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Graph-Convolved Factorization Machines for
Personalized Recommendation
Yongsen Zheng, Pengxu Wei, Ziliang Chen, Yang Cao, and Liang Lin

Abstract—Factorization machines (FMs) and their neural network variants (neural FMs) for modeling second-order feature
interactions are effective in building modern recommendation systems. However, feature interactions are based upon pairs of
features, whereas multi-features correlations commonly arise in real-world financial product recommendation scenarios. We
propose an effective neural recommender system, graph-convolved factorization machine (GCFM), with the spirit of the symbolic
graph reasoning principle that provides lightweight and interpretable recommendation suggestions. Given a sample for the
recommendation, GCFM constructs the corresponding dense feature embeddings and computes the sample-specific feature
relationship graph. Then, a multi-filter graph-convolved feature crossing (GCFC) layer for feature embeddings establishes cross
features with their neighboring embeddings. GCFM thus extends the feature interactions from pairs to neighbors to capture more
comprehensive and explainable information while simultaneously reaping the advantages of representation learning. To exploit
these capabilities, we apply a Graph Bayesian Optimization (GBO). During training, our GBO automatically optimizes our GCFM,
including training hyperparameters and architecture hyperparameters. Besides, we conduct extensive experiments on two public
financial applications benchmarks, USCFC and OTC, and two real-world datasets that we collect offline. Our GCFM significantly
outperforms state-of-the-art algorithms and shows its interpretability in recommendation tasks. We further extend our model to
online real-world applications, showing an appealing human-level decision intelligence in real scenarios.

Index Terms—Factorization Machines, Finance Product Recommendation System, Graph-Convolved Factorization Machines,
Multi-Feature Interaction.

F

1 INTRODUCTION

R ECOMMENDER Systems (RSs) [1] facilitate users to
navigate large collections of items in a personalized

way, which play an important role in a variety of domains,
such as the electronic commerce [2], social network [3]
and personalized advertising [4]. Nevertheless, complex,
uncontrollable and changing user demographics and item
properties invite severe feature interactions [5], which
significantly degrade the recommendation performance.
Learning sophisticated feature interactions is an essential
component for RSs.

Recently, many research efforts have been devoted
to k-order feature interactions [5], [6], [7], [8], [9]. This
strategy groups exhaustively features with predefined
numbers (e.g., pair or 3-order), essentially employs full
permutation among features and builds connections be-
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tween each feature and others. A remarkable RS approach,
Factorization Machine (FM) [5], extracts the second-order
information by estimating the weights of pairwise features
and thus learning a pairwise embedding vector. More
recently, some neural variants of FMs, e.g., DeepFM [6],
NFM [10], AFM [7], xDeepFM [11], and FwFMs [12],
have empowered second-order interaction mechanisms
with deep networks in RSs. Furthermore, Higher-Order
FMs (HOFMs) [8] also adopt a similar manner and just
extend pairwise FMs by connecting features in groups
with feature permutations.

However, these FMs follow a rigid feature-connected
strategy by arranging features into groups with k ele-
ments and exhaustively modeling all the possible feature-
interactions for each group. Thus it fails to acquire
domain-adaptive embeddings, which greatly limits their
applications in practice. Meanwhile, this strategy is ex-
haustive since it considers all the feature-interactions no
matter how closely related or negatively irrelevant they
are. Therefore, these FM methods multiply these feature-
interactions in sequence and are prone to feature vanish-
ing derived from small feature-interaction weights.

Additionally, due to k-order feature interactions in a
permutation manner, these methods involve extremely
high-cost computations and thus in practice, existing RS
methods consider 3-order feature interaction at most [5].

To address these problems, we propose a general-
ized FM model, Graph-Convolved Factorization Machine
(GCFM), which flexibly and adaptively models multi-
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(b) Multi-feature interactions

Fig. 1. Illustration of k-order feature interaction widely explored
and our multi-feature interaction with graph. The former follows a
rigid feature-connected strategy by arranging features into groups
with k elements and exhaustively modeling all the possible feature-
interactions for each group. Obviously, it just considers predefined k-
order feature interactions no matter how closely related or negatively
irrelevant they are; due to a permutation manner, it invites extremely
high-cost computations and thus in practice, existing RS methods
consider 3-order feature interactions at most. However, our GCFM
builds multi-feature interactions with graph adaptively to explore pos-
itive interactions among features and reduce negative impacts from
non-connected features, which greatly reduces the computation cost.
For brevity, we take x1 as an example and the same operation for
other all features. g(x1) in (a) and gi(x1) in (b) represent the (i+ 1)-
order feature interaction.

feature interactions in a graph.
Features from each sample are leveraged to com-

pute the corresponding multi-feature interaction graph.
This graph correlates each feature with their neighbor-
ing graph nodes. Accordingly, we develop a Graph-
Convolved Feature Crossing (GCFC) layer in which the
feature embedding is built on multi-feature interactions.
This process traverses all features for each input exam-
ple and propagates its influence on other features. After
passing through the GCFC layer, the derived embeddings
are compressed by a graph pooling layer and then con-
catenated together to feed a predictor head in GCFM,
which produces our recommendation outcome. Besides,
our GCFM is quite flexible and low-cost; particularly,
the connections among features indicate their positive
effects of interactions and suppress trivial or negative ef-
fects without connections from large and messy datasets.
Thus, GCFM relates multiple features and provides an
interpretable recommendation strategy in a lightweight
architecture.

