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Unsupervised Multi-view Clustering by Squeezing
Hybrid Knowledge from Cross View and Each View

Junpeng Tan, Yukai Shi, Zhijing Yang, Caizhen Wen, Liang Lin

Abstract—Multi-view clustering methods have been a focus
in recent years because of their superiority in clustering per-
formance. However, typical traditional multi-view clustering
algorithms still have shortcomings in some aspects, such as
removal of redundant information, utilization of various views
and fusion of multi-view features. In view of these problems,
this paper proposes a new multi-view clustering method, low-
rank subspace multi-view clustering based on adaptive graph
regularization. We construct two new data matrix decomposition
models into a unified optimization model. In this framework, we
address the significance of the common knowledge shared by the
cross view and the unique knowledge of each view by presenting
new low-rank and sparse constraints on the sparse subspace
matrix. To ensure that we achieve effective sparse representation
and clustering performance on the original data matrix, adaptive
graph regularization and unsupervised clustering constraints are
also incorporated in the proposed model to preserve the internal
structural features of the data. Finally, the proposed method is
compared with several state-of-the-art algorithms. Experimental
results for five widely used multi-view benchmarks show that our
proposed algorithm surpasses other state-of-the-art methods by
a clear margin.

Index Terms—Multi-view Clustering (MVC), Low-rank,
Sparse Subspace Clustering (SSC), Adaptive Graph Regulariza-
tion (AGR)

I. INTRODUCTION

Multi-view clustering methods are a research subject that
has received much attention in recent years. The definition of
multi-view clustering is potential to have very broad in the field
of pattern recognition [1], [2], computer vision [3], [4], [5]
and machine intelligence [6], [7]. Some researchers define it as
an object to extract its information from different angles and
then combine related information from each angle. In addition,
some researchers define multi-view as multi-modal [8], which
improves the performance of clusters based on different modal
information, such as images, text and speech. Furthermore,
multi-view can also be understood as a combination of multiple
features [9]. We can use a classic method to represent the
characteristics of an image or text, such as SIFT [10], LBP
[11], and GABOR [12]. In this paper, multi-view is regarded
as combining multiple features to improve the performance
of clusters. With the development of multi-view clustering,
relevant researchers have proposed many clustering algorithms
for multi-view feature combination. We can divide multi-view
clustering algorithms according to different levels. For the
hierarchical level of clustering, we can classify multi-view
clustering algorithms according to the use of training and the
number of samples as supervised multi-view clustering [13],
semi-supervised multi-view clustering [14] and unsupervised
multi-view clustering [15]. The earliest algorithm was the

subspace-based supervised clustering algorithms [16], [17],
which require the label data of all samples to be known and need
to manually select the training samples. Although this method
can promise state-of-the-art clustering performance, it consumes
large amounts of manual effort and time to a certain extent. In
addition, semi-supervised multi-view algorithms based on low-
rank sparse total spatial clustering have also appeared [18], [19],
[20] in recent years. Although these methods reduce the sample
labels and training samples that need to be labelled compared to
the method of supervised learning, some defects still exist. For
example, if we do not completely know the sample clustering
labels, we cannot use this method to effectively cluster the
data. Given this drawback, an unsupervised clustering method
is needed.

Since it does not require training samples in advance for
single-view [21], [22], [23] or multi-view tasks [25], [26], [27],
[24], unsupervised clustering has been the focus of research in
recent years and the difficulty of research. Especially in the field
of multi-view clustering algorithms, through the continuous
efforts of relevant scientific researchers, many unsupervised
clustering algorithms have been proposed. Xu et al. [28]
proposed an unsupervised multi-view intact spatial learning
(MISL) algorithm that integrated encoded supplementary
information into multiple views to discover a potential complete
representation of the data. From the perspective of multi-view
feature combination, we can use roughly three categories of
multi-view methods: subspace clustering [29], low-rank sparse
representation [30] and adaptive graph learning [31]. These
works showed that complementary information between views
is beneficial for the classification performance. To make full
use of the diversity of views, Cao et al. [32] proposed diversity-
induced multi-view subspace clustering (DiMSC) using the
Hilbert-Schmidt independence criterion (HSIC) to obtain the
complementary information of each view. In addition, Wang et
al. [33] used a low-rank strategy to extract the complementary
information from each view by the L1-norm, called exclusivity-
consistency regularization. These methods considered the use
of the complementary information between views but did not
consider the common information sharing by each view. In
view of this, Ding et al. [34] proposed robust multi-view
data analysis through a collective low-rank subspace (CLRS).
This method used view information to extract the common
information existing in each view. With the development of
algorithms in recent years, some ways to extract common
information between views have been proposed [35], [36],
[37]. The simplest method is to perform a weighted fusion
among multiple views. Zhao et al. [38] proposed an adaptive
weighted fusion algorithm for each view. Another kind of
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Fig. 1: The flow chart of the proposed UMC-CEV algorithm.

methods extracts common information between views not
only through the constraints of the model but also using
data decomposition of sparse representation for the original
data. This idea can better reflect the correlation between
the feature information of each view. Recently, Wang et al.
[39] proposed a new multi-view fusion subspace clustering
algorithm (MSC-IAS) that combined the information of each
view by adaptively decomposing the original data and used an
adaptive manifold to preserve the data structure. The common
information and complementary information between views
are both important for the representation of an object. Recently,
relevant researchers have proposed a new idea for multi-view
information utilization that decomposes the original data into
the common information and complementary information of
each view. This approach can extract the multi-view features
to a certain extent and preserve the structural features of
the original data when it is decomposed. Luo et al. [40]
proposed a novel subspace multi-view clustering algorithm
called consistent and specific multi-view subspace clustering
(CSMSC). The main idea of this method was to deal with
a sparse representation matrix after the decomposition of a
multi-view original matrix. The sparse representation matrix
for each view was represented by a common feature matrix
and each view-specific feature matrix. However, there are
still some drawbacks in practice. When dealing with a sparse
representation matrix, this method will cause information loss
for each view and structural connection between views. To
solve this problem, Tang et al. [41] proposed cross-view local
structure preserved diversity and consensus learning for multi-
view unsupervised feature selection (CPV-DCL). In CPV-DCL,
the original multi-view data matrix was adaptively weighted,
and then the selected multi-views were directly decomposed
into a common feature part and distinctive feature part unique
to each view. Finally, these two feature parts were subjected
to low-rank sparse constraints, and manifold learning was
used to preserve local structural features. Although the above-

mentioned algorithms can achieve good results when solving
a single problem to a certain extent, there are still some
shortcomings in dealing with some comprehensive problems.
We need to consider the adaptability of the algorithm in many
aspects, such as the application scenarios of low-rank sparse
constraints, the extraction of common features, the identification
of the unique information of each view, and the similarity
measure between samples.

In summary, several issues with clustering multi-view data
capture our attention: (1) Remove redundant information from
the original matrix, and extract useful information from the error
matrix. (2) Make full use of the common information between
views and the complementary information of each view. (3)
Sparse representation will destroy the feature association
between the original samples. Adaptive factor learning is used
to maintain the local structural features. (4) Use novel low-
rank sparse constraints to solve the existing drawbacks of the
nuclear norm and L1-norm.

