], the source
maintainsL (P j , h j , f ) ≤ ε j , (ε j > 0). Then the expected
loss of a mixture hypothesis ht defined by Eq. 14 is at most
ε′ w.r.t. any target function f : L (Pt , ht , f ) ≤ ε′, where

ε′ = (1−ρ′)(1−ρ)
∑

j∈[M] ε j +
(
(1−ρ′)ρ + ρ′)M

∑M
k=1 log(1+αk)

. (20)

Equation 20 is upper bounded by Eq. 18. The equality
is satisfied when ρ′ → 0, implying that no unknown
target example has been missed to detect with our entropy-
based “unknown” target example discovery strategy. In the
source-target-category-shift scenario, learning DCTN could
be considered as combining the analysis of the both category-
shift scenarios.

5 Experiments

In the context of MSDA, we evaluate the classification
accuracy of the target category predictor in experiments.
Four adaptation learning cases, i.e., vanilla, source-category-
shift, target-category-shift and source-target-category-shift
MSDA problems, will be thoroughly studied. Each empiri-
cal study is implemented with a single GTX GeForce 1080
GPU on PyTorch platform. More implementation details are
referred to the supplementary material.

5.1 Benchmarks andMeasures

Four widely-applied DA benchmarks, i.e.,Office-31 (Saenko
et al. 2010), ImageCLEF-DA, Digits-five and DomainNet
(Peng et al. 2019) are introduced for the vanillaMSDAexper-
imental evaluations.We follow the test routine in the previous
works (Long et al. 2015, 2016) for fair comparisons. For
reproducibility, the detailed dataset splits are released.4

– Office-31 is a classical benchmark for object recognition
with 31 categories. It has three datasets, A (Amazon), D
(DSLR), W (Webcam). There are 4652 images in total.

– ImageCLEF-DA is released for the ImageCLEF 2014
domain adaptation challenge. It covers 12 object cate-
gories (aeroplane, bike, bird, boat, bottle, bus, car, dog,
horse,monitor,motorbike, and people) shared in the three
famous real-world datasets, I (ImageNet ILSVRC 2012),
P (Pascal VOC 2012), C (Caltech-256). It includes 50
images in each class and totally 600 images for each
domain.

– Digits-five includes five digit image sets drawn from fol-
lowing public datasets,mt (MNIST ) (LeCun et al. 1998),
mm (MNIST-M) (Ganin et al. 2017), sv(SVHN) (Netzer
et al. 2011), up (USPS) and sy (Synthetic Digits) (Ganin
et al. 2017), respectively. We draw 25,000 for training
and 9,000 for testing in each set, i.e.,MNIST,MNIST-M,
SVHN and Synthetic Digits and choose the entire USPS
dataset as one domain with only 9,298 images.

– DomainNet includes six natural image domain sets. e.g.,
clp(Clipart), inf(Infograph),pnt(Painting),qdr(Quickdraw),

4 http://www.sysu-hcp.net/deep-cocktail-network/.
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rel(Real) and skt(Sketch), with 345 categories and
around 0.6 million images in total.

Note that, DCTN’s performance in the vanilla MSDA based
onDomainNet have been provided in Peng et al. (2019). They
usedAlexNet asDCTN’s backbone to comparewithM3SDA
in ResNet101. To this, we evaluate DCTN and M3SDA by
using the same backbones in Office-31, ImageCLEF and
Digits-five in the vanilla MSDA scenarios (Sect. 5.2). In
terms of DomainNet, we standardized their backbones with
ResNet101 and evaluated them when source and target cate-
gory shifts both exist (Sect. 5.4).

As for the evaluation results, we follow the standard eval-
uation protocols adopted in unsupervised domain adaptation
(Long et al. 2015; Ganin and Lempitsky 2015), and derive
them to suit differentMSDAscenarios (details are introduced
in the corresponding sub-sections). Generally, for Office-
31 and ImageCLEF-DA datasets, we use all labeled source
examples and all unlabeled target examples. We compare the
average classification accuracy of each method on three ran-
dom independent experiments, and report the standard error
of the classification accuracies by different experiments of
the same transfer task. For the digit-5 andDomainNet bench-
marks, we use all labeled source and unlabeled target training
samples, then evaluate its performance on target test sets.
We randomly run 3 times till the model converges and then
choose the best results to report the accuracy. Finally, we
perform model selection by tuning hyper-parameters using
transfer cross-validation.

5.2 MSDA inVanilla Scenarios

The existing work ofMSDA lack comprehensive evaluations
on complex real-world visual recognition. In our experi-
ment, we introduce three traditionalMSDA approaches, e.g.,
RDALR (Jhuo et al. 2013b), sparse FRAME (sFRAME)
(Xie et al. 2015), SGF (Gopalan et al. 2011) as the baselines
in Office-31, and two deep MSDA approaches Multi-Source
Batch Normalization (MSBN) (Mancini et al. 2018) and
M3SDA as the baselines in Office-31 and ImageCLEF-DA.
Besides, we also compare our DCTN with several single-
source visual DA baselines, which include the conventional
methods, e.g., Transfer Component Analysis (TCA) (Pan
et al. 2011) and Geodesic Flow Kernel (GFK) (Gong et al.
2012), aswell as several state-of-the-art deepDAapproaches:
Deep Domain Confusion (DDC) (Tzeng et al. 2015), Deep
Reconstruction-classification Networks (DRCN) (Ghifary
et al. 2016), Reversed Gradient (RevGrad) (Ganin and Lem-
pitsky 2015), Pixel Domain Adaptation (PixelDA) (Bous-
malis et al. 2017), Domain Adaptation Network (DAN)
(Long et al. 2015), Residual Transfer Network (RTN) (Long
et al. 2016) and Joint Adaptation Network (JAN) (Long et al.
2017). To achieve more comprehensive understanding about