Considering intractable optimization settings, we fur-
ther employ a Graph Bayesian Optimization method
(GBO) to determine the hyperparameters of graph filters.
This GBO evolves together with our GCFM training and
thus is capable of automatically tune the learning and
dropout rates for learning GCFM on the fly as well as
the structure hyperparameters. Overall, it is a lightweight,

flexibly implemented and highly effective learning strat-
egy for optimizing GCFM.

We have conducted experiments on six recommenda-
tion datasets: four public benchmarks, i.e., Criteo, Avazu,
the US Consumer Finance Complaints dataset (shortly,
USCFC) and Adult while the other two financial datasets
are from our practical real-world projects of SenseTime
Co. Ltd.1, i.e., Over The Counter (shortly, OTC) and
Trading in the Field (shortly, TF). Our GCFM achieves
state-of-the-art performance in comparison with related
approaches. It outperformed a strategy based on finance-
area expertise by 6.6% in terms of accuracy, thus showing
human-level decision intelligence in real scenarios. Be-
sides, we have analyzed GCFM qualitatively to verify its
appealing interpretability.

Briefly, our contributions in this paper are threefold:

• We propose a novel Graph-Convolved Factoriza-
tion Machine (GCFM) for the efficient neural rec-
ommendation. GCFM follows a graph reasoning
principle to construct feature relation graphs and
extends k-order interactions to multi-feature in-
teractions with graph to adaptively capture more
comprehensive information. This simple configu-
ration makes our model effective and interpretable
in a lightweight architecture.

• We exploit the GBO strategy to train our GCFM
for intractable hyperparameter optimization. GBO
concurrently determines the number of graph fil-
ters, pooling filters and even the size of the pooling
kernels. In some sense, this method can be treated
as an optimal architecture search approach for
calibrating feature interaction graph construction,
which is beneficial for real-world applications.

• We conduct extensive experiments to evaluate
GCFM on four finance recommendation datasets
and extend it to real-world finance applications.
GCFM achieves a state-of-the-art performance and
appealing interpretability for RS. Particularly, in
real-world projects, significant progress has been
achieved in comparison with an up-to-date exper-
tise system, thus verifying its human-level recom-
mendation intelligence.

The remainder of the paper is organized as follows.
Sec.2 reviews previous approaches related to RSs and
Sec.3 elaborates our proposed framework from the rec-
ommender system perspective. Our experimental results
on six datasets are reported in Sec.4. Sec.5 extends our
model to real-world applications and provides our online
performance results. Sec.6 concludes the paper.

2 RELATED WORK

2.1 Recommendation Systems
RSs [14] are widely utilized in a variety of areas, includ-
ing movies [15], music [16] and social tags [17]. They
produce a list of recommendations and predict a rating

1. https://www.sensetime.com/
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Fig. 2. Overview of our graph-convolved factorization machine (GCFM). At the very beginning, for each input x = (x1, ..., xn), its features
are embedded in the form of low-dimensional feature vectors (embeddings). Simultaneously, x induces a mathematical representation of a
graph over the features, namely, a binary adjacent matrix computed based on the Euclidean distances between the features. Then, our newly
proposed graph-convolved feature crossing (GCFC) layer is used to construct feature interactions with graph. This operation involves graph-
convolved filters acting on the feature embeddings with other embeddings in their neighborhoods. Subsequently, a nonlinear activation ReLU
[13] is applied and then its output is passed to a graph-pooling layer. Finally, we leverage a fully connected layer as our predictor for financial
product recommendation.

or preference that a user would assign to an item; thus,
they are a subclass of information filtering systems [18].
RS approaches are typically categorized into two kinds,
collaborative filtering [19] or content-based filtering [20].

Collaborative filtering approaches focus on collecting
and analyzing a massive amount of information from user
historical behaviors [21], implicit feedback [22], activity
scope and predicting what users will have an interest
in based on their similarity to other users. Collaborative
filtering approaches need not necessarily rely on machine-
analyzable content and therefore can offer accurate recom-
mendations for complex items such as movies. Another
common class of the RS approach is content-based filter-
ing, in which a series of discrete characteristics of an item
is considered to recommend additional items with similar
attributes. In a content-based RS, keywords [23] play an
important role in describing items, and a user profile [24]
is built to indicate the types of items in which a particular
user is interested.

Recently, deep learning has been revolutionizing rec-
ommendation architectures, achieving a significant RS
performance. Deep learning [25] is capable of capturing
nonlinear and nontrivial user-item relationships and en-
ables the extraction of feature representations that capture
intricate relationships in higher layers. Due to their ability
to learn deep representations, deep learning architectures
such as convolutional neural networks (CNNs) [26], recur-
rent neural networks (RNN) [27], deep semantic similar-
ity Models (DSSMs) [28], restricted boltzmann machines
(RBMs) [29], long short term memory (LSTM) [30] and
generative adversarial networks (GANs) [31] have been
widely applied in RSs [14].

