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Graphonomy: Universal Image Parsing via
Graph Reasoning and Transfer
Liang Lin, Yiming Gao, Ke Gong, Meng Wang, and Xiaodan Liang

Abstract—Prior highly-tuned image parsing models are usually studied in a certain domain with a specific set of semantic labels and
can hardly be adapted into other scenarios (e.g.sharing discrepant label granularity) without extensive re-training. Learning a single
universal parsing model by unifying label annotations from different domains or at various levels of granularity is a crucial but rarely
addressed topic. This poses many fundamental learning challenges, e.g.discovering underlying semantic structures among different
label granularity or mining label correlation across relevant tasks. To address these challenges, we propose a graph reasoning and
transfer learning framework, named “Graphonomy”, which incorporates human knowledge and label taxonomy into the intermediate
graph representation learning beyond local convolutions. In particular, Graphonomy learns the global and structured semantic
coherency in multiple domains via semantic-aware graph reasoning and transfer, enforcing the mutual benefits of the parsing across
domains (e.g.different datasets or co-related tasks). The Graphonomy includes two iterated modules: Intra-Graph Reasoning and
Inter-Graph Transfer modules. The former extracts the semantic graph in each domain to improve the feature representation learning
by propagating information with the graph; the latter exploits the dependencies among the graphs from different domains for
bidirectional knowledge transfer. We apply Graphonomy to two relevant but different image understanding research topics: human
parsing and panoptic segmentation, and show Graphonomy can handle both of them well via a standard pipeline against current
state-of-the-art approaches. Moreover, some extra benefit of our framework is demonstrated, e.g., generating the human parsing at
various levels of granularity by unifying annotations across different datasets.

Index Terms—Image parsing, knowledge reasoning, transfer learning, panoptic segmentation
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1 INTRODUCTION

Human visual systems are capable of accomplishing holistic scene
understanding at a single glance, e.g., identifying instances from
the background, and recognizing object and background classes.
Nevertheless, recent research efforts mainly focus on understand-
ing images within a specific domain, e.g., semantic image region
segmentation [1], [2] and detailed human part/clothes parsing [3],
[4], [5], [6], [7]. The generalization capability of these models
are limited since they are usually trained on a certain dataset
with a specific set of semantic labels. Moreover, the underlying
semantics structure and relatedness within images (e.g., “upper-
clothes can be interpreted as coat or shirt” and “ship often appears
with background of sea or river”) are rarely exploited in an
explicit way. As a result, it is very hard to efficiently adapt the
trained model into other relevant new scenarios. To address these
problems and avoid redundant data annotation and re-training for
discrepant label granularity, we propose to learn a universal image
parsing model across multiple domains (e.g., relevant but different
datasets or tasks). Specifically, the model is required to handle not
only the detailed human parsing (i.e., segmenting human / parts at
different coarse to fine-grained level across different datasets), as
Fig. 1 illustrates, but also the panoptic scene understanding (i.e.,
segmenting each object instance and assigning class labels to each
pixel).

The most straightforward solution to the universal parsing
would be posing it as a multi-task learning problem, and integrat-
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ing multiple segmentation branches upon one shared backbone
network [5], [6], [8], [9], [10], [11]. This category of approaches,
however, basically resorts to the brute-force feature-level informa-
tion fusion while disregarding the underlying common semantic
knowledge, such as label hierarchy, label visual similarity and
linguistic/context correlations. A few recently proposed works in
human parsing make attempts to incorporate the human structure
information by employing graphical models (e.g., Conditional
Random Fields (CRFs)) [5], self-supervised loss [6] or human
pose priors [12], [13], [14], whereas these models overlook the
explicit relationships among the different body parts and clothing
accessories, leading to suboptimal performances especially for
some infrequent fined-grained categories.

In this paper, we propose to develop transfer learning and
knowledge integration techniques across different domains for
better handling the universal parsing, as the semantic labels are
discrepant in different tasks or datasets and this discrepancy
might largely hinder the model unification. Specifically, a learning
framework is presented for incorporating human knowledge and
label taxonomy into the intermediate graph representation, which
is thus named as “Graphonomy” (i.e., graph taxonomy). It learns
the global and structured semantic coherency in multiple domains
via reasoning and transfer with the semantics-enhanced graph
representation, enforcing the mutual benefits of the parsing across
domains.

Inspired by the effectiveness of human utilizing semantic
knowledge learned through experience, we develop our Graphon-
omy based on the structured graph representation that seamlessly
integrates the image feature and higher level semantics. The
Graphonomy includes two main modules: Intra-Graph Reasoning
and Inter-Graph Transfer, which performs iteratively during the
learning procedure. Notably, Graphonomy can be flexibly inte-
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Fig. 1: With huge different granularity and quantity of semantic la-
bels, image parsing is isolated into multiple level tasks that hinder
the model generation capability and data annotation utilization.
For example, the head region on a dataset is further annotated
into several fine-grained concepts on another dataset, such as hat,
hair and face. However, different semantic parts still have some
intrinsic and hierarchical relations (e.g., Head includes the face.
Face is next to hair), which can be encoding as intra-graph and
inter-graph connections for better information propagation. To
alleviate the label discrepancy issue and take advantage of their
semantic correlations, we introduce a learning framework, named
as “Graphonomy”, which models the global semantic coherency
in multiple domains via graph transfer learning to achieve multiple
levels of human parsing tasks. For clarity, we only show a portion
of labels and connections.

grated with any modern image parsing systems via the graph
reasoning and transfer. And all of the components of our Graphon-
omy are fully differentiable for end-to-end training and efficient
inference.

For Intra-Graph Reasoning, we first project the extracted
image features into a graph, where each vertex represents a tensor
combined from the pixels of similar features and it associates with
a semantic label. The edge connections among these graph vertices
are represented by a adjacency matrix that can be derived by either
the fixed prior knowledge (e.g.the human parts layout / configu-
ration) or a dynamic learning process with attention mechanism.
The graph convolution operation is then implemented along with
the graph structure for propagating the semantic knowledge from
a global perspective and updating the features associating with the
vertices. The updated features are then re-projected back to the
feature map for enhancing the classification discriminability.

In the module of Inter-Graph Transfer, our framework grad-
ually distil related knowledge from the structured graph in one
domain to the graph in another domain by employing the graph
convolution operation, so that the different semantic labels across
domains are bridged during the learning process. In this work,
we separately discuss the knowledge transfer regarding to two

different application scenarios. For human parsing, we aim to learn
the model across datasets with discrepant label granularity and ef-
fectively utilize the annotations at multiple levels. To enhance the
transfer capability, we make the first effort to exploit various graph
transfer dependencies among different datasets. We encode the
relationships between two semantic vertexes from different graphs
by computing their feature similarity as well as the semantic
similarity encapsulated with linguistic knowledge. Notably, we ex-
plore different ways for building the connections between the two
graphs. For panoptic scene understanding, Graphonomy jointly
optimizes the two tasks (i.e., instance-level thing segmentation and
pixel-wise segmentation of background stuff) and exploits their
semantic relations in an explicit way. And the semantic labels are
not identically shared by the different tasks but contextually co-
related. Our transfer module bidirectionally propagate the message
between the two graphs and the connections are dynamically
determined by the attention mechanism. That is, we can simply
configure the transfer module as the method used in the reasoning
module, making the whole framework comprehensively compact.