multi-source transfer, we compare our DCTN with these
single source DA approaches by two different evaluation
protocols. (1) Single source: Since they belong to single-
source DA approaches, we directly report their single source
transfer results from their original paper. (2) Source com-
bine: multiple source domains are combined into a traditional
single-source versus target domain adaptation setup. It helps
to testify whether it would be able to boost the transfer per-
formance gains through augmenting another source domain.
Additionally, as baselines in the Source combine and multi-
source standards, we use all images from sources to train
backbone-based multi-source classifiers and apply them to
classify target examples. These Source only results confirm
whether our multi-source transfers are available (Negative
indicates failure of adaptation). For fair comparisons, deep
DA baselines in Office-31 and ImageCLEF-DA employ the
Alexnet backbones, and share the same backbone model (see
our “Appendix”) in Digits-five. The Source-combine results
are basically derived from the official codes provided by their
original papers.

Object recognitionWe report all transfer cases and com-
pare ourDCTNwith the baselines inTables 1 and2bolditalic,
bold and italic indicate the performance of top 1, 2 and
3, respectively). Table 1 shows DCTN yielding the com-
petitive results in the Office-31 transfer tasks A,W → D
and A,D → W, performing impressively in D,W → A.
More specifically,DCTNsignificantly exceeds the traditional
methods by a hugemargin andmostly outperforms the single-
source deep DA baselines, i.e., DAN, RTN, JAN, RevGred,
and their source-combine variants. It reveals that if MSDA is
treated as a single source DA problem by combining sources,
the performance gain can not be fully excavated. Through
the data transfer by DCTN, the potential power of multiple
sources are efficiently used to boost the adaptation perfor-
mance. Note that, MSBN is very competitive so that exceeds
DCTN by 0.3% in Office-31 on its averaged accuracy. But
MSBNdoes not generalize well across transfer cases: though
achieving remarkable improvement in D,W → A, MSBN
remains inconspicuous in A,W → D and A,D → W (fall
behind source-combine single sourceDAvariants). In a com-
parison, DCTN wins the top-3 performances in all transfer
cases and thus, demonstrates more significant generaliza-
tion ability. In ImageCLEF-DA, source-combineDAvariants
achieve more superior than their original single source mod-
els, whereas remains inferior to our DCTN. It validates
that, no matter whether the domain size is equal or not,
DCTN is able to learn more transferable and discriminative
features than the other baselines, from multi-source trans-
fer for natural image domains. MSBN completely fails in
ImageCLEF-DA and even appears negative transfer com-
pared with the source-only baseline.

Digit recognition Different from the previous visual
recognition benchmarks, Digit-five contains five domains in
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Table 1 Accuracy (%) on Office-31 in the vanilla MSDA setting

Standards Models W → D A → D A → W D → W D → A W → A Avg

Single source Source only 99.0 ± 0.2 63.8 ± 0.5 61.6 ± 0.5 95.4 ± 0.3 51.1 ± 0.6 49.8 ± 0.4 70.1