To solve the above-mentioned problems, we propose a new
multi-view unsupervised clustering method called unsupervised
low-rank clustering. The proposed method is a unified frame-
work for unsupervised multi-view clustering that incorporates
the common information of the cross-view and the unique
information of each view (UMC-CEV). We combine low-rank
sparse decomposition with geometric structure retention to
extract the common matrix and complementary information of
each view. The main idea is to perform two sparse subspace
decompositions on the original multi-view data matrix, one
of which decomposes the original multi-view data matrix into
a common sparse subspace matrix and the error of each
view. The other decomposes the original multi-view data
matrix into multiple sparse subspace matrices that represent
the complementary information between various views, also
called diversity. Insufficient data constraints based on the
nuclear norm and L1-norm will lead to over-penalized and
only approximate original problems. We use a low-rank sparse
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constraint similar to the nuclear norm and L1-norm to address
this problem. In addition, we can use the sparse subspace
obtained by decomposing the original data as the similarity
measure matrix between different samples and use the sparse
matrices for adaptive factor learning. To a certain extent, this
approach ensures that the original data are not corrupted when
performing sparse representation. Additionally, the discriminant
information of intra-classes and inter-classes can be reflected.
The specific flow of the proposed algorithm is shown in Fig.
1. The main contributions of this paper can be summarized as
follows:

(1) Two kinds of sparse subspace decomposition models
are used to process the original multi-view data to extract the
common information of cross-view features and the unique
information of each view feature.

(2) A new threshold function and singular value decompo-
sition (SVD) are used to replace the low-rank sparse effect
of the nuclear norm and L1-norm to solve the over-penalized
problem of the nuclear norm and L1-norm. Moreover, the error
matrix of each view feature and the common features is subject
to the nuclear norm to minimize the error matrix of each view.

(3) Using the idea of adaptive factor learning, a common
dilution subspace matrix is taken as the similarity measure
matrix between samples, and the local geometric features are
preserved when the original data are decomposed by sparse
representation. In addition, the optimal similarity matrix is
used for clustering discrimination.

(4) We use a common view feature extraction model, i.e.,
the sparse representation of each view feature model, the novel
low-rank and sparse representation constraints, and adaptive
manifold learning as a unified objective function. Finally, we
achieve good results for several public datasets by using spectral
clustering.

The rest of this paper is organized as follows. Section II
briefly introduces the related works. The proposed algorithm
is explained in detail in Section III. Section IV presents the
optimization part of our proposed algorithm. The experimental
results and analysis are given in Section V. Section VI
summarizes the conclusions of this paper.

II. RELATED WORK

In this section, we briefly introduce the related technologies
involved in our algorithm, including sparse subspace clustering
(SSC) [42] and adaptive graph regularization (AGR) [43], which
are widely used in machine learning and pattern recognition
fields. Our proposed multi-view clustering algorithm is based
on the improvement of these two algorithms, which will be
described in detail in Section III.

A. Sparse Subspace Clustering (SSC)

SSC has been developed for many years and has received
extensive attention in the field of feature extraction and
clustering. Recently, some improved methods of SSC have
been presented, such as sparse low-rank and sparse constraints,
to make SSC more robust. In general, the nuclear norm and
L1-norm are used to control the rank and sparsity of a sparse
subspace matrix. However, Brbic et al. [44] found that the

nuclear norm and L1-norm over-penalize and just approximate
the original problem. Therefore, Brbic et al. [44] proposed
a novel low-rank SSC algorithm called L0-motivated low-
rank sparse subspace clustering (L0-LSSC). This algorithm
uses a multivariate generalization of minimize-concave penalty
(GMC-LRSSC) as a regularization constraint. Its expression is
as follows:

min
U

1

2
‖X −XU‖2F + λϕB(δ(U)) + τϕB(U),

s.t. diag(U) = 0
(1)

where δ (U) denotes the vector containing the singular values
of the sparse subspace matrix U and ϕB (u): Rn → R is the
GMC-LRSSC penalty, which can be defined as:

ϕB(u) = ‖u‖1 − SB(u); (2a)

SB(u) = inf
v∈Rn

{
‖v‖1 +

1

2
‖B(u− v)‖22

}
; (2b)

Lemma 1 ([45]): LetA ∈ Rm×n,u ∈ Rn,y ∈ Rm and θ > 0.
We can define the function F (u) : Rn → R as:

F (u) =
1

2
‖y −Au‖22 + θϕB(u), (2c)

where SB (U): Rn → R denotes the generalized Huber
function. According to Ref. [45], the variable B satisfies
B =

√
γ/θA(0 ≤ γ ≤ 1) in Eq. (2b), if ATA−θBTB satisfies

positive semi-definite matrix and F (u) is convex function. We
can see that the second term of the penalty constraint in Eq.
(1) is very similar to the previous nuclear norm, and the third
term of the penalty constraint in Eq. (1) is very similar to the
previous L1-norm. These novel penalty items can be solved by
the corresponding relaxation function. Details of GMC-LRSSC
can be found in Refs. [44], [45].

B. Adaptive Graph Regularization (AGR)
Graph regularization is a useful tool for matrix factorization.

Its main function is to preserve the local geometry. However,
most similarity graph matrix methods are not adaptive [46].
AGR has made a large breakthrough in recent years. In
AGR, the similarity matrix continually optimizes the internal
geometry of the data during iterations. This guarantees an
optimal measure of the similarity between different samples
to a certain extent. Zhan et al. [47] proposed a graph learning-
based method that improved the quality of the graph. This
method used the eigenvalue decomposition method to preserve
the local geometry of the similarity matrix. In addition, Wen
et al. [48] proposed a novel AGR method that focused on
learning a more general graph. This method used two parts of
local geometry, including the original data and the clustering.
Furthermore, the method used a low-rank constraint on the
similarity matrix and the error matrix. The loss function of
this algorithm is as follows:

min
Z,E,F

n∑
i,j

‖xi − xj‖22 zij + λ1‖Z‖∗

+λ2‖E‖1 + 2λ3 tr
(
FTLzF

)
,

s.t. X = XZ + E,diag(Z) = 0,

Z ≥ 0,Σjzij = 1, FTF = I

(3)
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where ‖.‖∗ is the nuclear constraint on the similarity matrix
and can be denoted as ‖Z‖∗ =

∑n
i δi, where δi is the singular

value of the similarity matrix and can reflect the low-rank
constraint effect of the matrix. The error matrix constraint can
be calculated as ‖E‖1 =

∑n
i,j=1 |eij |, which is the sparsity

selection constraint. In this loss function, the first term preserves
the local geometry of the original data, and variable Z is
the similarity matrix. The second and third terms are the
similarity matrix low-rank constraint and the error matrix
sparsity constraint, respectively. The last term preserves the
geometry characteristics of the Laplacian matrix Lz by the
eigenvalue decomposition. The parameters λ1, λ2 and λ3 are
used to trade off the importance of each constraint. More
details of low-rank representation based on adaptive graph
regularization (LRR-AGR) can be found in Ref. [48].

As we know, optimization algorithms have always been
the focus of machine learning and pattern recognition. Many
advanced optimization algorithms have been proposed. For
example, Yuan et al. [49] proposed a new conjugate gradient
algorithm (PRP-WWP). Li et al. [50] proposed a block-based
multi-objective algorithm for the optimization of large-scale
feature selection (DMEA-FS).Yong et al. [51] proposed a new
bat optimization algorithm (BABLUE) based on cross boundary
learning (CBL) and uniform exploitation strategy (UES). These
three optimization algorithms take the advantages of fast
convergence speed, relatively low computational complexity
and global optimization. But they are still inadequate for dealing
with non-convex and non-smooth models. Besides, these three
optimization algorithms will introduce more optimization
variables during the optimization. According to the research
of relevant researchers, the alternating direction method of
multipliers (ADMM) is an effective optimization method to
solve non-convex, non-smooth and non-Lipschitzand models.
It can not only process a large amount of data and introduce
a small number of optimization variables, but also adapt the
Lagrange multiplier introduced by optimization according to
the characteristics of the model. In view of the model features
and advantages of ADMM, we use it to solve the proposed
model.

III. THE PROPOSED MODEL

We make full use of the superiority of L0-LSSC and LRR-
AGR and then extend them to multi-view clustering. Therefore,
this section is divided into three sub-sections, including multi-
view generalization and improvement of L0-LSSC, multi-
view generalization and improvement of LRR-AGR, and the
novel framework (UMC-CEV) based on low-rank SSC and
cooperative learning with AGR. The relationship among these
three sub-sections is shown in Fig. 2, and details are given in
the following section.