In sum, Graphonomy encodes a set of concepts according with
the taxonomy, and all graphs constructed from different domains
(e.g.datasets) are connected following the transfer dependencies
to enforce semantic feature propagation. Fig. 2 illustrates the
overview of our Graphonomy framework.

We conduct experiments on three large-scale human parsing
benchmarks that contain diverse semantic body parts and clothes.
The experimental results show that by seamlessly propagating
information via Intra-Graph Reasoning and Inter-Graph Transfer,
our Graphonomy is able to associate and distil high-level semantic
graph representation constructed from different datasets, which
effectively improves multiple levels of human parsing tasks.
Moreover, the experiments are also conducted on two panoptic
segmentation datasets and demonstrate the superiority of our
Graphonomy in both accuracy and generality compared with the
recently proposed panoptic segmentation approaches [15], [16],
[11], [17].

This paper makes the following main contributions.

• To the best of our knowledge, it makes the first attempt to
tackle the image parsing across multiple domains using
a single universal model, and justifies its effectiveness
on two challenging image parsing problems: the detailed
human parsing and panoptic scene segmentation.

• It presents a new framework of graph reasoning and
transfer for seamlessly integrating the semantic knowledge
and deep feature learning without piling up the complexity.
And various ways of graph transfer is also explored for
better exploiting the underlying structure of semantics.

• It provides thorough experimental analysis on several
standard large-scale benchmarks and demonstrates the
advantage of our framework compared with the state-of-
the-arts.

The rest of the paper is organized as follows. We first re-
view the past literature in Section 2. Section 3 introduces the
overall framework of our proposed framework and discusses the
implementation of each main component. The applications of
our framework on human parsing and panoptic segmentation are
analyzed in Section 4 and Section 5, respectively, which include
the experimental results and comparisons. Section 6 concludes this
paper with the discussion of future work.
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Fig. 2: The overview of our Graphonomy that tackles the universal parsing via graph reasoning and transfer. The parsing model can be
trained across domains (e.g.relevant but different tasks or datasets) with discrepant semantic labels.

2 RELATED WORK

Human Parsing and Panoptic Segmentation. Human parsing
and panoptic segmentation are two relevant research topics in
scene understanding, which have recently attracted a huge amount
of interests with diverse applications and achieved great progress
with the advance of deep convolutional neural networks and large-
scale datasets.

Human parsing aims to segment a human image into multiple
parts with fine-grained semantics (e.g.,, body parts and clothing)
and provides a more detailed understanding of image contents.
Most of the prior works focused on developing new neural
network models for improving discriminability of the feature
representation (e.g.the dilated convolution [5], [18], LSTM struc-
ture [19], [20], [21] and encoder-decoder architecture [3]) and
incorporating auxiliary information guidance such as the human
pose constraints [13], [14], [22]. Although these methods showed
promising results on each human parsing dataset, they basically
disregarded the intrinsic semantic correlations across concepts by
simply using one flat prediction layer to classify all labels and
utilized the annotations in an inefficient way. Moreover, the trained
model cannot be directly applied to another related task without
heavy fine-tuning.

Aiming to unify the tasks of instance and semantic segmenta-
tion towards some newly rising applications, panoptic segmenta-
tion has been usually discussed as a multi-task learning problem.
Most of the recently proposed approaches [11], [16], [17], [15],
[23] mainly focused on developing neural networks that contain
multiple branches accounting for instance-aware segmentation and
region segmentation respectively with a backbone network shared
by the two tasks. For example, Li et al. [17] showed utilizing
the feature maps learned for instance-aware segmentation is able
to assist the performance of semantic segmentation. Xiao et al.
[24] proposed to handle heterogeneous annotations by jointly
optimizing co-related tasks. However, the modelling of inter-
task dependency in these approaches is usually over-simplified
by learning multi-branches feature representation, leading to the
suboptimal performance and limited generalization capacity.

In this work, our proposed Graphonomy framework is ca-
pable of explicitly reasoning the contextual dependencies within
semantics-aware graph representation across domains in the graph
representation and handling human parsing and panoptic segmen-
tation both well. Specifically, we demonstrate the effectiveness of
our method on human parsing by generating the universal parsing
with discrepant label granularity, which was never addressed by
existing human parsing approaches. For panoptic segmentation,

we show that explicitly exploiting the underlying semantic con-
figurations with the contextually co-related tasks is a key to
improving not only the segmentation performance but also the
interpretability of the learning process.

Knowledge Reasoning and Transfer. Many research efforts
recently model domain knowledge as a graph for mining correla-
tions among semantic labels or objects in images, which has been
proved effective in many scenarios of image understanding [25],
[26], [27], [28], [29]. For example, Chen et al. [25] leveraged
local region-based reasoning and global reasoning to facilitate
object detection. Liang et al. [28] explicitly constructed a seman-
tic neural graph network by incorporating the semantic concept
hierarchy. Some sequential reasoning models for capturing the
contextual dependency were also proposed with LSTM or other
memory neural networks [30], [31]. Our work also inspired by the
effectiveness of transfer learning research [32], [33], [34], [35],
[36], [37], [38], which targets to bridging different domains or
tasks to mitigate the burden of manual labelling. For example,
LSDA [33] transformed whole-image classification parameters
into object detection parameters through a domain adaptation
procedure. Hu et al. [34] considered transferring knowledge
learned from bounding box detection to instance segmentation.
Some previous works [35], [36], [38] considered adjusting the
network architecture by crafting specific modules for improving
the performance of model capacity transferring. Li et al. [37]
proposed a new training strategy to handle the new task without
forgetting the knowledge learned in the source domain.

The proposed Graphonomy advances the existing models in
several aspects. First, our framework is more flexible to transfer
knowledge across across datasets or co-related tasks. Second, our
Graphonomy is capable of dynamically adjusting the connections
among graph nodes rather than reasoning with a fixed graph struc-
ture. Third, some external knowledge such as linguistic embedding
can be also incorporated into our reasoning framework without
piling up the complexity.