TCA 95.2 ± 0.0 60.8 ± 0.0 61.0 ± 0.0 93.2 ± 0.0 51.6 ± 0.0 50.9 ± 0.0 68.8

GFK 95.0 ± 0.0 60.6 ± 0.0 60.4 ± 0.0 95.6 ± 0.0 52.4 ± 0.0 48.1 ± 0.0 68.7

DDC 98.5 ± 0.4 64.4 ± 0.3 61.8 ± 0.4 95.0 ± 0.5 52.1 ± 0.6 52.2 ± 0.4 70.7

DRCN 99.0 ± 0.2 66.8 ± 0.5 68.7 ± 0.3 96.4 ± 0.3 56.0 ± 0.5 54.9 ± 0.5 73.6

RevGrad 99.2 ± 0.3 72.3 ± 0.3 73.0 ± 0.5 96.4 ± 0.3 53.4 ± 0.4 51.2 ± 0.4 74.3

DAN 99.0 ± 0.3 67.0 ± 0.4 68.5 ± 0.5 96.0 ± 0.3 54.0 ± 0.5 53.1 ± 0.5 72.9

RTN 99.6 ± 0.1 71.0 ± 0.2 73.3 ± 0.3 96.8 ± 0.2 50.5 ± 0.3 51.0 ± 0.1 73.7

JAN 99.5 ± 0.1 71.8 ± 0.2 74.9 ± 0.3 96.6 ± 0.2 58.3 ± 0.3 55.0 ± 0.1 76.0

A,W → D A,D → W D,W → A

Source combine Source only 98.1 ± 0.0 93.2 ± 0.0 50.2 ± 0.0 80.5

RevGred 99.0 ± 0.2 95.0 ± 0.4 55.1 ± 0.2 83.0

DAN 98.4 ± 0.4 95.9 ± 0.3 53.6 ± 0.9 82.5

RTN 98.5 ± 0.4 97.7 ± 0.3 48.9 ± 0.9 81.7

JAN 96.0 ± 0.4 94.0 ± 0.3 57.2 ± 0.3 82.4

Multi-source Source only 98.2 ± 0.0 92.7 ± 0.0 51.6 ± 0.0 80.8

RDALR 31.2 ± 1.3 36.9 ± 1.1 20.9 ± 0.9 29.7

sFRAME 54.5 ± 3.3 52.2 ± 1.4 32.1 ± 1.6 46.3

SGF 39.0 ± 1.1 52.0 ± 2.5 28.0 ± 0.8 39.7

MSBN 94.3 ± 0.4 94.0 ± 1.8 61.5 ± 1.5 83.1

M3SDA 95.3 ± 0.4 96.0 ± 0.8 35.5 ± 1.5 75.6

DCTN (ours) 100.0 ± 0.0 96.9 ± 0.1 55.4 ± 0.2 84.1

Bolditalic, bold and italic indicate top 1, 2, 3 performances (Best viewed in bolditalic, bold and italic)

Table 2 Accuracy on ImageCLEF-DA in the vanilla MSDA setting

Standards Models I → P C → P I → C P → C P → I C → I Avg

Single source Source only 66.2 ± 0.2 59.3 ± 0.5 84.3 ± 0.2 84.5 ± 0.3 70.0 ± 0.2 71.3 ± 0.4 73.9

RevGrad 66.5 ± 0.5 63.5 ± 0.4 89.0 ± 0.5 88.7 ± 0.4 81.8 ± 0.4 79.8 ± 0.5 78.2

DAN 67.3 ± 0.2 61.6 ± 0.3 87.7 ± 0.3 88.4 ± 0.2 80.5 ± 0.3 76.0 ± 0.3 76.9

RTN 67.4 ± 0.3 62.0 ± 0.2 89.5 ± 0.4 90.1 ± 0.1 82.3 ± 0.3 78.0 ± 0.2 78.4

JAN 67.2 ± 0.5 63.5 ± 0.4 91.3 ± 0.3 91.0 ± 0.4 82.8 ± 0.4 80.0 ± 0.2 79.3

I,C → P I,P → C P,C → I

Source combine Source only 68.3 ± 0.0 88.0 ± 0.0 81.2 ± 0.0 79.2

RevGrad 66.7 ± 0.3 90.2 ± 0.5 82.2 ± 0.1 79.7

DAN 69.1 ± 0.6 89.5 ± 0.4 81.3 ± 0.5 79.9

RTN 65.3 ± 0.6 87.9 ± 0.4 80.0 ± 0.5 77.7

JAN 68.7 ± 0.2 89.4 ± 0.2 82.6 ± 0.1 80.2

Multi-source Source only 68.5 ± 0.0 89.3 ± 0.0 81.3 ± 0.0 79.7

MSBN 64.4 ± 1.4 90.3 ± 0.7 78.0 ± 0.5 78.1

M3SDA 65.2 ± 2.1 87.6 ± 1.7 83.8 ± 0.5 78.7

DCTN (ours) 69.6 ± 0.0 91.0 ± 0.1 83.3 ± 0.2 81.3

Bolditalic, bold and italic indicate top 1,2,3 performances (Best viewed in bolditalic, bold and italic)
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total and is specified for multi-domain learning. We inves-
tigate 4-to-1 transfer results of DCTN within the following
domain shifts:mm,mt, sy, up → sv;mt, sv, sy, up → mm;
mt, sv, mm, up → sy andmt, sv, sy, mm → up, and pro-
vide the performance on average. We compare DCTN with
RevGred, DAN and their source-combine transfer variants.

Overall accuracies of the baselines are concluded in
Table 3. First of all, it is apparent that accuracies of single
source DA approaches fall behind their source-combine. It
implies that as M increases, multiple sources provide more
evidences to boost transfer performance gains than those
solely involved with a single source domain. However, we
observe that these source-combine typically perform worse
than their source-only except for mt, sv, sy, up → mm. In
other words, despite of potential benefits multiple sources
bring about, single source deep DA approaches conven-
tionally suffer negative transfer. Therefore, it can not take
advantage of the multi-source information into the model. In
comparison, DCTN consistently shows positive transfer per-
formances compared with the source only, and no matter of
source-combine and multi-source ensemble, DCTN always
outperforms the other baselines. In Table 4, the mean accu-
racy of our DCTN exceeds the second best by 3.6%.

5.3 MSDA in Source-Category-Shift Scenarios

In this subsection, we switch to evaluate DCTN in the cate-
gory shift scenario, where the multiple sources do not share
the same categories. We compare our DCTN with state-
of-the-art approaches, i.e., DAN and RevGred, under the
single-source and source-combine evaluation settings. Our
experiments are conducted in four MSDA transfer cases:
A,D→W andA,W→D inOffice-31; I,P→C andC,P→ I.

EvaluationprotocolSince source-category-shift is newly
proposed inMSDAscenario, benchmarks shouldbe amended
to to evaluate DA algorithms in this scenario. Specifically,
suppose that M sources involve C categories and Cp ≤ C
indicates the number of their public classes. Due to M = 2,
we consider the alphabetical order of the C classes and take
the first C−Cp

2 and last C−Cp
2 classes as the source-specific

private classes, then the rest proportion Cp
C denotes the pub-

lic classes. To unveil the comprehensive the baselines in this
scenario, we evaluate them by specifying the public-class
proportions Cp

C in {0, 0.3, 0.5, 0.7, 1}, respectively.
We elaborate three metrics to reflect the adaptation capa-

bility of baselines from different perspectives. First, classifi-
cation accuracy is to evaluate whether the baseline helps the
classifier address the domain/category shift problem.