A. Multi-view L0-Motivated Low-rank Sparse Subspace Clus-
tering (ML0-LSSC)

In an SSC algorithm, we argue that the two constraints of the
model (i.e., low rank and sparsity) are critical. These two parts
can directly determine the feature extraction of the original data,
remove redundant information and reduce the data dimension.

Fig. 2: The relationship among ML0-LSSC, MLRR-AGR and
UMC-CEV.

L0-LSSC can achieve perfect clustering results when dealing
with low-rank and sparse problems. We should make full use
of the superiority of the algorithm in low rank and sparseness
and generalize them to the multi-view clustering algorithm.
Due to the diversity of multi-view data, the diverse information
of each view attracts considerable attention. Therefore, we
can use the L0-LSSC algorithm to effectively extract the view
information by sparse subspace decomposition. In addition, we
can effectively integrate various information of each view by
cooperative learning. The proposed loss function, which is a
modification of L0-LSSC, is as follows:

min
U∗,U(v)

nv∑
v=1

1

2

∥∥∥X(v) −X(v)U (v)
∥∥∥2
F

+ ϕB

(
δ
(
U (v)

))
+ ϕB

(
U (v)

)
+ η

∥∥∥U∗ − U (v)
∥∥∥2
F
,

s.t. diag (U∗) = 0,diag
(
U (v)

)
= 0

(4)

where the variable U∗ denotes the global sparse subspace matrix
and the parameter η trades off the importance of the global
sparse subspace matrix. The second and third terms denote
low-rank and sparsity constraints, respectively. For simplicity,
we use a uniform variable instead of these two terms as follows:

φ
(
U (v)

)
= ϕB

(
δ
(
U (v)

))
+ ϕB

(
U (v)

)
. (5)

The fourth term fuses the diversity of each view. Therefore,
we can simplify Eq. (4) as:

min

nv∑
v=1

φ
(
U (v)

)
+ η

∥∥∥U∗ − U (v)
∥∥∥2
F
.

s.t. X(v) = X(v)U (v),diag (U∗) = 0,diag
(
U (v)

)
= 0

(6)

B. Multi-view Low-rank Representation with Adaptive Graph
Regularization (MLRR-AGR)

Adaptive graph learning also plays an indispensable role
in the field of multi-view clustering. The preservation of the
local geometry of each view in sparse subspace decomposition
and the retention diversity of each view in fusion are two
hot research issues. Hence, adaptive graph learning is able
to handle these problems well. In this section, our main
objective is to improve low-rank representation with AGR
in the multi-view field. First, to remove the redundancy and
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noise information of the original data, we perform a common
sparse subspace decomposition of the original data. The raw
data are decomposed into a global sparse subspace and the
noise space of each view. Then, we use this decomposed global
sparse subspace matrix as the global similarity matrix for AGR
and discriminant clustering information. The final optimization
model can be given as follows:

min
Z,E(v),F (v)

nv∑
v=1

n∑
i,j

∥∥∥x(v)i − x(v)j ∥∥∥2
2
zij + λ1

∥∥∥E(v)
∥∥∥
∗

+ 2λ2 tr

((
F (v)

)T
LzF

(v)

)
,

(7)

s.t.X(v) = X(v)Z + E(v),diag(Z) = 0,

Z ≥ 0,Σjzij = 1,
(
F (v)

)T
F (v) = I

where F (v) =
[
(f
v
1)
T
, (f

v
2)
T
, · · · , (fvn)

T
]
εRn×c, n and c

are the numbers of samples and clusters of the original data,
respectively, and tr(•) denotes the trace operator. By Eq. (7),
the original data matrix can be decomposed into a global
sparse subspace matrix and the noise matrix of each view.
In this way, this approach is able to effectively integrate the
diversity between views. The first term is AGR to preserve
the local geometry. The second term is used to constrain the
error between individual views and the common view, where
the nuclear norm is mainly used to minimize the error matrix.
The third term is adaptive clustering discrimination learning
between samples. It can measure the inter-class and intra-class
discrimination information between samples to a certain extent.

C. The Unified Framework of UMC-CEV

In the above two sub-sections, we have proposed the
improvement of SSC and AGR from single feature space
to multi-view feature space. In this section, we effectively
combine these two parts to generate an optimal model for
comprehensive consideration. First, according to the data matrix
decomposition methods of ML0-LSSC and MLRR-AGR, each
view has its own unique features and some common features
between various views. If the common features are not extracted
well, they may become redundant information in the final
clustering and depress the final classification performance.
Therefore, we need to simultaneously extract the effective
common features between views and decompose the optimal
diversity of each view. We can learn using Eq. (6) by training
the views collaboratively to solve the common information
between views and the unique information of each view. Second,
we should make full use of the low-rank and sparsity constraints
to make our model more robust. Finally, the similarity matrix
of the entire model should maintain its AGR characteristics.
For a loss function that satisfies the above three conditions,
we can define the final model as follows:

min
Z,E(v),U(v),F (v)

nv∑
v=1

n∑
i,j

∥∥∥x(v)i − x(v)j ∥∥∥2
2
zij + λ3

∥∥∥E(v)
∥∥∥
∗

+2λ2 tr

((
F (v)

)T
LzF

(v)

)
+

nv∑
v=1

λ1φ
(
U (v)

)
+ η

∥∥∥Z − U (v)
∥∥∥2
F
,

(8)

s.t. X(v) = X(v)Z + E(v), X(v) = X(v)U (v)

diag
(
U (v)

)
= 0,diag(Z) = 0, Z ≥ 0,

Σjzij = 1,
(
F (v)

)T
F (v) = I

where parameters λ1, λ2, λ3 and η denote penalty factors that
trade off the low-rank sparse subspace matrix, the clustering
similarity matrix, the error matrix of each view, the discrimina-
tion of the global similarity matrix and the similarity of each
view, respectively. Lz is the Laplacian matrix, expressed as
Lz = D− (Z+ZT )/2, where D is the diagonal matrix, which
can be expressed as Dii =

∑
j(zij + zji)/2. The first term

primarily preserves the local geometric structure of the original
data. The second term is the penalty for the decomposition
error matrix of each view by using the nuclear norm. Since
the nuclear norm is a low-rank constraint on the error matrix,
it can be further retained as much as possible by this way. The
third term is included to trade off the clustering similarity. We
can obtain a very intuitive understanding of the transformation
of the following equation:

tr

((
F (v)

)T
LzF

(v)

)
=

n∑
i,j

∥∥∥f (v)i − f (v)j

∥∥∥2
2
zij , (9)

where f (v)i ∈ Rc×1 is the clustering index vector, which is an
unsupervised learning vector. Eq. (9) uses the similarity matrix
as the weight of each sample clustering label to minimize the
intra-class error and maximize the inter-class error. The fourth
term in Eq. (8) denotes the low-rank and sparsity constraints
on the similarity of each view and can effectively extract the
complementary information unique to each view. The fifth term
in Eq. (8) minimizes the error of the global similarity matrix
and view diversity. This allows the global similarity matrix to
have more common features for each view.

To sum up, we propose a unified efficiently unsupervised
multi-view clustering framework (i.e., UMC-CEV), that con-
tains two specific multi-view clustering sub-modules (ML0-
LSSC and MLRR-AGR). ML0-LSSC algorithm focuses on
extracting the unique information of each view and the
common view information, while MLRR-AGR algorithm
focuses on extracting the cross-view common information
between views. To fully combine the advantages of ML0-
LSSC and MLRR-AGR, UMC-CEV is proposed by considering
frame structure context. This paper focuses on introducing the
model structure and optimization process of the algorithm
UMC-CEV. UMC-CEV is a new unsupervised multi-view
clustering framework with sparse and low-rank structure. A
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common matrix containing all the common information and
multiple pure specific view characteristics with each view
characteristic are constructed to squeeze context knowledge.
This framework utilizes two different novel sparse matrix
decomposition methods to extract the features of the common
view and specific views. Furthermore, novel adaptive graph
learning, and relevant sparse and low-rank constraints are used
to maintain the structural features of the original data.