2.2 Factorization Machines

FM is a widely-explored collaborative filtering based RS
approach [19]. It aims to solve the problem of feature
combination [32] in sparse feature vectors via one-hot
encoding for enhancing performance on recommenda-
tions. Subsequently, a series of FM variants are proposed.
FFM [9] aims to assign heterogeneous features to different
fields to reduce noises for feature interactions. AFM [7]
was developed with a focus on learning the importance
of feature interactions via a neural attention network.
Wide&Deep model [33] combines the benefits of memo-
rization and generalization of a wide set of cross-product
feature transformations and deep neural networks with
less feature engineering. Deep&Cross network [34] keeps
the benefits of a DNN model to make an automatic
feature engineering and prevent exhaustive searching.
However, these methods are limited to embedding pair-
wise feature interactions for RS and generally result in
exhaustive efforts of computation. NFM [10] extends to
learn high-order feature interactions that are seamlessly
combined with the nonlinearity of deep neural networks.
DeepFM [6] derives an end-to-end learning model that
emphasizes both low and high order feature interactions.
xDeepFM [11] incorporates a Compressed Interaction
Network (CIN) and DNN for automatically learning high-
order feature interactions in both explicit and implicit
fashions. DIN [35] designs an activate related user be-
haviors and obtains an adaptive representation vector for
user interests which varies over different ads. AutoInt [36]
explores the multi-head self-attention mechanism to learn
the high-order feature interactions. FiBiNET [37] aims
to dynamically learn the feature importance and fine-
grained feature interactions. FwFMs [12] can effectively
capture the heterogeneity of field pair interactions by
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introducing and learning a field pair weight matrix. PNN
[38] refines feature interactions as field-aware feature in-
teractions and extends FM with kernel product method.

2.3 Graph Convolution Recommendation Network
More recently, most researchers pay more attention on
graph convolution recommendations. R-GCNs [39] intro-
duces relational Graph Convolution Networks (GCNs)
[40] and apply them to two standard knowledge-based
completion tasks with the aid of knowledge graphs. [41]
devises a Bayesian GCN to alleviate strong dependency
on training data and prevents vulnerable decision making.
[42] proposes an effective GCN based model for social
recommendations, which mainly borrows the strengths of
GCNs to capture user preferences. [43] develops a novel
method based on highly efficient random walks to struc-
ture the convolutions and design a new training strategy
to improve robustness and convergence of the model. [44]
comprises a document encoder and a context encoder
using GCNs to make accurate predictions without well-
organized benchmarking datasets. [45] introduces an im-
proved GCN model with high-order feature interaction
to address the challenges of the lack of negative samples
and a large number of candidate items. GC MC [46] is a
graph auto-encoder framework for the matrix completion
task in recommender systems. GIN [47] introduces co-
occurrence relationship of commodities to explore the po-
tential preferences. Multi-GCCF [48] focuses on capturing
the intrinsic difference between user-item and modeling
user-user and item-item relationships explicitly. NGCF
[49] proposes a novel neural network to model high-order
connectivity in user-item graph. Fi-GNN [50] makes good
use of the strong representative power of graphs to model
sophisticated feature interactions.

The studies listed above mainly consider the quantity
of data and ignore modeling multi-feature interactions.
Among these methods, our work is the most relevance
to [50]. Concretely, both [50] and our work model feature
interactions via graph. However, [50] requires each node
to interact with all remaining nodes in a full permutation
manner, which is rigid and extremely high-cost and easily
leads to feature vanishing. Our work builds multi-feature
interactions with graph adaptively to explore positive
interactions among features and reduce negative impacts
from non-connected features.

3 METHODOLOGY

3.1 Overview
Existing methods exhaustively group features with certain
numbers and consider their k-order feature interactions
no matter how closely related or negatively irrelevant
they are, which is extreme high-cost and easily leads to
feature vanishing as discussed above. To address these
problems, we proposed a novel Graph-Convolved Fac-
torization Machine. GCFM constructs the multi-feature
interaction graph to built connections among features and
sequentially learns their trainable interaction weights in

the graph-convoluted feature crossing module. Specially,
we construct the multi-feature interaction graph from raw
inputs and derive a binary adjacent matrix based on
the Euclidean distance between features. Subsequently,
GCFM learns adaptively graph filters, i.e., interaction
weights, and with them deploys the graph-convoluted
feature crossing. During features crossing, each feature
will interact with its neighbor features; in the process
of crossing, the neighbor features propagate their feature
messages to the central features respectively. Furthermore,
a graph-convoluted feature crossing strategy avoids fea-
ture vanishing because it is able to strengthen closely re-
lated features and weaken negatively irrelevant features.
Finally, the derived embeddings are compressed by a
graph pooling layer and then are concatenated together
to feed a predictor head in GCFM, which produces our
recommendation outcome. The pipeline of our proposed
GCFM is shown in Fig.2.

In the following, we will first revisit a conventional FM
in Sec.3.2 and describe elaborately GCFM for recommen-
dation decisions in Sec.3.3. In Sec.3.4, we provide details
of the learning algorithm of GCFM, including model pa-
rameter optimization and a Graph Bayesian optimization
for hyperparameters during training.

3.2 Factorization Machine
In the context of Recommender Systems, FMs have been
cast into a supervised learning problem that aims ulti-
mately to provide a suggestion based on collaborative
recommendation [19], [51]. Compared with linear predic-
tors [52], FMs additionally incorporate the second-order
feature interactions by learning cross-feature weights.

Specifically, a sample of recommendation is presented
as a n-dimensional real-valued vector x = (x1, ..., xn) ∈
Rn, where xj (∀j ∈ {1, 2, ..., n}) denotes its jth feature;
y ∈ R represents its associated label indicating the pref-
erence of users. Accordingly, A 2-order FM predicts the
label ŷ of x as follows:

ŷ(x) := w0 +
n∑
i=1

wixi +
n∑
i=1

n∑
j=i+1

〈vi, vj〉xixj , (1)

where w0 denotes the global recommendation bias; wi
(i > 0) is the linear prediction weight of the ith feature
and 〈·, ·〉 is the inner product of two vectors of size d, and
〈vi, vj〉 :=

∑d
f=1 vi,f · vj,f . vi is the i-th variable with d

factors. d ∈ N+
0 is the hyperparameter that denotes the

factorization dimensionality. Moreover, the 2-order FM
can be generalized to a k-order FM:

ŷ(x) :=w0 +
n∑
i=1

wixi

+
k∑
l=2

n∑
i1=1

· · ·
n∑

il=il−1+1

( l∏
j=1

xij
)( dl∑
f=1

∏
v
(l)
ij ,f

) (2)

where the interaction parameters for the l-th interaction
are factorized by the PARAFAC model [53] with the model
parameters V(l) ∈ Rn×dl , dl ∈ N+

0 is the hyperparameter
that defines the dimensionality of factorization.
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Fig. 3. Illustration of the embedding for an input with categorical and
numerical features.