Second, We employ a relative measure termed degraded
accuracy by examining how much performance drops when
source-category shift exists, which is simply calculated as

follows:

DA

(
Cp

C

)

= Acc

(
C ′

p

C
= 1

)

− Acc

(
Cp

C

)

, (21)

where Acc(
Cp
C ) denotes the accuracy when the public-class

proportion is Cp
C , and Acc(

C ′
p

C = 1) means the accuracy of
the model trained in vanilla MSDA scenario. The formula
showcases the performance drop caused by inconsistent cat-
egories of sources. The lower value means the algorithms
less affected by this negative effect, performing more robust
in this scenario. Finally, we employ transfer gain as the third
metric to further confirm the availability of transfer learning.
Transfer gain is calculated through subtracting the baseline’s
accuracy with the accuracy of Source only. A positive value
undoubtedly means that the transfer is available, while a neg-
ative value means the DA approach aggravates the domain
shift problem.

Results The experiments cover the four transfer cases.
Experimental results on these metrics (mean accuracy,
degraded accuracy and transfer gain), are illustrated in
Figs. 3, 4 and 5, respectively. DCTN always outperforms
other baselines in different proportions of public classes and
transfer cases. Generally, the improvement becomes larger
as the sources contain more public classes. In Fig. 4, it can
be observed that both Source only and DCTN behave neck
and neck in ImageCELF-DA.

Considering the relative enhancement measure, in Office-
31, Source-only even obtains lower DA values than DCTN.
Note that, it does not imply Source-only outperforms our
DCTN. In particular, compared with DA algorithms, i.e.,
DAN, RevGred and DCTN, Source-only undergoes fully-
supervised learning, therefore, is free of the risk caused by
category misalignment. To some extent, it should be treated
as a sort of consecutive strategy preferring the safety of
supervised training rather than adapting to a domain with-
out labeled data.

Considering the absolute performance shown in Fig. 3,
it is obvious that, Source-only are almost inferior to all DA
approaches.

Besides of superior transfer performance improvement,
another merit of DCTN is the strong resistance against the
potential negative transfer influences. As demonstrated in
Fig. 5, compared with other state of the art methods, DCTN
remain positive values in all transfer cases. Specifically, in
Office-31, DAN shows impressive transfer performance in
A,D → W with 0% public classes, but its performance
on transfer gain is quite unstable as the public class num-
ber becomes challenging. RevGred performs more stable
and better than DAN in general, whereas both of them
inevitably suffer from negative transfer and are wholly sup-
pressed by our DCTN. Similarly, in ImageCLEF-DA, DAN
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Table 4 Average accuracy (%) performances of the above baselines

Single source Single combine Multi-source

Source only RevGred DAN PixelDA Source only RevGred DAN PixelDA Source only MSBN M3SDA DCTN(ours)

53.9 60.9 54.5 35.7 80.4 80.0 79.7 51.0 75.4 78.3 82.7 84.0

Fig. 3 The absolute performances based upon the mean accuracies (%) of Source only, RevGread, DAN and DCTN on Office-31 and ImageCLEF-
DA under the MSDA category shift scenario. The curves denote their accuracies changing as the public classes across multiple sources increase.
Higher is better

Fig. 4 The relative performance (degraded accuraies, the accuracy
under vanilla scenario minus the the accuracy under category shift) of
Source only,RevGread,DANandDCTNonOffice-31 and ImageCLEF-

DA under MSDA category shift scenario. The curves denote how much
their accuracies drop as the public classes across multiple sources
increase. Lower is better

Fig. 5 The transfer gains (the accuracy of the baseline minus the accu-
racy of source only) of Source only, RevGread, DAN and DCTN on
Office-31 and ImageCLEF-DA under MSDA category shift scenario.

The negative valuemeans the negative transfer, which causes even heav-
iermodel damage than thosewithout domain adaptation.Higher is better
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Table 5 Accuracy (%) of each method based on the 10-shared-class target-category-shift scenario in Office-31

Evaluation Protocols W → D A → D A → W D → W D → A W → A Avg
OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

Single source OSVM 62.5 59.2 59.6 59.1 57.1 55.0 44.1 39.3 14.3 5.9 13.0 4.5 40.6 37.1

MMD+OSVM 62.0 58.5 47.8 44.3 41.5 36.2 34.4 28.4 9.9 0.9 11.5 2.7 34.5 28.5

BP+OSVM 49.7 44.8 40.3 35.6 31.0 24.3 33.6 27.3 10.4 1.5 11.5 2.7 29.5 22.7

ATI-λ+OSVM 92.7 – 72.0 – 65.3 – 82.2 – 66.4 – 71.6 – 75.0 –

RevGred-OP 96.8 96.9 76.6 76.4 70.1 69.1 94.4 94.6 62.5 62.3 82.3 82.2 80.4 80.2

A,W → D A,D → W D,W → A

Evaluation Protocols OS OS* OS OS* OS OS* OS OS*

DCTN (ours) 97.1 99.4 96.7 98.9 78.8 73.7 90.9 90.7

Best viewed in bolditalic, bold, italic

and RevGred still fail to achieve a promising transfer perfor-
mance. In particular, when the number of public classes is
small, their transfers even result in more model damages.