IV. OPTIMIZATION

In this section, we introduce the optimization process of the
proposed model. Due to the complexity of the model, to more
easily calculate the solutions of variables, we introduce the
auxiliary variables S, U (v)

1 and U (v)
2 and then adopt ADMM

to solve the optimization problems. The optimization model in
Eq. (8) can be converted to:

min
Z,S,E(v),U(v),U

(v)
1 ,U

(v)
2 ,F (v)

nv∑
v=1

n∑
i,j

∥∥∥x(v)i − x(v)j ∥∥∥2
2
zij

+

nv∑
v=1

λ1φ
(
U (v)

)
+ λ3

∥∥∥E(v)
∥∥∥
∗

+ 2λ2 tr

((
F (v)

)T
LzF

(v)

)
.

(10)
s.t.X(v) = X(v)Z + E(v), X(v) = X(v)U (v),

Z = S,Z = U (v) = U
(v)
1 ;

U (v) = U
(v)
2 − diag

(
U

(v)
2

)
,diag(S) = 0,

S ≥ 0,Σjsij = 1,
(
F (v)

)T
F (v) = I

To understand the optimization process of the model more
intuitively, we rewrite the model as the following augmented
Lagrangian formulation:

L
(
Z, S,E(v), U (v), U

(v)
1 , U

(v)
2

)
=

nv∑
v=1

n∑
i,j

∥∥∥x(v)i − x(v)j ∥∥∥2
2
sij +

nv∑
v=1

λ1φ
(
U (v)

)
+ λ3

∥∥∥E(v)
∥∥∥
∗

+ 2λ2 tr

((
F (v)

)T
LsF

(v)

)
+
〈
C

(v)
1 , U (v) − U (v)

1

〉
+
〈
C

(v)
2 , U (v) − U (v)

2 + diag
(
U

(v)
2

)〉
+
µ1

2

∥∥∥U (v) − U (v)
1

∥∥∥2
F

+
µ2

2

∥∥∥U (v) − U (v)
2 + diag

(
U

(v)
2

)∥∥∥2
F

+
η

2

(∥∥∥Z − U (v)
∥∥∥2
F

+
∥∥∥X(v) −X(v)U (v)

∥∥∥2
F

)
+
µ

2

(∥∥∥X(v) −X(v)Z − E(v)
∥∥∥2
F

+ ‖Z − S‖2F
)
,

(11)
where C

(v)
1 and C

(v)
2 are the coefficient matrices, η and µ

are Lagrange multipliers, and µ1 and µ2 are positive penalty
factors. We can optimize one variable by fixing the other
variables in Eq. (11). Therefore, we can obtain the optimal
values of all variables Z, S, E(v), U (v), U (v)

1 , U (v)
2 , and F (v).

The optimization process for these variables is given as follows:
1) Update E(v): When variables Z, S, F (v), U (v), U (v)

1 ,
and U

(v)
2 are fixed, the objective function in Eq. (11) for E(v)

gives the following minimization problem:

arg min
E(v)

λ3

∥∥∥E(v)
∥∥∥
∗

+
µ

2

∥∥∥X(v) −X(v)Z − E(v)
∥∥∥2
F
. (12)

Eq. (12) can be solved by the singular value threshold method.
A = X(v)Z −X(v) can be decomposed by SVD as UΣV T .
The optimal solution to Eq. (12) is as follows:

E(v) = USλ3/µ(Σ)V T . (13)

2) Update Z: Variables S, E(v), U (v), U (v)
1 , U (v)

2 and F (v)

should be fixed, and the objective function for Z can be
rewritten as follows:

L(Z) =
∥∥∥X(v) −X(v)Z − E(v)

∥∥∥2
F

+
η

2

∥∥∥Z − U (v)
∥∥∥2
F

+
µ

2
‖Z − S‖2F .

(14)

By local derivation of Eq. (14) for ∂L/∂Z = 0, we can
obtain the optimal variable Z as follows:

Z = L3 ∗
((

X(v)
)T
∗ L1 + L2

)
. (15a)

L1 = X(v) − E(v); (15b)
L2 = η ∗ U (v) + µ ∗ S; (15c)

L3 =

((
X(v)

)T
X(v) + (η + µ)I

)−1
. (15d)

3) Update S: Variables Z, E(v), U (v), U (v)
1 , U (v)

2 and F (v)

should be fixed, and the objective function for S can be
rewritten as follows:

min
S

n∑
i,j

∥∥∥x(v)i − x(v)j ∥∥∥2
2
sij +

µ

2
‖Z − S‖2F

+ 2λ2 tr

((
F (v)

)T
LsF

(v)

)
.

(16)

s.t. diag(S) = 0,S ≥ 0,Σjsij = 1

In Eq. (16), it is difficult to solve for the variable S. However,
Eq. (16) is equivalent to solving the following minimization
problem by adding Eq. (9):

min
S

n∑
i,j

∥∥∥x(v)i − x(v)j ∥∥∥2
2
sij + λ2

n∑
i,j

∥∥∥f (v)i − f (v)j

∥∥∥2
2
sij

+
µ

2
‖Z − S‖2F .

s.t. diag(S) = 0,S ≥ 0,Σjsij = 1
(17)

We further simplify Eq. (17) as:

min
si>0,siI=1,sii=0

∥∥∥si − (hi − g(v)i /µ
)∥∥∥2

2
, (18)

where g(v)ij = ‖x(v)i − x
(v)
j ‖22 + λ2‖f (v)i − f (v)j ‖22, hi = zi and

si are the i-th rows of G(v), H and S respectively. Eq. (18)
can be effectively solved according to Ref. [47].

4) Update F (v): Fix Z, S, E(v), U (v), U (v)
1 , and U (v)

2 ; then,
the objective function for solving F (v) can be rewritten as
follows:
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arg min 2λ2 tr

((
F (v)

)T
LsF

(v)

)
,

s.t.
(
F (v)

)T
F (v) = I, F (v) ∈ Rn×c

(19)

where Ls is the Laplacian matrix of the similarity matrix S.
This is a classic spectral clustering model. In general, we
perform eigenvalue decomposition on the model and then take
the feature vector corresponding to its top c smallest eigenvalues
as c column vectors of the solution F (v).

5) Update U (v): When variables Z, S, F (v), E(v), U (v)
1 and

U
(v)
2 are fixed, the objective function for U (v) is the following

minimization problem:

L
(
U (v)

)
= min

U(v)

1

2

∥∥∥X(v) −X(v)U (v)
∥∥∥2
F

+
η

2

∥∥∥Z − U (v)
∥∥∥2
F

+
µ1

2

∥∥∥U (v) − U (v)
1

∥∥∥2
F

+
〈
C

(v)
1 , U (v) − U (v)

1

〉
+
µ2

2

∥∥∥U (v) − U (v)
2 + diag

(
U

(v)
2

)∥∥∥2
F

+
〈
C

(v)
2 , U (v) − U (v)

2 + diag
(
U

(v)
2

)〉
.