3 GRAPHONOMY

In this section, we introduce the proposed learning framework
called Graphonomy, which explicitly incorporates graph reasoning
and transfer learning upon the conventional parsing network and
enforcing the mutual benefits of the parsing across domains, as
Fig. 2 illustrates. This framework involves two modules: Intra-
Graph Reasoning and Inter-Graph Transfer, and they perform
iteratively within the semantics-aware graph representation.
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Fig. 3: Illustration of our Graphonomy that tackles universal human parsing via graph reasoning and transfer for achieving multiple
levels of human parsing. The annotations from different datasets can be thus integrated for training the universal parsing model. The
image features extracted by deep convolutional networks are projected into a semantic graph with its nodes and edges defined according
to prior knowledge (i.e., human body structures). The global reasoning is implemented within the graph of each domain by the Intra-
Graph Reasoning module for enhancing the discriminability of visual features. While the graphs across domains are further fused via
the Inter-Graph Transfer module, in which the hierarchical label correlation is employed for alleviating the label discrepancy across
different datasets. During training, our Graphonomy can take advantage of annotated data with different granularity. For inference, the
trained model can generate different levels of human parsing results taking an arbitrary image as input.

We start by taking the human parsing as a specific scenario
to discuss the two modules of Graphonomy. Specifically, our
framework on human parsing can handle different levels of human
parsing needs (i.e., label annotations vary from dataset to dataset),
whose overview on human parsing is shown in Fig 3. We further
introduce how to extend Graphonomy for handling multi-level
universal parsing at multiple datasets with a single model. Then,
we discuss the adaptation of our framework to the panoptic
segmentation.

3.1 Intra-Graph Reasoning

Given local feature tensors from convolution layers, we introduce
Intra-Graph Reasoning to enhance local features, by leveraging
global graph reasoning with external structured knowledge. To
construct the graph, we first summarize the extracted image
features into high-level representations of graph nodes. The visual
features that are correlated to a specific semantic part (e.g., face)
are aggregated to depict the characteristic of its corresponding
graph node.

Formally, we define an undirected graph asG = (V,E) where
V andE denote the vertices and edges respectively, andN = |V |.
And we take X ∈ RH×W×C as the module input, where H ,
W and C represent height, width and channel number of the
feature maps. We first produce high-level graph representation
Z ∈ RN×D of all N vertices, where D is the feature dimension
for each v ∈ V , and the number of nodes N is consistent with the
number of target part labels of a dataset. Thus, the projection can
be formulated as the following function,

Z = φ(X,W ), (1)

where W is the trainable transformation matrix for converting
each image feature xi ∈ X into the dimension D. The pro-
jection function φ map the features representation to the graph
representation Z ∈ RN×D . Specifically, the projection process

first learns a projection parameter P ∈ RC×N , and converts the
feature dimension of X according to the number of the nodes as,

X1 = XHW×C × P, (2)

where X ∈ RH×W×C is resized to RHW×C , × is the matrix
multiplication and we can obtain the X1 ∈ RHW×N . Then, we
calculate an intermediate feature X2,

X2 = XT
1 ×XHW×C , (3)

where X ∈ RH×W×C is resized to RHW×C . And we multiply
X2 with a trainable weight matrix W1 ∈ RC×D to obtain the
graph representation Z ∈ RN×D ,

Z = X2 ×W1. (4)

The graph projection process can be thus specified as,

Z = φ(X,W )

= PT ×XC×HW ×XHW×C ×W1.
(5)

Furthermore, we exploit the semantic constraints from the
human body knowledge to invoke the global graph reasoning
based on the high-level graph representation Z . As shown in Fig 4,
we introduce the connections between the human body parts to
encode the relationship between two nodes. For example, hair
usually appears with the face so these two nodes are linked. While
the hat node and the leg node are disconnected because they have
nothing related.

Following the graph convolution method [26], we perform
graph propagation over representations Z of all part nodes with
matrix multiplication, resulting in the enhanced features Ze:

Ze = σ(AeZW e), (6)

where W e ∈ RD×D is a trainable weight matrix and σ is a
nonlinear function. The node adjacency weight av→v′ ∈ Ae is
defined according to the edge connections in (v, v′) ∈ E, which
is a normalized symmetric adjacency matrix. And we employ the
graph convolution for T times (e.g.,T = 3 in practice).
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Fig. 4: Examples of the definite connections between each two
human body parts, which is the foundation to encode the relations
between two semantic nodes in the graph for reasoning. Two nodes
co-relates if they are connected by a white line.

At last, the evolved global context can be used to further boost
the capability of image representation. Similar to the projection
operation (Eq. 5), we use another transformation matrix to re-
project the graph nodes to the images features Xp. As a result, the
image features are updated by the weighted mappings from each
graph node that represents different characteristics of the semantic
parts.

3.2 Inter-Graph Transfer
To distill relevant semantics from one source graph to another
target graph, we introduce Inter-Graph Transfer to bridge all
semantic labels from different datasets. Although different levels
of human parsing tasks have diverse distinct part labels, there
are explicit hierarchical correlations among them to be exploited.
For example, torso label in a dataset includes upper-clothes
and pants in another dataset, and the upper-clothes label can
be composed of more fine-grained categories (e.g., coat, T-shirt
and sweater) in the third dataset, as shown in Fig. 1. We make
efforts to explore various graph transfer dependencies between
different label sets, including feature-level similarity, handcraft
relationship, and learnable weight matrix. Moreover, considering
that the complex relationships between different semantic labels
are arduous to capture from limited training data, we employ
semantic similarity that is encapsulated with linguistic knowledge
from word embedding [39] to preserve the semantic consistency
in a scene. We encode and incorporate these different types
of relationships into the network to enhance the graph transfer
capability.

Let Gs = (Vs, Es) denote a source graph and Gt = (Vt, Et)
a target graph, where Gs and Gt may have different structures
and characteristics. We represent a graph as a matrix Z ∈ RN×D ,
where N = |V | and D is the dimension of each vertex v ∈ V .
The graph transformer can be formulated as,

Zt = Zt + σ(AtrZsWtr), (7)

where Atr ∈ RNt×Ns is a transfer matrix for mapping the graph
representation from Zs to Zt. Wtr ∈ RDs×Dt is a trainable
weight matrix. We seek to find a better graph transfer dependency
Atr = ai,j, i=[1,Nt], j=[1,Ns], where ai,j means the transfer
weight from the jth semantic node of source graph to the ith

semantic node of target graph. We introduce and compare four
schemes for implementing the transfer matrix. The effectiveness
of the different schemes will be evaluated in our experiments.

Handcraft relation. Considering the inherent correlation be-
tween two semantic parts, we first define the relation matrix as
a hard weight, i.e., {0, 1}. When two nodes have a subordinate
relationship, the value of edge between them is 1, else is 0. For
example, hair is a part of head, so the edge value between hair
node of the target graph and the head node of the source graph is
1.

Learnable matrix. In this way, we randomly initialize the
transfer matrix Atr, which can be learned during the network
training.

Feature similarity. The transfer matrix can also be dynami-
cally established by computing the similarity between the source
graph nodes and target graph nodes, which have encoded high-
level semantic information. The transfer weight ai,j can be calcu-
lated as,

ai,j =
exp(sim(vsi , v

t
j))∑

j exp(sim(vsi , v
t
j))

, (8)

where sim(x, y) is the cosine similarity between x and y. vsi and
vtj represent the feature vectors of the ith target node and jth

source node, respectively.
Semantic similarity. Besides the visual information, we fur-

ther explore the linguistic knowledge to construct the transfer
matrix. We use the word2vec model [39] to map the semantic
word of labels to a word embedding vector. Then we compute the
similarity between the nodes of the source graph Vs and the nodes
of the target graph Vt, which can be formulated as,

ai,j =
exp(sij)∑
j exp(sij)

, (9)

where sij represents the cosine similarity between the word
embedding vectors of ith target node and jth source node.