5.4 MSDA in Target-Category-Shift Scenarios

In this subsection, we evaluate DCTN in the target-category-
shift scenario. As we previously discussed, it can be viewed
as an open-set DA problem in a multi-source condition.
We follows the similar experimental setting by reconfigur-
ing Office-31 benchmark as Saito et al. (2018). Concretely,
we randomly choose the 10 classes in the Caltech dataset
(Gong et al. 2012) as the common classes of the sources
and target and the rest 21 are “unknown”. In order to fairly
comparewith the single-domain open-set DAmethods (Saito
et al. 2018; Busto and Gall 2017) (they can be treated as
Source-combine baselines in the target-shift experiments),
we follow their protocols. Specifically, we evaluate all base-
lines on three domains in Office-31 with different numbers
and for each domain, 1–11 classes are selected as shared
classes across sources and target; 21–31 classes are selected
as unknown target classes for identification. We accept the
routine adapted in Saito et al. (2018) so that 11–20 classes
have been abandoned.

Baselines For a fair comparison, we compare five state-
of-the-art open-set DA approaches with our DCTN in target-
category-shift MSDA scenario: OSVM, MMD + OSVM,
BP + OSVM, ATI-λ + OSVM, and RevGred-OP (Saito
et al. 2018). The first four methods are derived from Open-
set SVM (OSVM) (Busto and Gall 2017), which employ a
threshold to preclude the target examples probably belong-
ing to the “unknown” class. The last one is developed from
RevGred. Since they are not open-sourced, to ensure the fair-
ness in our comparisons, we directly report their published
performance results in the single source open-set scenario.

Evaluations Two evaluation measures, i.e., OS and OS*,
are used to evaluate DCTN and comparison methods. The
first testifies the methods on all target categories. The second

evaluates them on 10 known categories. As can be observed
in Table 5, in evaluation criteria OS and OS*, the single best
accuracies of RevGred-OP remain suppressed by DCTN in
A,W → D (97.1, 99.4 of DCTN better than 96.8, 96.9 of
RevGred-OP) and A,D → W (96.7, 98.9 of DCTN better
than 94.4, 94.6 of RevGred-OP).

5.5 MSDA in Source-Target-Category-Shift Scenarios

Source and target category shifts may concurrently appear.
How much the joint negative transfer they bring about and
whether it can be mitigated by MSDA algorithms, remain
underexplored. To this, we start the evaluation from the
experimental setup in MSDA with the target category shift,
then further vary the proportion of the public categories,
similar to the source-shift practice in Section 5.3. Our exper-
iments are conducted in four transfer cases: A,D → W and
A,W → D in Office-31; clp,pnt,dqr,rel,skt → inf and
clp,pnt,dqr,rel,inf → skr in DomainNet. For DomainNet,
we selected the categories with IDs over 250 and unify them
to construct the unknown class cu . Afterwards, we change
the proportions of public categories from 0%, 50% to 100%.
Since DomainNet is a very challenging benchmark. So we
slightly change the data-split routine in Office-31. Specif-
ically, in the case of 0%, we select 1–125 classes into the
first and second sources, 126–250 classes into the third and
fourth sources, then let the last source contains all 250 cate-
gories; in the case of 50%,we select 1–166 categories into the
first and second sources, 84–250 categoies into the third and
fourth sources, the last source contains all 250 categories. So
the public classes in DomainNet refers to those shared across
source 1,2 and source 3,4. This setting simplifies the complex
category relation across the five source domains, encourage
the evaluation to focus on the varation of performances across
baselines.

In terms of the baselines, distinct from what were evalu-
ated in the previous sub-section, we considered the compar-
ison between M3SDA and DCTN along with Source-only.
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Fig. 6 The accuracies (%) of Source only, M3SDA and DCTN based
on two transfer cases, in the source-target-category-shift scenario on
Office-31 (OS and OS* indicate two evaluation protocols in target cate-
gory shift scenarios). The curves denote their accuracies changing as the
percentage of public classes across multiple sources increases. Higher
is better

Fig. 7 The accuracies (%) of Source only, M3SDA and DCTN based
on two transfer cases, in the source-target-category-shift scenario on
DomainNet (OS and OS* indicate two evaluation protocols in target
category shift scenarios). The curves denote their accuracies changing
as the percentage of classes across multiple sources increases. Higher
is better

Since M3SDA and DCTN are both state-of-the-art MSDA
algorithms while with a similar spirit behind, thus, it would
be insightful whether DCTN and M3SDA can both prevent
the negative transfer or not. Since the original M3SDA algo-
rithm is unable to handle the unknown categories in the target
domain, for a fair comparison, we endowedM3SDAwith the
identical strategy inDCTN to screen the unknown-class sam-
ples. All baselines are evaluated based on the classification
accuracy under OS and OS* criterion.

The results are illustrated in Figs. 6 and 7. In A,W → D ,
clp,pnt,dqr,rel,inf → skr and clp,pnt,dqr,rel,skr→ inf,all
the accuracy curves of DCTN and MSDA performed as
upper envelopes of the Source-only, showing that the neg-
ative transfer effects have been eliminated in the cases.
Notably, DCTN keeps ahead in all cases and protocols.
But when the proportion of public classes decreases, the

transfer gains brought by DCTN and MSDA are gradually
minimized. Especially, when there are no public categories
across the source domains, the transfer improvement from
M3SDA has been completely erased in all transfer cases. In
A,D → W,M3SDA has suffered a serious negative transfer
effects in the OS and OS* protocols. Instead, DCTN is still
able to provide a transfer gain in this case. The results show-
case the superiority of DCTN in these tough category-shift
scenario.