3.3 Graph-Convolved Factorization Machine
Instead of calculating k-order cross-feature terms similar
to FMs, GCFM captures this information by considering
the multi-feature interactions on a self-constructed graph.
Benefiting from the graph representation, in the process
of crossing, the neighbor features propagate their feature
messages to the central feature for crossing, respectively.

3.3.1 Multi-feature interaction graph
We define a Multi-feature Interaction Graph (MIG) on all
the training samples X as G(X) = (V, ξ, G(X))(|V| = h),
where h is the number of feature nodes, V denotes the set
of feature nodes and ξ denotes the set of their edges. The
binary adjacency matrix G(X) ∈ {0, 1}h×h indicates pri-
mary feature connection or interaction weights to measure
the correlation among features. Specifically, X consists of
categorical features (e.g., user ID, gender) and numerical
features (e.g., age). As shown in Fig.3, each categorical fea-
ture is converted into a high-dimensional sparse features
via field-aware one-hot encoding, which is applied widely
in related works [6], [10] and [11]; each numerical feature
is normalized between 0 and 1. Then, the numerical
features and one-hot features are fed into an embedding
layer to generate dense low-dimension feature vectors
(i.e., embeding vectors). We apply the Euclidean distance
[54] to calculate the similarity between embedding vectors
with the goal of obtaining G(X), which are dynamically
changing during training.

In brief, for each feature, we firstly calculate its dis-
tances from other features and pre-define a threshold
β with the value of 0.5. If the distance is greater than
the threshold, which indicates that there exists the close
relationship between features, and we initialize the con-
nection weight to 1; otherwise, it indicates that there is
only a weak relationship between two features, and we
initialize the connection weight to 0. That is, 1 means
the connection weight is the trainable parameters while
0 means that the connection is eliminated. Generally, the
threshold is between 0 and 1, the smaller value denotes
the weaker relationship between features while the larger
value means the stronger one. Moreover, the threshold
is better set to greater than or equal to 0.5 for the sake
of positive interactions facilitation and negative impacts
reduction. In this work, on one hand, considering that
choosing β as 0.5 achieves the best results on all the
datasets, we set the threshold value β to be 0.5 for our
GCFM model in the experiments on all the datasets.
On the other hand, we also use our GCFM GBO to
adaptively search the optimal threshold value with our
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Fig. 4. Illustration of feature embedding layer and self-constructed
MIG. The MIG is built by the raw input x, and its node vector is
the feature embedding of x while connection weights can be learned
during the model training.

GBO technology. Accordingly, we build a MIG shown
in Fig.4. The specific connection weights, namely feature
interaction weights, are formulated as trainable graph
filter parameters, which would be learned in the following
multi-feature interaction module.

To represent each feature in embedding vectors, simi-
lar to FMs, a raw input x passes through a feature embed-
ding layer parameterized by We, which transforms each
feature of x into a low-dimensional embedding vector. Its
embedding vector is described as follows:

e(x) = [e(x1), e(x2), ..., e(xn)] ∈ Rd×n, (3)

as shown in Fig.3, where e(xi) is a d-dimensional embed-
ding of the ith feature and n is the number of feature
fields.

Subsequently, the feature embedding vectors (i.e., node
vectors) and the interaction weights (i.e., edge weights)
will be learned during model training based on the basic
graph MIG G(X). For instance, as shown in Fig.4, the
feature node x7 has four neighborhood nodes including
x1, x2, x3, and x5; thus x7 will interact with these nodes
with different edge weights which are trainable in the
following graph-convolved feature crossing module.

3.3.2 Graph-convolved feature crossing module
Existing methods con k-order (e.g., pair-wise or 3-order)
feature-interactions no matter how closely related or nega-
tive irrelevant those features are. This manner easily leads
to feature vanishing and exhaustive computation, which
is greatly limited for practical applications. To address
these issues, in our Graph-convolved feature crossing
module, our GCFC layer is proposed to learn multi-
feature interactions among multiple neighbors on our
constructed MIG; for each feature as the anchor node, its
neighbor nodes (features) propagate their node feature to
it; after the anchor node receives the message, it interacts
with these neighbor nodes with the learned interaction
weights. A large weight can strengthen the positive ef-
fects, which means the closely related features, while non-
connection weight means negatively irrelevant features.

Concretely, for the feature xi, we take it as an anchor
and choose its neighbors N (xi) as its queries that interact
with it on the MIG. Our GCFC projects the embedding
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e(x) into a graph embedding wge(x) with a graph convo-
lution filter wg . Accordingly, we generates a cross-feature
term g(xi) for the feature xi as follows:

g(xi) =
∑

j∈N (xi)

[wge(xi)]
T [wge(xj)], (4)

where N (xi) represents the identities of the neighbors
of the embeddings. Given M filters on G(X) to perform
feature crossing, and connection weights WG of G(X) can
be learned during the model training, thus we would have
a derived convolution map with the m-th filter,

h(m)(x) = ([w(m)
g e(x)]T [w(m)

g e(x)]�G(X)T )×1n×1. (5)

After the feature crossing layer, a ReLU layer is deployed
for capturing nonlinear information. These interactions
are beneficial for exploring internal correlations among
features.