According to the transfer matrix defined in Eq. 7, knowledge
of the source graph can be transferred to the target graph by
combining the features over the structures of the two graphs. It
worth mentioning that the knowledge of the source and target
graph can be bi-directionally transferred from one to the other,
vice-versa, so that no assumption is hold on the label granularity
across different datasets (i.e., tasks). For example, the source
dataset is either finer or coarser than the other in terms of labels,
which can be both handled by our framework flexibly. In this
way, the hierarchical information of different label sets can be
associated and propagated via the cooperation of Intra-Graph
Reasoning and Inter-Graph Transfer, which enables our model
generating more discriminative features for achieving accurate
fine-grained pixel-wise classification.

3.3 Universal Human Parsing
As shown in Fig. 3, in addition to improving the performance
of one model by utilizing the information transferred from other
graphs, our Graphonomy is capable of learning a universal human
parsing model by incorporating knowledge from diverse datasets.
As different datasets have large label discrepancy, previous works
usually adopted fine-tuning techniques on each dataset or per-
formed multi-task learning (e.g., crafting several independent
network branches for handling different datasets). In contrast, our
Graphonomy can unify label annotations across different datasets
via the semantic-aware graph reasoning and transfer, enforcing the
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Fig. 5: Illustration of applying our Graphonomy to panoptic scene segmentation. Each task (i.e., instance-level thing segmentation or
pixel-wise segmentation of background stuff) is treated as one domain, and our framework exploits the semantics-aware dependencies
across domains in an explicit way. The implementation of graph construct is modified based on the version used for human parsing,
and the other components are basically kept. By analogy, our framework can be easily extneded into other similar scene understanding
problem involving multiple co-related tasks.

Algorithm 1 The Sketch of Parsing Model Training with
Graphonomy.
Input: Feature maps X .
Output: enhanced feature maps X ′.
// Build graph
Obtain graph Z by function φ for each domain (e.g., dataset, task);
for i = 1 to T , do

// Intra-Graph Reasoning
Evolve each graph within the same domain by Eq. 6;
// Inter-Graph Transfer
Transfer Graph within different graphs by Eq. 7;

end for
// Re-projecting to feature maps
Obtain re-projection feature maps Xp and enhanced feature maps
X ′ = X +Xp.

mutual benefits of the parsing across different datasets. The overall
sketch of training image parsing models with our Graphonomy is
generally summarized in Algorithm 1.

3.4 Panoptic Scene Segmentation

Besides universal human parsing, our Graphonomy can also
handle other image understanding problems by simply modify-
ing the graph construction in the pipeline of Graphonomy. As
discussed above, panoptic scene segmentation is a typical image
understanding problem that involves multiple co-related tasks. We
can treat each task (e.g., either the instance-aware object (thing)
segmentation or the stuff segmentation) as a domain so that the
across domain reasoning and transfer framework can be easily
adapted into the multi-task panoptic segmentation scenario. By
analogy, more extra co-related tasks can be also integrated with
our framework towards general scene understanding.

In our implementation for handling panoptic segmentation,
we craft the graph construction in the Intra-Graph Reasoning
and Intra-Graph Transfer modules. We first modify the graph
representation Z where original nodes represent semantic labels
to Zins ∈ RNins×D of all Nins instances, where each node
represents one identified instance and D is the desired feature
dimension. The modified graph representation Zins is determined
by

Zins = φ(X,W,R), (10)

where W is the trainable transformation matrix for converting
each image feature xi ∈ X into the dimension D and {ri} ∈ R
is the proposals of detected instances.

Specifically, the projection function φ for the foreground in-
stances is implemented by projecting the feature maps of instances
i to the graph representation zi ∈ Z . The features of zi are
extracted by pooling the features of the region ri, which can be
formulated as,

zi =WPooling(X, ri), (11)

where Pooling() is the operation of ROI-Pooling used to pool
the feature maps X based on the detected region ri and W is
the learnable weight. After processing by the graph reasoning
module, we re-project the feature representations of each vertex
to the proposal by concatenating the node features zi with the
features of its corresponding proposal Xp. The enhanced proposal
features X ′ can be obtained by

X ′(i, j) = Concat(X(i, j), zi), (i, j) ∈ ri (12)

where Concat(·, ·) is the concatenation operation and (i, j) ∈ ri
is the index of the proposal ri.

To adaptively represent any semantic relations and consider
underlying dependencies between nodes, we introduce an attention
mechanism to obtain the dynamic adjacent and transfer matrix.
Following [40], we calculate the edge connection aij ∈ A
between two nodes zi, zj according to

αij =

exp

(
δ
(
W
[
zi‖zj

]))
∑

k∈Ni
exp

(
δ
(
W
[
zi‖zk

])) , (13)

where || is the concatenation operation, Ni is the neighborhood
of node i and δ is LeakyReLU nonlinear activation function.
Obviously, the dynamic determination of edge connection is more
general for tackling similar image parsing problem, compared with
the hand-craft adjacent and transfer matrix. This implementation
also reflect the flexibility of our Graphomony that the graph
construction can be derived by either external hand-crafted prior
(e.g., for the human parsing scenario) for attentive data-driven
learning (e.g., for the panoptic segmentation scenario). Compared
with the learnable matrix in Section 3.2, Eq. 13 determines the
edge weights of two given nodes, while the matrix computes
the edge weights by using gradient backward. Moreover, casting



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEBRUARY 2020 7

person

snowboard

snow

sky

Fig. 6: An example of the generated semantics-aware graph across
the two tasks, i.e., instance-aware object segmentation and the
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the graphs of the two tasks are shown in the up right and left,
respectively.

Eq. 13 can handle the scenarios that the total number of graph
nodes is not fixed and is thus a more general approach.

Fig. 5 illustrates the learning process of our Graphomony
for panoptic scene segmentation. The semantic labels for the
task of foreground instance segmentation are associated with the
object (thing) identities while the labels for background stuff
segmentation are associated with the semantic taxonomy.

Unlike the background stuff segmentation, each foreground
thing need to be assigned an identity for distinguishing it from
the other ones sharing the same category label. The foreground
instances are usually localized in certain compact local regions
within very strong surrounding context to its spatial neighbours.
Therefore, we propose to build the semantic graph in the domain
of instance segmentation based on the detected regions. Specifi-
cally, we extract the features of the predicted proposals with the
ROI pooling [41], [2], and then represent the graph vertexes by
the region-based feature tensors. In the experiments, the benefit of
this graph construction will be demonstrated compared with the
way used in human parsing.