5.6 Model Analysis

Feature visualization Take the task of A,D → W inOffice-
31 for example.

We visualize the DCTN activations before and after
adaptation, which is impressive to demonstrate that the
transferability learnt by DCTN. For simplicity, both source
domains have been separated to emphasize the contrast of
the target domain. As we can see in Fig. 8, compared with
those from source only, our activations from A → W and
D → W have shown good adaptation patterns. This indi-
cates DCTN can successfully learn transferable features with
multiple sources.Besides, the target activations becomemore
clear to categorize, which suggests that the features learned
by DCTN attains desirable discriminative property. Finally,
even if the multi-source transfer has been composed of hard
transfer task (A → W), DCTN is still able to adapt to target
domain without the performance degradation in D → W.

Ablation study The learning of DCTN consists of the
multi-way adversary and auto-labeling scheme. To further
reveal their function, we decompose DCTN into two vari-
ants: The adversarial-onlymodel excludes the pseudo-labels
and updates the category classifier with source samples. The
pseudo-only model forbids the adversary and categorize tar-
get samples with average multi-source results. As shown in
Fig. 9a, the accuracy of adversary behaves stably in each iter-
ation. But due to the lack of target class guidance, its final
performance hits a bottleneck. Without the adversary, the
accuracy of pseudo labels significantly drops and pulls down
the DCTN accuracy. It indicates that both adaptations coop-
erate with each other to achieve desirable transfer behaviors.
Diving deeper in Fig. 9b, the test accuracy and the pseudo
label accuracy show converged in the alternative learning,
which implicitly reveals the consistency between both adap-
tations. We also provide the ablation to the domain batch
mining technique (Table 6), which testifies the method’s effi-
cacy.
Pseudo-labeling strategyFrom the ablation above,we know
pseudo-labeled target samples are playing a key role of train-
ing a well-performed DCTN. So it is important to check
whether annotation strategy may improve other baseline. To
this, we evaluate DAN, RTN, JAN, RevGred (four single-
source DA algorithms with their source-combine results),
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Fig. 8 The t-SNE (Maaten and Hinton 2008) visulization of A,D → W. Green, black and red represent domains A, D and W respectively. We use
different markers to denote 5 categories, e.g., bookcase, calculator, monitor, printer, ruler. Best viewed in color

(a) (b) (c)

Fig. 9 Analysis: a the accuracies of DCTN, adversarial-only and pseudo-only models; b the accuracies of testing samples and pseudo-labeled
target samples; c the convergence performance on different losses. Best viewed in color

Table 6 Ablation study of
Algorithm 1 in Office-31

A,W → D A,D → W D,W → A Overlap Disjoint

w 100.0 ± 0.0 96.9 ± 0.1 55.4 ± 0.2 90.2 ± 0.1 82.9 ± 0.2

w/o 99.1 ± 0.3 96.3 ± 0.2 55.2 ± 0.2 89.4 ± 0.2 82.6 ± 0.1

Fig. 10 The comparison of different algorithms when they use and
don’t use pseudo-labeled target samples in training

MSBN, M3SDA and our DCTN (three MSDA algorithms)
independently when they are learned with and without using
our pseudo-labeling strategy. In Fig. 10, we observed that the
accuracies of all single-source approaches and MSBN have
been decreased, probably due to using a single classifier for
prediction. Instead, M3SDA and DCTN are benefited from
the pseudo-labeling strategy.
Convergence analysis As DCTN involves a complex learn-
ing procedure including adversarial learning and alternative
adaptation, we testify the convergence performance of dif-
ferent losses. In the process of hard transfer A → W, Fig. 9c
demonstrates that, despite deviation, the classification loss,
adversarial loss and test error gradually converge.

6 Conclusion

In this paper,we have explored the unsupervisedDA involved
with multiple sources challenged by domain shift and cat-
egory shift. Beside the vanilla MSDA transfer scenario,
we further investigate three other innovative and realistic
MSDA scenarios, where the category sets across multiple
sources and the target are assumed to be inconsistent. In
order to overcome these transfer challenges, we propose deep
cocktail network (DCTN), an adversarial DA framework to
obtain transferable and discriminative features from multi-
ple sources to a target domain. It constitutes an alternating
learning process that delicately refers to our target classifi-
cation principle. DCTN can be flexibly deployed in ordinary
MSDA and category shift scenarios, and more importantly,
it suits the open-set scenario with a mild reconfiguration.
Delving into the motivation of DCTN, we further reveal
that, DCTN connects with a previous MSDA theory and
enjoys an expected loss upper bound through an adversarial
DA assumption instead of specifying a strong target mix-
ture precondition. Finally, DCTN is evaluated across three
benchmarks with massive transfer combinations under three
scenarios. It achieves state-of-the-art results in most of our
evaluation criteria and behaves extraordinarily to resist neg-
ative transfer effects.
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Appendix A: Proofs

Proof (Proof (Lemma 1)) Suppose the optimal feature
extractor is F∗, then M source-target adversarial learning
pairs can be separately considered and correspond to the opti-
mization objectives w.r.t. {Dj }Mj=1, respectively. Substitute
F∗(x) by x , and there is

D∗
j (x) = P j (x)

P j (x) + Pt (x)
(22)

is exactly derived from Theorem.1 in Goodfellow et al.
(2014).

ht (x) =
M∑

j=1

− log
(

Pt (x)
P j (x)+Pt (x)

)
h j (x)

∑M
k=1 − log

(
Pt (x)

P j (x)+Pt (x)

)

=
M∑

j=1

log
(
1 + P j (x)

Pt (x)

)
h j (x)

∑M
k=1 log

(
1 + Pk (x)

Pt (x)

) .