(20)
By local derivation of Eq. (20) for ∂L(U (v))/∂

(
U (v)

)
= 0,

the solution of U (v) can be obtained by:

U (v) = B ∗
[(
X(v)

)T
X(v) +M1 −M2

]
; (21a)

B = inv

((
X(v)

)T
X(v) + (µ1 + µ2 − η) I

)
. (21b)

M1 = µ1U
(v)
1 + µ2U

(v)
2 ,M2 = ηZ + C

(v)
1 + C

(v)
2 . (22)

6) Update U (v)
1 : To solve for this variable, we should fix

the other variables Z, S, E(v), F (v), U (v) and U
(v)
2 . Then,

the optimal U (v)
1 can be obtained by solving the following

minimization problem:

min
U

(v)
1

λ1ϕB

(
δ
(
U

(v)
1

))
+
µ1

2

∥∥∥U (v) − U (v)
1

∥∥∥2
F

+
〈
C

(v)
1 , U (v) − U (v)

1

〉
.

(23)

Eq. (23) is equivalent to:

min
U

(v)
1

λ1ϕB

(
δ
(
U

(v)
1

))
+

µ1

2

∥∥∥∥∥U (v)
1 −

(
C

(v)
1

µ1
+ U (v)

)∥∥∥∥∥
2

F

.

(24)

According to Eq. (19), C(v)
1 /µ1 + U (v) can be decomposed

by SVD as UΣV T . Therefore, the closed-form solution of Eq.
(24) can be obtained by:

U
(v)
1 = Uθ

(
Σ;
λ1
µ1
,
λ1
γµ1

)
V T , 0 < γ ≤ 1, (25)

where θ(•) is the firm threshold function as follows:

θ(x, λ, a) =

 0 if |x| ≤ λ
a(|x| − λ)/(a− λ) sign(x) if λ < |x| ≤ a.

x if |x| > a
(26)

7) Update U
(v)
2 : We should fix the other variables Z, S,

E(v), F (v), U (v) and U
(v)
1 . Then, the optimal U (v)

2 can be
obtained by solving the following minimization problem:

min
U

(v)
2

λ1ϕB

(
U

(v)
2

)
+
µ2

2

∥∥∥∥∥U (v)
2 −

(
C

(v)
2

µ2
+ U (v)

)∥∥∥∥∥
2

F

, (27)

by subtracting the diagonal elements of U (v)
2 as follows:

U
(v)
2 ← U

(v)
2 − diag

(
U

(v)
2

)
. (28)

Through the above analysis, we can finally obtain the solution
of U (v)

2 as follows:

U
(v)
2 = θ

(
C

(v)
2

µ2
+ U (v);

λ1
µ2
,
λ1
γµ2

)
, 0 < γ ≤ 1; (29a)

U
(v)
2 ← U

(v)
2 − diag

(
U

(v)
2

)
. (29b)

8) Update other variables: Now, we will update the Lagrange
multipliers C(v)

1 , C(v)
2 , µ1 and µ2. These variables can be

updated as follows:

C
(v)
1 = C

(v)
1 + µ1

(
U (v) − U (v)

1

)
; (30)

C
(v)
2 = C

(v)
2 + µ2

(
U (v) − U (v)

2 − diag
(
U

(v)
2

))
. (31)

µi = min (ρ1µi, µ
max
i ) , i = 1, 2. (32)

where the parameters ρ1, µmax1 and µmax2 are constants.
When we obtain the global similarity matrix and the indi-

vidual view similarity matrices through the above optimization
method, we use the following formula to combine the two
parts:

A =
(
|Z|+

∣∣ZT ∣∣) /2 +
1

nv

nv∑
v=1

(∣∣∣U (v)
∣∣∣+

∣∣∣∣(U (v)
)T ∣∣∣∣) /2.

(33)
Then, the optimal global similarity matrix is obtained. After

obtaining the optimal similarity matrix, we apply spectral
clustering to A. The optimization process of the entire model
is summarized in Algorithm 1.

In the overall algorithm optimization process, we firstly
analyze the main three optimization sub-modules with relatively
high algorithm complexity compared with other variable opti-
mization modules. Such as singular value thresholding (in step
3), the inverse operation (in step 4), and eigen-decomposition
(in step 6). These are all classical optimization methods, and we
can easily get their algorithm complexity of O(n3), O(n3) and
O(cn2), respectively, where n is the number of the samples and
c is the number of the clustering. Besides, the computational
complexity of U is O((mn2 + t1n

3), where t1 is the number
of iterations and m is the size of the each sample in step 7.
Due to c� m, we can get the computational complexity of
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the proposed method as O(tnv(n
3 +mn2)), where t and nv

are the number of iterations and samples views, respectively.
Meanwhile, we can easily get the complexity analysis of several
comparison methods of MLSSC(O(tnvn

3)), MVGL(tn2vn
2),

LRPP-GRR(O(t(n3 + cn2))), L0-LSSC(O(tn3 +mn2)). By
comparing the algorithm complexity with these methods, we
can see that the proposed algorithm is feasible in theory.

Algorithm 1 ADMM for solving the proposed algorithm
(UMC-CEV)

Input: input parameters Dataset X = {X(v)}nv
v=1; parameters

λ1, λ2, and λ3; number of clusters C; number of views nv
Output: output The similarity matrix A.
Initialization: Using the k-nearest neighbour graph to ini-

tialize the similarity matrix Z; S = Z; using the eigenvalue
decomposition of Laplacian matrix Z to initialize matrix F (v).
Calculating the initial matrix U (v) by Eq. (21); U (v)

1 = 0,
U

(v)
2 = 0, C(v)

1 = C
(v)
2 = 0; E(v) = 0; µ= 0.01, µ1 = 1;

µ2 = 0.1; ρ1 = 1.2; µmax1 = µmax2 = 106.
1: while not converged do
2: for v = 1 to nv do
3: Update variable E(v) by using Eq. (13).
4: Update variable Z by using Eq. (15a).
5: Update variable S by solving Eq. (18).
6: Update variable F (v) by solving Eq. (19).
7: Update variable U (v) by using Eq. (21a).
8: Update variable U (v)

1 by using Eq. (25).
9: Update variable U (v)

2 by using Eq. (29a) and Eq.
(29b).

10: Update the other variables C(v)
1 ,C(v)

2 , and µ1, µ2

by using Eq. (30), Eq. (31), and Eq. (32).
11: end for
12: end while
13: return A

V. EXPERIMENTS

This section is divided into several sub-sections: experimental
settings, comparison algorithms, evaluation metrics, parameter
analysis, clustering results, similarity matrix analysis and
convergence analysis. Details are given as follows.

A. Experimental Settings

To fully consider the superiority of our proposed algorithm,
we test our algorithm for four kinds of datasets: face dataset,
news article dataset, handwritten digital dataset and textual
dataset. The face dataset includes the ORL mtv dataset and
the Extended YaleB (EY aleB) dataset. The news article dataset
is the 3-sources dataset. The handwritten digital dataset is
the uci digit dataset, and the textual dataset is BBCSport.
The statistics of the five real-world datasets are summarized
in Table I.

a) ORL mtv dataset: There are 10 different grey-scale
images for 40 different themes. Images are taken under
different conditions, such as different lighting, different facial
expressions, and different facial details. In this experiment, we
used three views to evaluate the algorithm.

b) Extended YaleB dataset: There are 38 individuals and
approximately 64 near-frontal images in this face dataset. These
images are under different illuminations. In general, other
experiments have used the first 10 classes and 64 near-frontal
images, for a total of 640 samples. However, we used 38
individuals and 29 near-frontal images in our experiment, for
a total of 1102 samples.

c) 3-sources dataset: This is a collection of news stories
collected from three online news sources (BBC, Reuters and
The Guardian). All articles are indicated by the "word bag".
For 948 articles, we used 169 topic classes with a placeholder
for each article in all three datasets.

d) uci digit dataset: This dataset contains 2000 hand-
written digit (0-9) examples extracted from the Dutch utility
map. There are 200 examples in each class, and each example
has six feature sets. Following the experiment in [52], we used
three feature sets: Fourier coefficients of 76 character shapes,
216 profile correlations, and 64 Karhunen-Love coefficients.

e) BBCSport dataset: This dataset contains the latest
articles in the five subject areas of the 2004-2005 BBC
Sport website. This textual dataset has 544 documents. In
our experiment, we used 116 samples and 5 classes.