During the training procedure, the Intra-Graph Reasoning and
Inter-Graph Transfer iteratively execute, and the computing of the
two modules follows Eq. 6 and Eq. 7, respectively. An illustrative
example of generating the semantics-aware graphs from the input
image is shown in Fig. 6.

In each domain, the semantic structured graph is constructed to
guide the feature learning via the Intra-Graph Reasoning. That is,
Intra-Graph Reasoning module enables each foreground instances
to assemble the contextual information from other instances, and
similarly the semantic relations among background stuff are also
captured. The dependencies between the identified foreground in-
stances and the scene background are then bidirectionally explored
by the Inter-Graph Transfer module. In particular, the connections
between the graphs extracted from different tasks are dynamically
determined by the attention mechanism according to Eq. 13, which
is similar as the implementation in the reasoning module.

4 EXPERIMENTS ON HUMAN PARSING

In this section, we evaluation the effectiveness of our framework
on standard human parsing benchmarks including training with a

Method Mean IoU(%)
LIP [6] 59.36

Structure-evolving LSTM [19] 63.57
DeepLab v2 [5] 64.94

Li et al. [8] 66.3
Fang et al. [13] 67.60

PGN [45] 68.4
RefineNet [46] 68.6

Bilinski et al. [47] 68.6
DeepLab v3+ [3] 67.84

Multi-task Learning 68.13
Graphonomy (CIHP) 71.14

Graphonomy (Universal Human Parsing) 70.99

TABLE 1: Comparison of human parsing performance with sev-
eral state-of-the-art methods on PASCAL-Person-Part dataset [48].

single dataset and over multiple datasets. We first introduce the
implementation details and experimental settings. Then, we report
quantitative comparisons of our framework with other state-of-the-
art methods.

4.1 Experimental Settings

4.1.1 Implementation Details

We use the basic neural network settings following the DeepLab
v3+ [3], and we employ the Xception [42] pre-trained on the
COCO [43] dataset and set output stride = 16. To illustrate
the flexibility of our framework, we also adopt PSPNet [44]
as the backbone network. Following the original implementa-
tion in [44], we pretrain the network on ImageNet and set the
output stride = 16. Note that the implementation of PPSNet
will be specially indicated in our experiments, and otherwise
DeepLab v3+ is adopted. The number of nodes in the graph is
set according to the number of categories of the datasets, i.e.,
N = 7 for Pascal-Person-Part dataset, N = 18 for ATR dataset,
N = 20 for CIHP dataset. The feature dimension D of each
semantic node is 128. The Intra-Graph Reasoning module has
three graph convolution layers with ReLU activate function. For
Inter-Graph Transfer, we use the pre-trained model on source
dataset and randomly initialize the weight of the target graph.
Then we perform end-to-end joint training for the whole network
on the target dataset.

During training, the 512 × 512 inputs are randomly resized
between 0.5 and 2, cropped and flipped from the source images.
Following [3], we employ a “ploy” learning rate policy. We adopt
SGD optimizer with momentum = 0.9 and weight decay of
5e − 4. We set the initial learning rate to 0.007 for DeepLab
v3+ [3]. For PSPNet,we set the initial learning rate to 0.02
following []. To stabilize the predictions, we perform inference
by averaging results of left-right flipped images and multi-scale
inputs with the scale from 0.50 to 1.75 in increments of 0.25.

Our method is implemented by extending the Pytorch frame-
work. We reproduce DeepLab v3+ [3] and PSPNet [44] following
all the settings in its paper. All networks are trained on four TITAN
XP GPUs. Due to the GPU memory limitation, the batch size is
set to be 12. For each dataset, we train all models at the same
settings for 100 epochs for the good convergence. To stabilize
the inference, the resolution of every input is consistent with the
original image. Upon acceptance, we plan to release our source
code and trained models.
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Fig. 7: Examples of different levels of human parsing results generated by our universal human parsing model. We can observe that our
model is able to generates precise and fine-grained results for different levels of human parsing tasks by distilling universal semantic
graph representation.

Method Overall accuracy (%) F-1 score (%)
LG-LSTM [21] 97.66 86.94

Graph LSTM [20] 98.14 89.75
Structure-evolving LSTM [19] 98.30 90.85

DeepLab v3+ [3] 97.30 84.50
Multi-task Learning 98.32 90.16

Graphonomy (PASCAL) 98.32 90.89
Graphonomy (Universal Human Parsing) 98.03 89.24

TABLE 2: Human parsing results on ATR dataset [10].

Method Mean accuracy(%) Mean IoU(%)
PGN [45] 64.22 55.80

DeepLab v3+ [3] 65.06 57.13
Multi-task Learning 65.27 57.35

Graphonomy (PASCAL) 66.65 58.58
Graphonomy (Universal Human Parsing) 66.20 58.17

TABLE 3: Performance comparison with state-of-the-art methods
on CIHP dataset [45].

4.1.2 Datasets

We evaluate our Graphonomy on four human parsing datasets
with different label annotations, including PASCAL-Person-Part
dataset [48], ATR dataset [10], Crowd Instance-Level Human
Parsing (CIHP) dataset [45], and Multiple Human Parsing (MHP)
dataset [7]. The labels of human parts among these datasets are
hierarchically correlated and the label granularity is naturally
annotated in a coarse-to-fine manner.

PASCAL-Person-Part dataset [48] is a set of additional anno-
tations for PASCAL-VOC-2010 [49]. It goes beyond the original
PASCAL object detection task by providing pixel-wise labels for
six human body parts, i.e., head, torso, upper-arms, lower-arms,
upper-legs, lower-legs. There are 3,535 annotated images in the
dataset, which is split into separate training set containing 1,717
images and test set containing 1,818 images.

ATR dataset [10] aims to predict every pixel with 18 labels:

face, sunglass, hat, scarf, hair, upper-clothes, left-arm, right-arm,
belt, pants, left-leg, right-leg, skirt, left-shoe, right-shoe, bag and
dress. Totally, 17,700 images are included in the dataset, with
16,000 for training, 1,000 for testing and 700 for validation.

CIHP dataset [45] is a new large-scale benchmark for human
parsing task, including 38,280 images with pixel-wise annotations
on 19 semantic part labels. The images are collected from the real-
world scenarios, containing persons appearing with challenging
poses and viewpoints, heavy occlusions, and in a wide range of
resolutions. Following the benchmark, we use 28,280 images for
training, 5,000 images for validation and 5,000 images for testing.

MHP dataset [7] is a new fine-grained benchmark for human
parsing task, including 25,403 images with 58 semantic categories
(e.g., ”cap/hat”, ”helmet”, ”face”, ”hair”, ”left- arm”, ”right-arm”,
”left-hand”, ”right-hand”) defined and annotated except for the
“background” category. Following the benchmark, we use 15,403
images for training, 5,000 images for validation and 5,000 images
for testing.

4.1.3 Evaluation Metrics
We use the evaluation metrics including accuracy, the standard
intersection over union (IoU) criterion, and average F-1 score.