Following the GCFC layer, we employ a graph pooling
layer to cluster similar vertices in G(X) together and
then to prune the redundant vertices, which reduces the
computation and time cost for data pattern processing.
Concretely, our graph-pooling layer first employs the
Graclus multilevel clustering algorithm (GMC) [55] to
transform each graph into a balanced binary tree. Then
the nodes are ordered at the coarsest level (the graph
with the fewest nodes), and this ordering is propagated
to each finer level. At coarser levels, adjacent nodes are
hierarchically merged such that the graph pooling oper-
ation becomes as efficient as 1D pooling [40]. Thus, we
obtain the graph pooling outputs with the m-th filter
h(m)(x) = Graphpooling(h(m)(x)).

In the context of recommendation, we mainly consider
the binary classification with a given sample x with n fea-
tures x ∈ Rn. Accordingly, we employ a fully connected
layer parameterized by θ to predict user preferences as
follows:

ŷ(x) = θT (h(1)(x), · · · , h(M)(x)), (6)

where comma represents the operation of concatenation.

3.4 Learning

GCFM is parameterized by several hyperparameters for
determining the network architecture and jointly improv-
ing the GCFM training efficiency, including dropout rate δ,
regularization parameter λ, the number of graph filters M , ker-
nel size µ and the threshold β for feature connections on graph.
A large number of possible hyperparameter tuning com-
binations build an obstacle to maximizing the capability
of GCFM in practice. Accordingly, in the learning phase of
GCFM, we propose graph Bayesian optimization strategy
to search for hyper-parameters for diverse recommenda-
tion scenarios. Given the learned hyper-parameters, we
perform the optimization for model parameters.

3.4.1 Graph Bayesian hyperparameter optimization
Traditional Bayesian Optimization (BO) aims to search
hyperparameters automatically to optimize the objective

function. Hyperparameters in our GCFM involve not only
the network learning (i.e., dropout rate δ, regularization
parameter λ, the number of graph filters M , kernel size µ)
but also the construction of the multi-feature interaction
graph (MIG) (i.e., the threshold β for feature connections
on graph). The construction of the graph usually relies on
a threshold to determine which two nodes are connected.
This threshold can be regarded as a hyperparameter to
search in a learning-based method, rather than the em-
pirical setting. However, the optimization of this graph
hyperparameter and those for the network learning is
different, since this graph hyperparameter directly affects
the structure of the graph which is the precondition for the
whole model training with the network hyperparameters.
BO is not responsible for this challenging optimization
issue derived from the construction of the feature in-
teraction graph and cannot be directly applied to graph
neural networks. To mitigate this issue, in our work, the
proposed Graph Bayesian Optimization (GBO) aims to
optimize our model GCFM on multi-feature interaction
graph. GBO adaptively searches the threshold of feature
connections, which is used to determine the node con-
nections and the structure of MIG. It also automatically
optimize other hyperparameters on MIG.

These hyperparameters are associated with each other,
meaning that if we change one of them, then the rest
will be altered accordingly. This situation leads to a large
number of possible hyperparameter tuning combinations,
which represents an obstacle to maximizing the capability
of GCFM in practice. Our GBO is an effective methodol-
ogy for globally optimizing a black-box function f . In our
context, f is specified by the performance of GCFM on
a validation dataset. In this scenario, GBO is applied to
search for the optimal hyperparameter settings to reduce
the time to discover the most desirable RS. Concretely, we
define a hyperparameter domain ϑ =(β, δ, µ, M , λ) in
a five-dimensional space. Given this domain ϑ on graph,
our Gaussian Process (GP) prior [56] is built on a mean
function µ: ϑ → R and a Gaussian kernel κ: ϑ2 → R.
Furthermore, given p observations Dp = {(ϑi, ŷi)}pi=1,
ŷi = f(ϑi) + εi, where εi ∼ N (0, σ2). A GP poste-
rior p(f |Dp) is parameterized with mean value µp and
Gaussian kernels κp. We adopt the symbols µp(ϑ) and
κp(ϑ, ϑ

′) for the posterior process, where ϑ′ means the
central points of Gaussian kernel function. Then, µm and
κm can be represented as

µm(ϑ) = kT K̂Y, κm(ϑ, ϑ′) = κ(ϑ, ϑ′)− kT K̂k′. (7)

This GP posterior is used to define an acquisition function
ϕt: ϑ → R, which measures the effect on evaluating
f at any ϑ, where k={κ(ϑ, ϑi)}pi=1, K̂=(K + σ2I)

−1,
K={κ(ϑi, ϑj)}pi=1,j=i+1, Y ={ŷi}pi=1, k={κ(ϑ, ϑi)}pi=1, and
k′ = {κ(ϑ′, ϑi)}pi=1.

To optimize the function f over our domain ϑ in our
GCFM on graph, a set of points {ϑi}t−1i=1 have been used to
evaluate f at time t, yielding observations {ŷi}t−1i=1 . Then
we maximize the acquisition function ϑt = argmaxϑ∈χϕt(ϑ)
and obtain an evaluation of f at ϑt. In which, the ac-
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quisition function aims to control the ratio of mean value
and covariance. For example, if the training process of
our model is very slowly, we can only run one group
of hyperparameters, thus we should choose the one with
larger mean value. However, if we can still run 100 times
with computing power, we should choose the one with
larger covariance to explore the optimal hyperparameters.