TABLE I: Statistics of the three datasets
Dataset Sample Views Clusters

ORL mtv 400 3 40
EYaleB 1102 2 38

3-sources 169 3 6
uci digit 2000 3 10

BBCSport 116 3 5

B. Comparison Algorithms

In this sub-section, we compare our proposed algorithm
with several related state-of-the-art algorithms, including
DiMSC [32], latent multi-view subspace clustering (LMSC)
[53], exclusivity-consistency regularized multi-view subspace
clustering (ECRMSC) [33], multi-view low-rank sparse sub-
space clustering (MLSSC) [52], graph learning for multi-view
clustering (MVGL) [37], low-rank representation with adaptive
graph regularization (LRPP-AGR) [48], and L0-LSSC [44].
Detailed descriptions of these state-of-the-art algorithms are
given as follows:

a) DiMSC: This approach mostly concentrates on en-
hancing the performance of multi-view clustering by exploring
additional information between multi-view features. The HSIC
is used to explore the diversity information between multi-view
features.

b) LMSC: This method consists of finding a potential
sparse representation subspace and then reconstructing the data
simultaneously based on the learned potential subspace. The
method uses the complementarity of multiple view feature
spaces to obtain the best view features. This algorithm imposes
low-rank constraints on the noise matrix and the sparse
subspace matrix.

c) ECRMSC: This algorithm is mainly divided into two
steps: subspace learning and spectral clustering. It uses the L1-
norm as a constraint to extract the complementary information
between different sparse subspace matrices.
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d) MLSSC: Multi-view low-rank sparse subspace clus-
tering is a classic low-rank sparse subspace method that uses
the nuclear norm and L1-norm to constrain the low rank and
sparsity of the sparse subspace matrix. In addition, this method
obtains complementary information between views by means
of the mutual derivation of views.

e) MVGL: This is an adaptive graph learning method. By
optimizing the similarity graph matrix, the optimal similarity
factor matrix of each view is obtained. Finally, these similarity
factor matrices are weighted and fused by the idea of cooper-
ative representation, thus obtaining the most excellent global
similarity graph matrix.

f) LRPP-GRR: This is a novel method based on AGR. It
introduces the original data matrix local geometric structure
and the cluster label matrix to discriminate between these two
manifold learning constraints. In addition, this method uses the
nuclear norm and L1-norm to constrain the sparse subspace
matrix and the noisy matrix, respectively.

g) L0-LSSC: This is a novel method of low-rank sparse
subspace clustering. Considering the deficiencies of the nuclear
norm and L1-norm, this method uses a new low-rank and
sparse method.

C. Evaluation Metrics

There are seven evaluation metrics in our paper: clustering
accuracy(ACC), normalized information(NMI), purity, preci-
sion(P), recall(R), F-score(F) and adjusted rand index(AR).

D. Parameter Analysis

According to Algorithm 1, there are three parameters in
our algorithm that need to be determined, i.e., the trade off
parameters λ1, λ2 and λ3. These trade off parameters denote
the low-rank constraint on the noisy matrix of each view, the
discrimination constraint on the global matrix cluster, and the
low-rank and sparsity constraints on each view, respectively.
In this sub-section, we analyse the sensitivity of these three
sensitive parameters in different datasets. In our experiments,
the three parameters are defined within a uniform scope. We
choose ten digits for the three parameter values in the range
of [0.00002, 0.0002, · · · , 2, · · · , 200, 2000]. Figs.3,4,5 show
the clustering results according to different values of these
three parameters λ1, λ2 and λ3, respectively. The results for
the ORL mtv and uci digit datasets are relatively stable for
different values of λ1, λ2 and λ3. The maximum and minimum
accuracies are 92.75% and 88.75% for the ORL mtv dataset,
respectively, and the error between the maximum and minimum
accuracies for the uci digit dataset is very small, i.e., 1.15%.
Especially for parameter λ2 in Fig. 4, the curves of ACC, NMI
and AR in the uci digit dataset are basically unchanged. This
is because the uci digit dataset has a large number of samples
for each class, and the pictures are handwritten numbers that
are easy to distinguish. Therefore, the role of discriminative
constraints between different classes is not very large. However,
the 3-sources, BBCSport and EYaleB datasets are sensitive
to the parameters λ1, λ2 and λ3. When parameter λ1 = 2,
the experimental results for the datasets (3-sources, BBCSport
and EYaleB) exhibit particularly obvious fluctuations and are

(a) (b)

(c) (d)

(e)

Fig. 3: The results according to different values of λ1 when λ2
and λ3 are fixed. Four clustering evaluation indicators (ACC,
NMI, F-score and AR) are selected for better visual effect,
and we performed logarithmic processing on the parameters
(ln(λ1/2)).

very poor. Thus, it is very important to apply low-rank and
sparse constraints in each view. Although the best results can be
obtained by constantly adjusting the values of the parameters for
different datasets, to guarantee the generality of the proposed
algorithm, we use uniform settings for the three parameters
in all datasets. We set these three parameters as λ1 = 2e− 5,
λ2 = 2e− 1 and λ3 = 2 for all datasets. Using these values
for the parameters, the experimental results are still very good
in all datasets.

E. Clustering Results

The experimental results of the different algorithms are
shown in Tables II-VI for the ORL mtv, 3-sources, BBCSport,
EYaleB and uci digit databases, respectively. Tables II-VI
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TABLE II: Experimental results (mean ± standard deviation) ORL mtv for the dataset.
Methods ACC NMI Purity P R F AR

LRPP-GRR bestview 59.50± 0.01 75.00± 0.06 67.50± 0.02 42.34± 0.07 50.67± 0.02 46.13± 0.01 43.34± 0.03
L0-LSSC bestview 82.24± 1.25 93.53± 0.66 88.94± 1.36 69.74± 2.16 85.64± 1.59 76.85± 1.35 76.26± 1.42

Ours bestview 88.63± 0.73 94.73± 0.39 91.63± 0.68 82.21± 1.27 87.62± 0.57 84.75± 0.98 84.39± 0.93
MLSSC 70.75± 3.55 84.46± 1.83 74.50± 2.99 58.19± 3.97 64.33± 3.60 61.11± 3.76 60.16± 3.87
MVGL 76.50± 0.22 89.89± 1.20 86.25± 0.34 41.87± 0.13 81.39± 0.34 55.29± 1.22 53.92± 1.30
LMSC 81.75± 2.54 93.10± 1.15 87.25± 1.93 70.32± 1.74 82.06± 1.70 75.83± 2.10 72.99± 2.19
DiMSC 83.25± 1.20 93.11± 1.40 89.25± 2.92 73.96± 3.72 84.11± 3.67 78.71± 3.37 78.19± 3.45

ECRMSC 85.41± 1.10 94.70± 0.90 91.75± 1.21 78.30± 0.82 85.95± 1.21 82.10± 1.50 81.01± 1.12
MLRPP-GRR 83.80± 2.48 92.90± 0.88 88.82± 1.62 75.47± 3.24 83.61± 2.00 79.31± 2.40 78.80± 2.47
ML0-LSSC 85.00± 2.63 94.07± 0.88 90.50± 1.70 75.28± 4.43 87.11± 1.93 81.48± 3.24 79.99± 3.34

Ours 91.25± 0.85 95.56± 0.28 93.30± 0.54 85.40± 1.33 89.86± 0.75 87.30± 0.92 87.00± 0.95

TABLE III: Experimental results (mean ± standard deviation) for the 3-sources dataset.
Methods ACC NMI Purity P R F AR