4.2 Comparison with state-of-the-arts
We report the results of human parsing generated by our Graphon-
omy and other competing approaches in Table 1, 2, 3, and
6, on the four datasets, respectively. In Table 1, “Graphonomy
(CIHP)” is the method that transfers the semantic graph con-
structed on the CIHP dataset to enhance the graph representation
on PASCAL-Person-Part. Some previous methods achieve high
performance with over 68% Mean IoU, thanks to the wiper or
deeper architecture [47], [46], and multi-task learning [45]. In
contrast, the superior performances generated by our framework
mainly attribute to the explicitly incorporating human knowledge
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# Basic network [3] Adjacency matrix Ae Intra-Graph Reasoning Pre-trained on CIHP Inter-Graph Transfer Mean IoU(%)Handcraft relation Learnable matrix Feature similarity Semantic similarity
1 X - - - - - - - 67.84
2 X - X - - - - - 67.89
3 X X X - - - - - 68.34
4 X - - X - - - - 70.33
5 X X X X - - - - 70.47
6 X X X X X - - - 70.22
7 X X X X - X - - 70.94
8 X X X X - - X - 71.05
9 X X X X - - - X 70.95
10 X X X X - - X X 71.14
11 X X X X - X X X 70.87
12 X X X X X X X X 70.69

TABLE 4: Ablation experiments on PASCAL-Person-Part dataset [48].

training data Fine-tune Graphonomy
50% 68.45 70.03
80% 70.02 70.26
100% 70.33 71.14

TABLE 5: Evaluation results of our Graphonomy when training
on different number of data on PASCAL-Person-Part dataset [48],
in terms of Mean IoU(%).

Method Mean IoU(%)
DeepLab V3+ [3] 32.93

Graphonomy(PASCAL) 34.05

TABLE 6: Comparison of human parsing performance on MHP
dataset [7]. Performance on the val set.

and label taxonomy jointly with global reasoning on the graph
representation.

In Table 2, “Graphonomy (PASCAL)” denotes the method that
transfer the high-level graph representation on PASCAL-Person-
Part dataset to enrich the semantic information. These competing
approaches [19], [20], [21] adopt the LSTM based architecture
for enhancing the feature representation learning, which was
beaten by our graph reasoning and transfer method. In Table 3,
our Graphonomy (PASCAL) improves the result up to 58.58%
compared with the multi-task learning method proposed by Gong
et al. [45].

We report the results in terms of the standard intersection over
union (IoU) on MHP dataset in Table 6, and our model achieves
about 1% improvement.

4.3 Universal Parsing via Training over Multi-Datasets
Training over Multi-Datasets. To sufficiently utilize all human
parsing resources and unify label annotations from different do-
mains or at various levels of granularity, we train a universal
human parsing model to unify all kinds of label annotations from
different resources and tackle different levels of human parsing,

Training Method Mean IoU(%)
Pretrained. New.

Graphonomy (Pretrained dataset) - 71.14
Graphonomy (Online) 57.61 67.29

Graphonomy (Universal Human Parsing) 58.17 70.99

TABLE 7: Evaluation results of our Graphonomy training in an
incremental way to extend the model capacity, in terms of Mean
IoU(%).

which is denoted as “Graphonomy (Universal Human Parsing)”.
We combine all training samples from three datasets and select
images from the same dataset to construct one batch at each
step. As reported in Table 1, 2, 3, our method achieve superior
performances on all the datasets. We also compare our Graphon-
omy with multi-task learning method by appending three parallel
branches based on the backbone, in which each branch predicts the
labels from one dataset. Compared with traditional approaches,
our Graphonomy is able to generate a universal semantic graph
representation by distilling knowledge across different datasets
while enforcing the mutual benefits of each task (i.e., the parsing
on individual dataset).

We also present the qualitative universal human parsing results
in Fig. 7. Our Graphonomy is able to generates precise and
fine-grained results for different levels of human parsing tasks,
which further verifies the rationality of our Graphonomy based
on the assumption that incorporating hierarchical graph transfer
learning upon the deep convolutional networks can capture the
critical information across the datasets to achieve good capability
in universal human parsing.

From the results reported in Table 1, 2, 3, we can observe
that our model trained in the universal way (i.e., Universal Human
Parsing) is inferior compared with the models trained for PASCAL
and CIHP, respectively. These results reflect training a single
universal model by combining different levels of semantic labels
is more difficult than training with a specific dataset. The latter
requires only transferring the model from the source dataset to
the target without handling the discrepancy of label granularity
across different datasets. Learning general image features for
fitting different domains (i.e., datasets) at the backbone networks
also increases the complexity. Specifically, as shown in the top
right image in Fig 7, the annotated labels vary across different
datasets, e.g., the same region of upper-body is annotated as torso,
upper-arms and lower-arms in the PASCAL dataset, upper-clothes
and face in ATR, and upper-clothes, coat and torso-skin in CIHP.

Extending Model Capacity via Incremental Training. Fur-
thermore, an appealing merit of Graphonomy is that the model
capacity can be extended in an incremental manner, i.e., incremen-
tally updating semantic labels with training on a new dataset. In
this experiment, we first train our model using the CIHP dataset
and then adapt it to the PASCAL-Person-Part dataset, and the
quantitative results are reported in Table 7. Specifically, we create
a new branch based on the backbone network and the Inter-Graph
connection to other branches while fixing the previously learned
parameters. In this way, the obtained knowledge from the previous
training can be kept during the incremental training on the new
dataset.
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Fig. 8: Visualized comparison of human parsing results on PASCAL-Person-Part dataset [48] (Left) and CIHP dataset [45] (Right).

4.4 Ablation Study

We further discuss and validate the effectiveness of the main com-
ponents of our Graphonomy on PASCAL-Person-Part dataset [48].

Intra-Graph Reasoning. As reported in Table 4, by encod-
ing human body structure information to enhance the semantic
graph representation and propagation, our Intra-Graph Reasoning
acquires 0.50% improvements compared with the basic network
(#1 vs #3). To validate the significance of adjacency matrix Ae,
which is defined according to the connectivity between human
body parts and enables the semantic messages propagation, we
compare our methods with and without Ae (#2 vs #3). The
comparison result shows that the human prior knowledge makes a
larger contribution than the extra network parameters brought by
the graph convolutions.

Inter-Graph Transfer. To utilize the annotated data from
other datasets, previous human parsing methods must be pre-
trained on the other dataset and fine-tuned on the evaluation
dataset, as the #4 result in Table 4. Our Graphonomy provides a
Inter-Graph Transfer module for better cross-domain information
sharing. We further compare the results of difference graph trans-
fer dependencies introduced in Section 3.2, to find out the best
transfer matrix to enhance graph representations. Interestingly,
it is observed that transferring according to handcraft relation
(#6) diminishes the performance and the feature similarity (#8)
is the most powerful dependency. It is reasonable that the label
discrepancy of multiple levels of human parsing tasks cannot
be solved by simply defining the relation manually and the
hierarchical relationship encoded by the feature similarity and
semantic similarity is more reliable for information transferring.
Moreover, we compare the results of different combinations of
the transfer methods, which bring in a little more improvement.
In our Graphonomy, we combine feature similarity and semantic
similarity for the Inter-Graph Transfer, as more combinations
cannot contribute to more improvements.