(23)

��
Proof (Proof (Proposition 2)) Given Lemma 1, it holds

ht (x) =
M∑

j=1

log
(
1 + P j (x)

Pt (x)

)

∑M
k=1 log

(
1 + Pk (x)

Pt (x)

)h j (x)

≤
M∑

j=1

log
(
1 + P j (x)

Pt (x)

)
h j (x)

∑M
k=1 log(1 + αk)

≤
M∑

j=1

Pk(x) h j (x)

Pt (x)
∑M

k=1 log(1 + αk)
,

(24)

To this end, given a target feature x ,

L (Pt , ht , f )(x)

= L

⎛

⎝
M∑

j=1

log(1 + P j (x)
Pt (x)

)

∑M
k=1 log

(
1 + Pk (x)

Pt (x)

)h j (x), f (x)

⎞

⎠Pt (x)

≤
M∑

j=1

log
(
1 + P j (x)

Pt (x)

)

∑M
k=1 log(1 + Pk (x)

Pt (x)
)
Pt (x)L

(
h j (x), f (x)

)

≤
M∑

j=1

P j (x)

Pt (x)
∑M

k=1 log(1 + αk)
Pt (x)L

(
h j (x), f (x)

)

=
M∑

j=1

P j (x)
∑M

k=1 log(1 + αk)
L

(
h j (x), f (x)

)
(25)

in which the first inequality is derived from the convexity of
the loss function L(·, ·). ��

Proof (Proposition 3) In terms of Proposition 1, we provide
the upper bound ofL (Pt , ht , f ). Specifically,

L (Pt , ht , f ) =
∫

x∈X
L (Pt , ht , f )(x)dx

≤
∫

x∈X

M∑

j=1

P j (x)
∑M

k=1 log(1 + αk)
L
(
h j (x), f (x)

)
dx

= 1
∑M

k=1 log(1 + αk)

M∑

j=1
∫

x∈X
P j (x)L

(
h j (x), f (x)

)
dx

(26)

Since ρ indicates the proportion of wrongly-labeled tar-
get data by the auto-annotating strategy in the discriminative
adaptation phase; f ′(x) represents the wrong target func-
tion w.r.t. x , namely, ∀x ∈ X , it holds f ′(x) �= f (x) and
L
(
h j (x), f (x)

) ≤ L
(
h j (x), f ′(x)

)
. Therefore,

L (Pt , ht , f ) ≤ 1
∑M

k=1 log(1 + αk)

M∑

j=1

∫

x∈X
L
(
h j (x), f (x)

)
dx

= 1
∑M

k=1 log(1 + αk)

M∑

j=1

( ∫

x∈X
P j (x)

(

(1 − ρ)L
(
h j (x), f (x)

)

+ ρL
(
h j (x), f (x)

)
)

dx

)

,

≤ 1
∑M

k=1 log(1 + αk)

M∑

j=1

( ∫

x∈X
P j (x)

(

(1 − ρ)L
(
h j (x), f (x)

)

+ ρL
(
h j (x), f ′(x)

)
)

dx

)

,

(27)
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Due to the assumption of the 0-1 loss function on L , it follows
the analysis in Saito et al. (2017) and holds

∫

x∈X
P j (x)L

(
h j (x), f (x)

)
dx

≤
∫

x∈X
P j (x)L

(
h j (x), f ′(x)

)
dx

≤
∫

x∈X
P j (x)dx = 1.

(28)

so that

L (Pt , ht , f ) ≤ 1
∑M

k=1 log(1 + αk)

(
(1 − ρ)

∑

j∈[M]
ε j + Mρ

) (29)

Conclude the proof. ��
Proof (Proposition 4) According to the results of Proposi-
tion.21, we have

L (Pt , ht , f )(x) ≤ 1
∑M

k=1 log(1 + αk)

M∑

j=1

P j (x)L
(
h j (x), f (x)

)
.

Therefore

L (Pt , ht , f ) = 1
∑M

k=1 log(1 + αk)

∫

x∈X

M∑

j=1

P j (x)L
(
h j (x), f (x)

)
(x)dx

≤ 1
∑M

k=1 log(1 + αk)

∑

j∈[M]

(

(1 − ρ′)
∫

x∈X
P j (x)L

(
h j (x), f (x)

)
dx

∫

x∈X
P j (x)L

(
h j (x), f ′(x)

)
dx

)

≤ 1
∑M

k=1 log(1 + αk)

∑

j∈[M]

(

(1 − ρ′)
(

(1 − ρ)

∫

x∈X
Pt (x)L

(
h j (x), f (x)

)
dx

+ ρ

∫

x∈X
Pt (x)L

(
h j (x), f ′(x)

)
dx

)

+ ρ′
∫

x∈X
Pt (x)L

(
h j (x), f ′(x)

)
dx

)

,

(30)

where the first, third and fifth inequalities are derived
from the proof of Proposition 2; the second inequality is

developed from the entropy-based unknown category discov-
ery strategy, which is specified in target-category-shift and
source-target-category-shift scenarios (Notice that, since the
unknown class discovery is executed ahead of the pseudo-
labeling strategy, it makes the the inequality w.r.t. ρ nested
in the inequality w.r.t. ρ′); the fourth inequality is derived
from the 0–1 loss function upper bound discussed in Saito
et al. (2017) .