LRPP-GRR bestview 43.40± 0.02 36.52± 0.00 75.47± 0.03 33.52± 0.01 56.23± 0.05 42.00± 0.07 37.40± 0.07
L0-LSSC bestview 76.92± 1.25 68.45± 2.21 81.66± 1.96 75.81± 1.56 69.69± 1.45 71.71± 1.89 63.47± 2.21

Ours bestview 83.31± 1.46 75.25± 2.25 84.91± 2.14 83.49± 1.89 70.25± 1.86 75.89± 2.25 69.33± 2.15
MLSSC 75.15± 2.07 63.06± 1.34 79.88± 2.93 76.29± 2.06 68.48± 2.19 72.09± 2.47 64.22± 2.93
MVGL 77.51± 0.22 67.21± 0.56 85.57± 0.00 68.75± 0.13 63.24± 0.22 65.76± 0.56 57.23± 0.71
LMSC 76.92± 2.62 69.59± 1.17 83.43± 2.23 76.69± 1.37 67.32± 2.56 71.70± 1.93 63.85± 2.70
DiMSC 81.66± 2.11 69.94± 1.64 81.66± 2.45 82.33± 2.22 70.11± 2.51 75.69± 2.97 69.07± 2.14

ECRMSC 80.47± 0.00 70.27± 0.00 70.47± 0.00 76.50± 0.00 62.75± 0.00 68.94± 0.00 60.71± 0.00
MLRPP-GRR 82.25± 2.18 72.70± 2.38 83.21± 1.89 82.10± 1.68 71.05± 2.09 75.18± 2.15 68.22± 2.37
ML0-LSSC 82.25± 2.74 72.05± 1.42 82.84± 2.70 81.68± 2.36 70.81± 1.59 72.99± 2.73 65.63± 2.43

Ours 85.98± 1.71 75.64± 1.12 86.27± 1.61 85.79± 1.49 72.29± 2.89 78.42± 2.37 72.61± 2.92

TABLE IV: Experimental results (mean ± standard deviation) for the BBCSport dataset.
Methods ACC NMI Purity P R F AR

LRPP-GRR bestview 68.97± 0.02 53.72± 0.00 73.28± 0.02 51.28± 0.00 58.48± 0.01 54.64± 0.01 38.85± 0.00
L0-LSSC bestview 81.90± 0.01 68.46± 0.00 81.90± 0.03 78.07± 0.00 73.64± 0.07 72.97± 0.11 65.06± 0.20

Ours bestview 82.16± 0.41 82.69± 0.00 86.47± 0.41 87.64± 0.80 79.49± 0.29 82.85± 0.20 77.68± 0.07
MLSSC 63.79± 2.38 47.48± 2.55 81.03± 2.33 52.53± 2.88 66.34± 2.47 54.89± 2.17 39.59± 2.58
MVGL 76..28± 0.17 72.76± 0.11 81.28± 0.22 70.44± 0.11 74.62± 0.13 72.16± 0.17 63.74± 0.28
LMSC 82.76± 2.83 78.02± 1.92 82.21± 1.46 82.61± 2.08 77.60± 1.97 80.03± 2.63 73.90± 2.30
DiMSC 85.34± 2.70 73.34± 1.80 85.34± 2.16 79.75± 2.45 74.13± 2.96 74.32± 1.35 66.13± 2.16

ECRMSC 81.03± 0.00 73.31± 0.00 81.03± 0.00 79.36± 0.00 67.82± 0.00 73.14± 0.00 65.42± 0.00
MLRPP-GRR 85.76± 2.23 82.66± 2.50 85.34± 1.93 86.85± 2.14 80.88± 3.36 83.12± 2.42 77.91± 2.42
ML0-LSSC 84.79± 2.25 77.41± 1.99 88.79± 1.43 83.76± 2.02 81.00± 2.72 82.14± 1.60 72.98± 2.00

Ours 91.90± 1.70 84.62± 1.39 92.93± 0.62 89.28± 1.56 87.42± 0.62 88.20± 1.28 84.47± 1.73

TABLE V: Experimental results (mean ± standard deviation) for the EYaleB dataset.
Methods ACC NMI Purity P R F AR

LRPP-GRR bestview 61.38± 0.00 68.00± 0.00 74.48± 0.00 58.53± 0.00 66.11± 0.00 62.09± 0.00 52.23± 0.00
L0-LSSC bestview 74.68± 1.18 81.02± 0.60 81.76± 0.28 56.56± 1.25 67.31± 0.30 61.47± 1.30 60.37± 0.89

Ours bestview 87.01± 1.70 91.78± 0.49 92.40± 0.46 77.84± 1.96 85.74± 0.65 81.29± 1.58 80.77± 1.66
MLSSC 66.06± 3.68 73.73± 2.33 71.23± 3.01 48.15± 3.60 55.89± 3.36 51.73± 3.45 50.37± 3.56
MVGL 57.12± 0.11 56.03± 0.00 61.25± 0.27 48.07± 0.00 47.75± 0.00 47.49± 0.00 45.95± 0.35
LMSC 73.61± 3.51 83.98± 1.75 85.06± 1.71 65.30± 3.98 73.78± 2.55 69.26± 3.24 68.40± 3.34
DiMSC 62.32± 1.57 64.44± 1.90 63.54± 1.96 51.64± 1.24 56.52± 1.35 53.57± 1.29 47.85± 1.33

ECRMSC 78.98± 0.00 75.95± 0.00 74.56± 0.00 51.32± 0.00 71.85± 0.00 59.78± 0.00 54.44± 0.00
MLRPP-GRR 73.91± 2.70 81.97± 1.64 80.65± 1.94 63.54± 3.03 69.41± 2.44 66.34± 2.72 65.42± 2.80
ML0-LSSC 73.62± 4.00 82.51± 1.96 83.26± 1.99 63.33± 4.31 71.30± 2.98 67.05± 3.61 66.14± 3.73

Ours 89.04± 1.88 93.48± 1.27 92.93± 1.37 82.67± 2.91 87.86± 2.36 84.84± 2.58 84.43± 2.65

TABLE VI: Experimental results (mean ± standard deviation) for the uci digit dataset.
Methods ACC NMI Purity P R F AR

LRPP-GRR bestview 62.25± 0.02 70.97± 0.00 76.90± 0.00 57.13± 0.01 67.14± 0.02 61.73± 0.01 57.12± 0.01
L0-LSSC bestview 83.20± 2.32 75.98± 2.57 83.20± 2.58 70.32± 1.85 72.77± 2.46 71.52± 2.46 68.32± 2.77

Ours bestview 85.80± 0.00 80.95± 1.27 86.91± 1.03 74.09± 2.23 78.45± 1.47 75.92± 2.21 73.17± 2.47
MLSSC 87.63± 2.00 85.42± 1.67 91.62± 1.54 81.86± 2.23 86.42± 1.67 83.11± 2.05 82.16± 2.58
MVGL 85.30± 0.00 88.21± 0.30 94.00± 0.03 77.17± 0.27 89.09± 0.60 82.96± 0.22 82.26± 0.45
LMSC 85.70± 2.70 77.45± 1.23 85.70± 1.31 74.58± 1.68 75.73± 1.29 75.15± 1.32 72.38± 1.71
DiMSC 54.00± 2.70 40.48± 1.42 54.10± 1.90 37.17± 1.57 37.73± 1.55 37.39± 1.55 30.42± 1.73

ECRMSC 90.35± 0.00 84.45± 0.00 90.35± 0.00 82.64± 0.00 83.33± 0.00 82.98± 0.00 81.09± 0.00
MLRPP-GRR 85.71± 2.98 84.16± 0.89 89.04± 1.08 78.63± 2.99 82.28± 1.31 80.39± 1.78 78.16± 2.03
ML0-LSSC 82.07± 3.39 82.76± 1.46 89.30± 1.10 76.88± 2.55 82.22± 1.57 79.45± 2.01 77.36± 1.57