Different number of training data. Exploiting the intrinsic
relations of semantic labels and incorporating hierarchical graph
transfer learning upon the conventional human parsing network,
our Graphonomy not only tackle multiple levels of human parsing
tasks, but also alleviate the need of heavy annotated traning
data to achieve the desired performance. We conduct extensive
experiments on transferring the model pre-trained on CIHP dataset
to PASCAL-Person-Part dataset. We use different annotated data
in training set by random sampling for training and evaluate
the models on the whole test set. As summarized in Table 5,
simply fine-tuning the pre-trained model without our proposed
Inter-Graph Transfer obtains 70.33% mean IoU with all training
data. However, our complete Graphonomy architecture uses only
50% of the training data and achieves comparable performance.
With 100% training data, our approach can even outperforms
the fine-tuning baseline for 0.81% in average IoU. This superior
performance confirms the effectiveness of our Graphonomy that
seamlessly bridges all semantic labels from different datasets and
attains the best utilization of data annotations.

Analysis of graph convolution. To understand the effective-
ness of using different layers of graph convolution, we conduct
the experiments with different settings of graph convolution and
report the results in Table 8. From the results, we can observe
that increasing the graph layers of the Intra-Graph leads to better
performance. Using five layers improves the performance by
about 0.56 compared with using only one layer, but brings about
0.02% compared with using three layers. However, increasing
layers results in more parameters, more GPU memory, and time
consumption. Thus, we choose to use three layers for finding a
trade-off between performance and resource cost.

Training with different source datasets. To understand
the performance of Graphonomy on transferring from different
sources, we conduct a batch of experiments and the results are
reported in Table 9. In Table 9a,the result shows that the model
pretrained on the MHP dataset outperforms pretrained on ATR,
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(b)(a)

Fig. 9: Visualized results predicted on (a) ATR dataset [9] (a) and
(b) MHP dataset [7].

since the labels in MHP are more fine-grained. In Table 9a and 9c,
we can observe that the model pretrained on CIHP is most superior
benefiting from the larger amount of images and the fine-grained
labels in this dataset. Pretraining on the ATR dataset performs
better in Table 9b with the similar reason.

Using different backbone networks. We also conduct ex-
periments for evaluating the performances with different settings
of the backbone network. Table 10 shows the comparisons by
replacing the original backbone (i.e., DeepLab v3+ [3]) with
PSPNet [44] on different datasets. These results reflect that the
powerful feature learning network (e.g., deeper or having superior
structures) would bring performance gain.

Comparing with different transfer learning methods. In
these experiments, we compare our framework with other exiting
transfer learning methods and the baseline feature fine-tuning. We
also adopt PSPNet or DeepLab v3+ as the backbone network for

Layers Mean IoU(%)
T = 1 67.80
T = 3 68.34
T = 5 68.36

TABLE 8: Comparison of human parsing performance with
several graph convolution layers of our proposed Intra-Graph
Reasoning on PASCAL-Person-Part dataset [48].

Source Training images Categories Mean IoU(%)
ATR [9] 17,700 17 70.58
MHP [7] 15,403 58 70.89

CIHP [45] 28,280 19 71.14

(a) Results of transferring from different sources on the PASCAL-
Person-Part dataset [48].

Source Training images Categories Mean IoU(%)
ATR [9] 17,700 17 59.37

PASCAL [48] 1,717 7 58.58

(b) Results of transferring from different sources on the CIHP
dataset [45].

Source Training images Categories Overall accuracy(%)
PASCAL [48] 1,717 7 98.32

CIHP [45] 28,280 19 98.56

(c) Results of transferring from different sources on the ATR dataset [9].

TABLE 9: Evaluations of human parsing on transferring from
different source datasets.

comparison. The results are reported in Table 11, our graph trans-
fer learning achieves the leading performances with the different
setting. As discussed in Section 2, most of the existing transfer
learning methods mainly focus on the network architecture [36],
[35] and training strategy [37], while our framework additionally
consider the transferring of explicit semantics.

4.5 Qualitative Results

The qualitative results on the PASCAL-Person-Part dataset [48]
and the CIHP dataset [45] are visualized in Fig. 8. As can be
observed, our approach outputs more semantically meaningful and
precise predictions than other two methods despite the existence
of large appearance and position variations. Taking (b) and (e)
for example, when parsing the clothes, other methods are suffered
from strange fashion style and the big logo on the clothes, which

PASCAL-Person-Part Mean IoU(%)
PSPNet [44] 56.84

Graphonomy-PSPNet (CIHP) 61.89
Graphonomy-PSPNet (Universal Human Parsing) 61.48

ATR Overall accuracy(%)
PSPNet [44] 91.45

Graphonomy-PSPNet (CIHP) 93.79
Graphonomy-PSPNet (Universal Human Parsing) 92.48

CIHP Mean IoU(%)
PSPNet [44] 48.22

Graphonomy-PSPNet (PASCAL) 50.15
Graphonomy-PSPNet (Universal Human Parsing) 49.69

TABLE 10: Comparison of human parsing performance with the
different backbone on different datasets. -PSPNet indicates that
the model uses PSPNet [44] as the backbone.
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Fig. 10: Visualized comparison of panopic scene segmentation results on ADE20K dataset[50].

Backbone Methods Mean IoU(%)

DeepLab v3+ Fine-tuning 70.33
Graphonomy (CIHP) 71.14

PSPNet

Fine-tuning 60.19
LwF [37] 60.88

Series Res. adapt [35] 61.39
Parallel Res. adapt [36] 61.56
Graphonomy (CIHP) 61.89

TABLE 11: Comparison of human parsing performance with
several transfer learning methods on PASCAL-Person-Part
dataset [48]. The methods are pretrained on the CIHP dataset [45],
and then transfer to the PASCAL-Person-Part dataset [48].

leads to incorrect predictions for some small regions. However,
thanks to the effective semantic information propagation by graph
reasoning and transferring, our Graphonomy successfully seg-
ments out the large clothes regions. More superiorly, with the help
of the compact high-level graph representation integrated from
different sources, our method generates more robust results and
gets rid of the disturbance from the occlusion and background, like
(c) and (d). Besides, we also present some failure cases (g) and
(h), and find that the overlapped parts and the very small persons
cannot be predicted precisely, which indicates more knowledge
is desired to be incorporated into our graph structure to tackle
the challenging cases. More result comparisons can be found in
supplementary materials.