3.4.2 Model parameter optimization
Similar to FM, the model parameters of the GCFM are
optimized as follows:

min
θ,We,WG,{w(m)

g }Mm=1

1

|D|

|D|∑
(x,y)∈D

l(ŷ(x), y) +
λ

2

(
||θ||2+

||We||2 + ||WG||2 +
M∑
m=1

||w(m)
g ||2

)
,

(8)
where l(·, ·) is binary cross entropy loss. Since the graph
pooling layer is differentiable, we can apply backpropaga-
tion [57] to update all parameters in the GCFM. Besides,
we employ the l2 norm to prevent overfitting [58] during
training. This regularization is simultaneously imposed
on the GCFC layer and its predictor, which are con-
trolled by their trade-off coefficient λ. When λ is small,
the structural loss more strongly depends on the model
capability; when λ is large, more attention is paid to the
model complexity. In addition to the l2 regularizer, we
also employ the dropout technique [59] when training the
GCFM.

4 EXPERIMENTS

In this section, we provide our experimental results on
six datasets: four public benchmarks and two financial
datasets that we collect in practical projects. Four public
benchmarks are Criteo, Avazu, USCFC and Adult datasets
and our two collected financial datasets are called OTC
(Over the Counter) and TF (Trading in the Field).

4.1 Experimental Settings
Datasets. We conducted experiments on six datasets as
followings.

- Criteo2 is a famous industry benchmark dataset for
CTR prediction, which contains 45 million users’ click
records in 39 anonymous feature fields on displayed ads.
The goal is to predict the probability that the user will
click on a given ad from his/her visiting page.

- Avazu3 is widely used in many CTR model evalua-
tions. It contains users’ click logs with 40 millions of data
instances. There are 23 feature fields indicating elements
of a single ad impression.

- USCFC4 is available from the Consumer Financial
Protection Bureau (CFPB), which sends thousands of con-
sumer complaints about financial products and services

2. https://www.kaggle.com/c/criteo-display-ad-challenge
3. https://www.kaggle.com/c/avazu-ctr-prediction
4. https://www.kaggle.com/cfpb/us-consumer-finance-

complaints

Algorithm 1 Learning of our GCFM.
Input:

Labeled dataset D;
Mini-batch size N ;
Max iteration T .

Output:
GCFM hyperparameter vector ϑ =(δ, µ, M , λ);
GCFM parameters θ, We, WG, {w(m)

g }Mm=1.
1: For t=1 to T do
2: Sample N examples D(t) in D;

3: Construct binary adjacency graphs {G(xj)}|D
(t)|

j=1

(∀xj ∈ D(t));
4: Compute feature embedding matrices {e(xj)}Nj=1 by

the feature embedding layer in Eq.3;
5: Compute Mt cross features {{w(m)

g (xj)}Mt
m=1}Nj=1 by

GCFC layer in Eq.5;
6: Obtain {{h(m)(xj)}Mt

m=1}Nj=1 by the graph pooling
layer;

7: Obtain {ŷ(xj)}Nj=1 by the predictor layer in Eq.6;
8: Update θ, We, WG, and {w(m)

g }Mm=1 by backpropaga-
tion;

9: Obtain p observations Dp;
10: Define the posterior process by p(ŷ(t−1)|Dp) by GP

prior;
11: Use the posterior process to define an acquisition

function ϕt;
12: Maximize acquisition function ϑt=argmaxϑ∈χϕt(ϑ);
13: An evaluation indicator ŷ(t−1) at ϑt;
14: Model is updated as ŷ(t) = ŷ(t−1);
15: EndFor

to companies for responses and then publishes those
complaints. 336,403 records of consumer complaints are
sampled from different contexts, including attributes such
as product, sub-product, issue, company, and ZIP code.
A target value of 1 means the consumer has complained
about financial products.

- Adult5 has been widely applied in prediction tasks
to determine whether a person makes over $50k per year.
This dataset contains 48842 instances with 14 attributes,
including categorical and integer variables. A target value
of 1 means a person makes over $50k per year.

- OTC comes from our real-world project for actual
trading records on famous investment securities. We sam-
pled 89824 real fund trading logs drawn from the trans-
action data of one year and these fund trading logs were
evenly distributed over 12 months. Then we randomly
paired two negative samples with each log. A target value
of 1 means a consumer has purchased the OTC financial
products.

- TF is also from our real-world project for actual trad-
ing records on famous investment securities. We sampled
50000 real fund trading logs drawn from the transaction
data of one year and these logs covered 12 months equally.
Then we randomly paired two negative samples with each

5. http://archive.ics.uci.edu/ml/datasets/Adult
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TABLE 1
Effectiveness Comparison of Different Algorithms. We highlight that our proposed model almost outperforms all baselines on six datasets.

Further analysis is provided in Section 4.3.

Method
Criteo Avazu USCFC Adult OTC TF

AUC Logloss AUC Logloss AUC Logloss AUC Logloss AUC Logloss AUC Logloss

FM [5] 0.7836 0.4700 0.7706 0.3856 0.7768 0.4146 0.8117 0.3843 0.8250 0.3704 0.8441 0.3707

AFM [7] 0.7938 0.4584 0.7718 0.3854 0.7792 0.4132 0.8121 0.3838 0.8332 0.3693 0.8478 0.3648

HOFM [8] 0.8005 0.4508 0.7701 0.3854 0.7798 0.4128 0.8156 0.3817 0.8358 0.3672 0.8512 0.3612

Deep&Cross [34] 0.8012 0.4513 0.7643 0.3889 0.7796 0.4127 0.8153 0.3806 0.8364 0.3637 0.8539 0.3597