Ours 92.25± 1.20 88.34± 1.38 94.45± 1.04 85.69± 2.31 89.56± 1.48 86.04± 1.23 84.49± 2.30
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(a) (b)

(c) (d)

(e)

Fig. 4: The results according to different values of λ2 when λ1
and λ3 are fixed. Four clustering evaluation indicators (ACC,
NMI, F-score and AR) are selected for better visual effect,
and we performed logarithmic processing on the parameters
(ln(λ2/2)).

clearly show that our proposed algorithm achieves very
promising results for these databases. A detailed analysis is
conducted as follows:

Table II shows the experimental results for the ORL mtv
dataset, which provides perfect clustering performance. Table II
shows that our algorithm achieves significant improvements of
6%, 1%, 2%, 7%, 3%, 5% and 6% over the second-best result in
the indexes of ACC, NMI, purity, precision, recall, F-score and
AR, respectively. In addition, MLSSC has poor performance.
This is because MLSSC uses the traditional nuclear norm and
L1-norm to realize low-rank and sparse representation of the
similarity matrices. However, we have solved the shortcomings
of traditional low-rank and sparse representation to a certain
extent by using novel low-rank and sparse representation

(a) (b)

(c) (d)

(e)

Fig. 5: The results according to different values of λ3 when λ1
and λ2 are fixed. Four clustering evaluation indicators (ACC,
NMI, F-score and AR) are selected for better visual effect,
and we performed logarithmic processing on the parameters
(ln(λ3/2)).

constraints. Moreover, MLSSC obtains the diversity between
different views by means of mutual differences between views.
This only guarantees that the obtained view matrix fuses some
common information of each view but does not make full use
of the specific information contained in each view.

Table III shows the experimental results for the 3-sources
dataset, which is a text dataset. The classification results for the
text dataset are not as stable as those for the image dataset since
the text dataset contains fewer feature points and has a tight
context. Strong semantic information is required to perform
inter-class and intra-class discrimination. Therefore, the final
classification results fluctuate greatly. However, our algorithm
again exhibits great improvement, while some comparison
algorithms achieve poor performance, such as MVGL and
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(a) (b)

(c) (d)

(e)

Fig. 6: Convergence curves for different datasets: (a) ORL mtv;
(b) BBCSport; (c) 3-sources; (d) EYaleB; (e) uci digit.

ECRMSC. The main reasons can be summarized as follows:
1) MVGL is adaptive graph learning; it only considers the
retention of the local structure of the similarity factor of
the original data matrix and the cooperative representation
of the similarity matrix of each view but does not fully
consider the information redundancy and other information.
2) ECRMSC uses the L1-norm as a constraint to extract the
complementary information between different sparse subspace
matrices. However, ECRMSC does not make full use of the
common information of each view and the retention of local
structural features in the sparse representation process. As a
comparison, our proposed algorithm has been improved on this
basis, and the results are greatly improved (at least 3%) for
some evaluation metrics.

Table IV displays the clustering performance for the BBC-
Sport dataset. This is a test dataset, and the final classification
results fluctuate greatly. Table IV shows the effect of LMSC
on the synthesis, which is only the last third, when our
proposed algorithm achieves the best performance. Although

LMSC exhibits a certain gap in performance with that of
our proposed algorithm, there are certain similarities in the
algorithm models. For example, both algorithms decompose
the original matrix into sparse representation and noise error
parts. Additionally, low-rank constraints are imposed on the
sparse representation matrix and the noise error matrix. From
this, we can conclude that the low-rank processing we imposed
on the sparse representation matrix and the noise error matrix
is very helpful for improving the clustering effect.

Table V shows the experimental results for the EYaleB face
dataset. Since this dataset and the ORL mtv dataset are both
face datasets, the experimental results for these two datasets
are similar. First, their clustering effects are better and shows
a greater improvement. Second, the results for the two datasets
that have been clustered multiple times are very close for
each indicator. The only difference is that the EYaleB dataset
and other comparison algorithms exhibit polarization in the
clustering results. Some algorithms do not perform very well for
this dataset, such as DiMSC and MVGL. Since one sample of
each view in the EYaleB dataset has more than 10,000 features,
these features may contain some redundant information causing
noise, and the clustering performance will be greatly affected.
In this way, we need to perform sparse representation and
dimensionality reduction on the dataset. However, DiMSC and
MVGL do not consider the noise matrix or remove redundant
information, which decreases their performance.

The experimental results for the uci digit dataset are shown
in Table VI. The performance of the proposed method for
this dataset is relatively stable compared to that of the
other algorithms. The experimental results of our proposed
algorithm show slight improvement compared to the second-
best results in some evaluations, such as improvements of
0.13%, 0.45% and 0.47% for NMI, purity, and recall in the
evaluation metrics, respectively. However, there is a remarkable
improvement over the second-best comparison algorithm for
some evaluation metrics, such as ACC, precision, F-score and
AR. The improvements of the experimental results for these
metrics are approximately 2%, 3%, 3% and 2%, respectively.

F. Similarity Matrix Analysis
In this sub-section, the global similarity matrix is analysed.

The similarity matrix can interpret the clustering performance
effect very well. Because of space limitations, the global
similarity matrices of only three datasets, the ORL mtv, EYaleB
and uci digit datasets, are shown in Fig. 7. The first line in Fig.
7 represents the original generated visual pictures. To show
them clearly, we partially zoom in, and the shaded area in
the first line in the figure is enlarged. The second line shows
the visualization of the shaded area in the first line. From
the second line in Fig. 7, we can see that different classes
are clearly divided into squares. The more concentrated on
the diagonal lines and the smoother it is outside the boxes,
the better the clustering effect is. It can be seen that all three
results are very good.

G. Convergence Analysis
To solve Eq. (10), we update each variable in the form

of a locally optimal solution. For an optimization model,
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(a) ORL mtv (b) EYaleB (c) uci digit

Fig. 7: The global similarity matrix A obtained by Eq. (33).

the convergence of the objective function is very important.
Therefore, to intuitively explain the convergence of the pro-
posed model, we present the analysis in Fig. 6. It shows that
the BBCSport and 3-sources datasets converge very quickly
and need only 3 iterations to converge, as they are two
text datasets. In addition, the EYaleB dataset reports such
a large number of iterations. According to the complexity
analysis of the algorithm, we propose that the computational
effectiveness of the method depends only on the number of
clustering categories, the number of samples and the dimension
of samples. First of all, the dataset EYaleB is a gray scale
face dataset and has 1102 samples, which contains the faces
of 38 different individuals. Second, the dimensions of each
sample are very large containing 32,256 features. This is
very complex. Therefore, when this data set is applied to our
proposed algorithm, its iteration times are much more than that
of other data sets. By comparison with the algorithm complexity
in this paper, such as MLSSC(O(tnvn

3)), MVGL(tn2vn
2),

LRPP-GRR(O(t(n3 + cn2))), L0-LSSC(O(tn3 +mn2)).The
complexity of the proposed algorithm is reasonable in theory.

VI. CONCLUSION

In this paper, we propose a new multi-view clustering
algorithm for a low-rank sparse subspace. We use two de-
composition methods to decompose the original data matrix.
One method decomposes the original data into global sparse
subspace and multi-view error matrices, and the other method
decomposes the original data into some multi-view sparse
subspace matrices. The two parts are combined by a regulariza-
tion norm, resulting in an optimal global matrix and a greater
diversity of individual view features. Furthermore, we use a
new low-rank and sparse norm constraint for the defects of
the nuclear norm and L1-norm. The similarity matrix of the
proposed method is adaptive. Finally, we put these sub-modules
in a unified optimization framework and use the ADMM for
optimization updates. Experiments are carried out for five
well-known public datasets to verify the effectiveness of the
proposed algorithm compared with several similar state-of-the-
art algorithms. The experimental results show that the proposed
method obtained the best results.
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