Due to the assumption of the 0–1 loss function on L , it
follows (Saito et al. 2017) and holds

L (Pt , ht , f ) ≤
∑

j∈[M]

1
∑M

k=1 log(1 + αk)

(
(1 − ρ′)(1 − ρ)

∫

x∈X
Pt (x)L

(
h j (x), f (x)

)
dx + ρ(1 − ρ′) + ρ′)

≤ 1
∑M

k=1 log(1 + αk)

(
(1 − ρ′)(1 − ρ)

∑

j∈[M]
ε j

+ (
(1 − ρ′)ρ + ρ′)M

)

(31)

��

Appendix B: Implementation details

The setup of γ and ζ The the pseudo labeling strategies of
DCTN rely on hyper-parameters γ and ζ . The threshold γ

is leveraged to select a part of target candidates, which are
annotated as “high-confident” and augmented with multi-
source examples to train the multi-source classifiers. We
set the value over 90% to ensure the quality of selecte tar-
get samples. Instead of choosing a specific threshold γ , we
rank the target examples according to their entropy val-
ues on the source-specific classifiers by a monotonically
decreasing order, then choose the top 15% as the “unknown”
candidates: 300/120/140 as the “unknown” candidates in
A/D/W domains, respectively. This manner promises ade-
quate “unknown” examples to train a reliable classifier for
each source domain. The schemes is adopted the same in the
experiment of DomainNet (Details see Table 7).
Network Implementation details For the recognitions in
Office-31 and ImageCLEF-DA, existingdeepDAapproaches
(Longet al. 2015, 2016) routinely employAlexnet (Krizhevsky
et al. 2012) as their backbones. For a fair comparison,
we choose a DCTN architecture deriving from the Alexnet
pipeline. As Fig. 11 illustrated, the representation module F
is designed as a five-layer fully-convolutional network with
threemax-pooling operators, and the (multi-source) category
classifier C is a three-layer fully-connected multi-task net-
work. They are stacked into an exactly Alexnet-like pipeline
to categorize examples. We adopt a CNN with a two-head
classifier as domain discriminator D.
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Fig. 11 The representationmodule, domain discriminator and category
classifier we used in the experiments about object recognition. (Best
viewed in color)

For the sake of legibility, we apply the sigmoid cross
entropy loss to denote the multi-way adversarial learning
inducing the perplexity score in our paper.UnderM adversar-
ial adaptation context, this loss function leads to the gradient
vanishing and behaves extremely unstable during training. To
overcome this issue, we replace it with the least square mea-
sure (Mao et al. 2017) in practice to ensure robust adversarial
learning:

L (ls)
adv (F, D) = 1

M

M∑

j

Ex∼X j [(Dj (F(x)))2]

+ Ex(t)∼Xt
[(1 − Dj (F(x(t))))2].

(32)

Accordingly, the confusion loss has been revised as

L (ls)
c f (x; F, Dj ) =

(

Dj (F(x)) − 1

2

)2

. (33)

Then given a target instance x(t), a least square perplexity
score is

s(x(t); F, Dj ) = (Dj (F(x(t))))2. (34)

The implementation keeps consistent with all our anal-
ysis in the paper. No matter in training or test, we need a
perplexity score weighting scheme to predict the class of the
target instance. While in the adversarial learning process, the
domain discriminator D must be gradually trained to accom-
modate the learning of feature extractor F . It means that in
those previous epoches, the perplexity scores are not capable
of providing reliable probablistic relations between target
and each source. This hurts the pseudo-labeling scheme
and further spoils the adversary at the next alternative step.
Empirically, this negative effect mostly attributes to the
unstable predictions to target instances. Hence we utilize the

Fig. 12 The representation module, domain discriminator and cate-
gory classifier we used in the experiments about digit recognition. (Best
viewed in color)

Table 7 The hyper-parameters setting in our experiment

Office-31 ImageCLE, DomainNet Digit-five

Domain batch size 32 32 128

Threshold γ 0.9 0.98 0.9

Learning rate 0.00001 0.000002 0.00001

Image size 227×227 227×227 32×32

Virtual threshold ζ top 15% –,top 15% –

moving average to calculate the perpelxity score for each
target instance.

s(x(t)
NT

; F, Dj ) = 1

NT

NT∑

i

(Dj (F(x(t)
i )))2, (35)

where NT denotes the number of times that the target samples
have been visited to train our model (one target mini-batch
as the measurement unit); xtNT

denotes the current target
instance being considered.
Hyper-parameter setting of training In visual object recog-
nition experiments (Office-31 and ImageCLEF), we initiate
our DCTN by following the same way of DAN (Long et al.
2015). In terms of digit recognition, DCTN learns from
scratch. In order to execute online hard domain mining,
we construct our mini-batch by sampling an equal num-
ber of images per domain. For instance, consider a case
of two-source domain adaptation with a domain batch size
of 32. Then we have mini-batches with the sizes as 96 =
32 × (2 + 1) (2 and 1 denote two source domains and one
target domain). In this situation, the length of one epoch is
decided by the size of the domain containing most instances.
Finally, we adopt Adam (Kingma and Ba 2015) solver with
momentum = (0.9, 0.99) in all experiments to update our
networks (Fig. 12).
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More hyper-parameter details are shown in Table 7.
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