DeepFM [6] 0.8010 0.4514 0.7651 0.3881 0.7812 0.4112 0.8172 0.3789 0.8367 0.3645 0.8543 0.3594

xDeepFM [11] 0.8091 0.4461 0.7808 0.3818 0.7856 0.4103 0.8223 0.3765 0.8409 0.3635 0.8598 0.3521

AutoInt [36] 0.8061 0.4454 0.7752 0.3823 0.7865 0.4089 0.8259 0.3743 0.8415 0.3634 0.8612 0.3516

FiBiNet [37] 0.8021 0.4495 0.7803 0.3800 0.7873 0.4078 0.8262 0.3727 0.8411 0.3621 0.8612 0.3519

Fi-GNN [50] 0.8062 0.4453 0.7762 0.3825 0.7889 0.4054 0.8278 0.3701 0.8418 0.3612 0.8615 0.3494

GCFM 0.8082 0.4425 0.7811 0.3792 0.7943 0.4021 0.8312 0.3664 0.8498 0.3587 0.8645 0.3467

GCFM GBO 0.8088 0.4415 0.7815 0.3783 0.7966 0.4002 0.8323 0.3643 0.8515 0.3567 0.8657 0.3459

log. A target value of 1 means a consumer has purchased
the TF financial products.

Following the same experimental settings of [7], each
dataset was split into three parts: 70% for training, 20%
for validation and 10% for testing. We adopted two pop-
ular metrics Area Under the ROC (AUC) and Logloss
to evaluate the performance of all methods. A higher
AUC indicates a better performance while a lower Logloss
denotes a better performance. It is worth noting that a
slightly higher AUC or lower Logloss at 0.001-level is
regarded significant for CTR prediction task [6], [33], [34].

Implementation details: All the experiments are per-
formed on the TensorFlow platform [60], which is an
open-source library for machine learning and machine
intelligence. Moreover, our GCFM mainly consists of an
embedding layer, two graph-convolved feature crossing
layers, a graph pooling layer and a fully connected layer.
The numbers of input features are 18 for the OTC dataset,
12 for the TF, 14 for Adult, 13 for USCFC, 39 for Criteo,
and 23 for Avazu. The embedding dimension is 8 for OTC,
TF, USCFC, Adult datasets while 12 for Criteo and 10 for
Avazu.

4.2 Comparison results with state-of-the-arts
To demonstrate the effectiveness of our method, we com-
pare our proposed model with the following state-of-the-
art methods. In particular, by comparing our proposed
GCFM with each state-of-the-art method with different
hyperparameters (such as the dropout rate and regu-
larization parameter), we analyzed each component of
our proposed method to clarify their contributions to its
performance.

- FM [5] is a classic factorization machine approach and
models all interactions between features using factorized
parameters.

- HOFM [8] is a higher-order FM approach and extends
FM to higher-order feature combinations.

- AFM [7] is an attentional FM approach and focuses on
learning the weights of feature interactions via attention
networks.

- Deep&Cross [34] has a architecture with a stack of
5 residual units. Deep&Cross leverages a deep learning
technique to explicitly model feature interactions. We
implemented this method based on the descriptions given
in the paper.

- DeepFM [6] is an FM based neural network, which
emphasizes both low- and high-order feature interactions
by training a deep component and an FM component
jointly.

- xDeepFM [11] incorporates CIN and DNN in an end-
to-end framework, which can automatically learn high-
order feature interactions in both explicit and implicit
fashions.

- AutoInt [36] is a novel CTR prediction model based on
self-attention mechanism, which is capable of automati-
cally learning high-order feature interactions in an explicit
fashion.

- FiBiNet [37] is a new model for dynamically learning
the feature importance and fine-grained feature interac-
tions.

- Fi-GNN [50] is a novel algorithm considering the
multi-field features as a structured combination of feature
fields, where each node corresponds to a feature field and
different fields can interact through edges.

We compare our GCFM method with state-of-the-
art methods on all six datasets, namely, Criteo, Avazu,
USCFC, Adult, OTC, and TF. Table 1 summarizes our
comparison of experimental results with state-of-the-art
methods. It is observed that GCFM achieves the best
performance overall baseline methods on six datasets.
This is because our proposed GCFM builds multi-feature
interactions with graph adaptively to explore positive
interactions among features and reduce negative impacts
from non-connected features. In this way, GCFM can alle-
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TABLE 2
p for two-tailed t-test in terms of AUC on six datasets. If p is less than 0.05, it indicates that two models are significantly different.

Criteo Dataset
Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 5.64e-14 2.30e-14 3.33e-13 3.11e-14 2.83e-13 0.002 3.54e-09 9.29e-14 0.004 / 5.23e-06

GCFM GBO 5.20e-14 2.49e-14 3.68e-14 6.75e-14 3.48e-13 0.0001 1.11e-09 1.82e-13 0.0006 5.23e-06 /
Avazu Dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 2.72e-14 2.10e-13 2.06e-13 8.29e-16 5.20e-16 0.01 5.10e-12 5.75e-05 1.92e-11 / 0.001

GCFM GBO 3.47e-14 2.26e-13 2.08e-13 1.15e-15 8.03e-16 3.50e-05 4.73e-12 3.34e-06 1.61e-11 0.001 /
USCFC Dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 2.66e-15 1.93e-15 3.43e-14 2.52e-15 5.35e-15 1.66e-13 3.01e-13 9.41e-13 8.20e-11 / 1.04e-08

GCFM GBO 1.71e-15 1.33e-15 1.66e-14 1.68e-15 3.23e-15 5.61e-14 8.86e-14 2.17e-13 8.07e-12 1.04e-08 /
Adult Dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 1.30e-15 4.95e-15 6.03e-15 1.11e-14 1.88e-14 5.98e-13 4.52e-11 5.22e-11 2.00e-08 / 7.83e-06