5 EXPERIMENTS ON PANOPTIC SEGMENTATION

In the following, we evaluate the effectiveness of our Graphon-
omy on handling panoptic segmentation, a more general scene
understanding problem. We first introduce experimental settings
on standard benchmarks. Then we compare our method with some
baselines and state-of-the-arts for demonstrating the superiority of
Graphonomy.

5.1 Experimental Settings
Datasets and Evaluation Metrics We evaluate the perfor-
mance of our Graphonomy on two panoptic segmentation
datasets, COCO [51] and ADE20K [50]. COCO is one of the
most challenging benchmarks including 115k/5k/20k images for
training/validation/test-dev, respectively, with 80 categories of in-
stances and 53 categories of background stuff. ADE20K includes
20k/2k/3k images for training/validation/test with 100 instance
(thing) and 50 stuff categories. Following [16], we use PQ (panop-
tic quality) as the evaluation metric. PQTh and PQSt indicate
the panoptic quality on the foreground instance segmentation and
background stuff segmentation, respectively.

Implementation Details We use the basic neural network
structure provided by Panoptic-FPN [11], and also implement
a variant version [23] by employing the deformable convolu-
tion [52], which is denoted as “Panoptic-FPN (D)”. Following the
settings in [11], we employ ResNet50-FPN [53], [54] pre-trained
on ImageNet [55] as backbone and use the same way of data
augmentation. The number of nodes in the graph corresponding to
the task of instance-aware segmentation is equal to the number of
instances (things) in the input image, while the number of nodes
in the graph corresponding to the task of stuff segmentation is set
as the number of semantic categories. The feature dimension D of
each node is set as 128.

During training, we resize the inputs to the shorter side of 800
following [11], and adopt SGD optimizer with the initial learning
rate of 0.02, momentum of 0.9 and weight decay of 5e-4. On
COCO [51] and ADE20K [50] datasets, we train all model at the
same settings for 12 and 24 epochs, respectively. All networks are
trained on 8 TITAN XP GPUs with the batch size of 16.

5.2 Comparison with state-of-the-arts
We compare our proposed Graphonomy with other state-of-the-
art methods on COCO val dataset, and the quantitative results
are reported in Table 12. “Graphonomy (Panoptic)” represents the
model trained by our framework. These competing methods are
mainly developed on powerful multi-task network architectures
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Methods PQ PQTh PQSt

Panoptic-FPN [11] 39.0 45.9 28.7
OANet [15] 39.0 48.3 24.9
AUNet [17] 39.6 49.1 25.2

SpatialFlow [56] 40.9 46.8 31.9
UPSNet (D) [23] 42.5 48.5 33.4

Panoptic-FPN (D) [11] 41.3 47.3 32.4
Graphonomy (Panoptic) 43.2 49.8 33.4

TABLE 12: Performance comparisons with the state-of-the-art on
the COCO val set. (D) indicates that the network contains the
deformable convolution [52].

Method PQ PQTh PQSt

Panoptic-FPN (D) [11] 30.1 33.3 23.7

Ins Graph Construction Semantics 30.3 33.5 23.9
Instances 30.6 33.7 24.9

w/o Inter-Graph Transfer 31.1 33.5 26.5
Graphonomy (Panoptic) 31.8 34.1 27.3

TABLE 13: Ablation experiments on ADE20K val set. Ins Graph
Construction indicates the different ways of constructing graphs
in the domain of instance segmentation. (D) represents that the
network contains the deformable convolution.

[11], [15], [23], [56], [17] and other advanced techniques such as
the panoptic head [15], [23] and spatial attentive mechanism [17].

From the results on COCO, we can observe that our Graphon-
omy outperforms the other competing approaches in terms of three
metrics, even though the baseline network we adopted is not the
most powerful one. The significance of exploiting the semantic
relations via graph reasoning and transfer is clearly demonstrated.
We compare our method with only one method (i.e., Panoptic-
FPN) on ADE20K since no result reported by the other competing
methods, and Table 13 shows the quantitative improvement by
our Graphonomy. A number of visualized results are exhibited in
Fig. 10.

5.3 Ablation Study
We further conduct the ablation experiments on ADE20K dataset
for validating the effectiveness of the main components in our
Graphonomy.

Graph construction in instance segmentation. We build the
semantic graph in the domain of instance segmentation by using
the region detector and ROI pooling, in order to better distinguish
each foreground instance from its surrounding neighbors. To
illustrate the difference of using different ways of graph con-
struction, we also implement an another version by constructing
the graph using the global image features just like the way we
used in the domain of background stuff segmentation (and in
human parsing). The results can be found in Table 13, denoted
by ”Ins Graph Construction”. And the results generated by the
ultra implementation and the original are denoted by “Instances”
and “Semantics”, respectively. According to experiments, we can
find that using region-based feature for representing instances is
beneficial especially in terms of PQSt.

Inter-Graph Reasoning and Inter-Graph Transfer. The
experiments of validating the effectiveness of Inter-Graph Rea-
soning and Inter-Graph Transfer are further conducted for bet-
ter understanding how Graphonomy boosts the model capacity.
Table 13 reports the experimental results, in which “w/o Inter-
Graph Transfer” represents the results without activating the Inter-

Graph Transfer while the Intra-Graph Reasoning is working for
both of the domains; and “Graphonomy (Panoptic)” represents the
results generated by the complete framework. These results clearly
demonstrate how the two modules contribute progressively to the
performance.

6 CONCLUSION

In this work, we have proposed a graph reasoning and transfer
framework, namely Graphonomy, targeting on two crucial tasks in
image semantic understanding, i.e., human parsing and panoptic
scene segmentation. Our framework, in particularly, is capable of
resolving all levels of human parsing tasks using a universal model
to alleviate the label discrepancy and utilize the data annotations
from different datasets. Graphonomy can also effectively solve
panoptic scene segmentation with the same pipeline as human
parsing by jointly optimizing two co-related tasks (i.e., instance-
level segmentation and background stuff segmentation). The ad-
vantage of the proposed framework is extensively demonstrated
by the experimental analysis and achieving new state-of-the-arts
against existing methods on a number of large-scale standard
benchmarks (e.g., ATR, CIHP and MHP for human parsing, and
MS-COCO and ADE20K for panoptic scene segmentation ). The
flexibility of Graphonomy is also reflected on the diverse ways
of implementation or embedding external prior knowledge for
tackling other similar tasks without piling up the complexity.

There are several directions in which we can do to extend
this work. The first is to explore more valid contextual relations
(e.g., linguistics-aware correlations, high-order spatial relations, or
object dependency in 3D coordinates) in the graph representation
for further improving the performance. The second is to inves-
tigate how to extend our framework to handle more challenging
high-level applications beyond the pixelwise category or identity
recognition. For example, understanding scene from the cognitive
human-like perspective is a new trend in computer vision and
general AI research, e.g., the object function understanding and
human-object interaction with intention analysis. Exploring the
causality-aware dependency, commonsense patterns and individ-
ual value models could be very promising based on our Graphon-
omy. The third is to develop more powerful reasoning and transfer
learning algorithms within the model training process.
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