GCFM GBO 4.40e-18 1.25e-16 8.22e-18 1.00e-16 5.48e-17 5.72e-16 1.28e-13 6.66e-14 3.95e-10 7.83e-06 /
OTC dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 1.01e-17 9.30e-16 4.55e-15 1.10e-13 6.50e-15 1.44e-13 4.77e-13 4.25e-14 1.50e-12 / 2.68e-07

GCFM GBO 1.32e-16 4.75e-15 1.83e-14 1.50e-13 2.67e-14 3.73e-13 8.33e-13 2.13e-13 1.81e-12 2.68e-07 /
TF Dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 2.12e-16 3.25e-15 3.34e-14 1.74e-14 1.58e-13 1.01e-11 1.73e-09 9.83e-10 1.73e-09 / 1.55e-06

GCFM GBO 4.10e-16 4.40e-15 3.51e-14 2.74e-14 1.46e-13 5.65e-12 2.63e-10 1.74e-10 2.63e-10 1.55e-06 /

TABLE 3
p for two-tailed t-test in terms of Logloss on six datasets. If p is less than 0.05, it indicates that two models are significantly different.

Criteo Dataset
Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 2.30e-14 3.52e-14 9.05e-13 9.24e-12 3.57e-12 2.26e-09 2.59e-08 1.33e-11 2.06e-08 / 0.001

GCFM GBO 3.08e-14 8.68e-14 2.79e-12 1.39e-11 6.68e-12 2.21e-09 1.57e-08 2.54e-11 1.27e-08 0.001 /
Avazu Dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 1.74e-11 4.08e-11 3.01e-10 3.42e-12 1.49e-11 8.04e-08 1.33e-08 1.28e-05 9.68e-09 / 2.60e-05

GCFM GBO 3.26e-12 8.79e-12 7.20e-11 1.08e-12 5.12e-12 3.12e-09 1.05e-09 6.06e-08 7.76-10 2.60e-05 /
USCFC Dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 1.91e-13 1.57e-12 3.16e-12 3.06e-11 2.42e-11 2.04e-11 5.54e-11 2.96e-10 4.03e-08 / 4.52e-06

GCFM GBO 1.40e-13 8.61e-13 1.57e-12 1.21e-11 9.29e-12 7.63e-12 1.66e-11 6.06e-08 2.66e-09 4.52e-06 /
Adult Dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 2.18e-14 2.33e-14 2.74e-15 8.83e-13 2.34e-13 1.45e-12 1.38e-11 1.28e-05 5.18e-09 / 6.04e-07

GCFM GBO 3.55e-14 3.99e-14 1.26e-14 7.72e-13 3.18e-13 1.51e-12 9.29e-12 2.25e-10 7.92e-10 6.04e-07 /
OTC Dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 1.40e-10 2.80e-12 5.98e-13 5.53e-10 4.28e-10 1.39e-10 4.21e-10 4.88e-10 2.31e-08 / 5.32e-07

GCFM GBO 2.06e-11 9.75e-13 1.97e-13 6.21e-11 6.36e-11 1.68e-11 4.70e-11 3.18e-11 7.44e-10 5.32e-07 /
TF Dataset

Method FM AFM HOFM DC DeepFM xDeepFM AutoInt FiBiNet Fi-GNN GCFM GCFM GBO
GCFM 1.78e-15 3.56e-14 5.69e-13 6.18e-14 7.92e-14 8.04e-08 2.37e-10 5.54e-11 7.71e-08 / 6.37e-05

GCFM GBO 1.63e-15 2.85e-14 4.00e-13 4.80e-14 6.04e-14 4.42e-10 7.82e-11 2.10e-11 9.68e-09 6.37e-05 /

viate the problem of feature vanishing derived from small
feature-interaction weights. On Criteo dataset, GCFM and
GCFM GBO slightly underperform xDeepFM in terms of
AUC, but xDeepFM is much worse than our methods.
As for CTR prediction, it is required to use the predicted
probability (measured by Logloss) to estimate the benefit
of a ranking strategy (measured by AUC) for identifying
positive instance and negative one [11]. Accordingly, our
GCFM and GCFM GBO perform better to predict CTR.
Deep&Cross and DeepFM fail to guarantee improvement
over prediction performance despite being able to capture
high-order feature interactions. This may attribute to the
fact that they learn feature interaction in an implicit fash-
ion. AutoInt and FiBiNet perform better than FM-based
methods, this is due to that they use attention or SENET
mechanism to learn explicit feature importance. Compar-
ing with the proposed GCFM, our GCFM GBO achieves
the better performance, this due to an automatic searching
of hyperparameters, thereby indicating the effectiveness
of GBO technique.

Generally, Our GCFM method is superior to all other
methods for three main reasons: 1) the considered feature
interactions involve multiple features on the graph; 2)

each central node feature always intersects with its neigh-
bors; 3) multi-feature interactions could strengthen their
positive effects with large connection weights and weaken
their negative effects with non-connected weights.

4.3 Significant test

In order to further verify the effectiveness of the pro-
posed model GCFM and GCFM GBO, we have provided
two-tailed t-test between our model and all the com-
pared models in the experiments. Concretely, 5-fold cross-
validations on each dataset have been conducted, and
then two-tailed t-test is conducted based on those results
on each dataset. In the two-tailed t-test, p is the core
index to measure whether there is a significant difference
between two models [61]. If p is less than 0.05 (i.e., sig-
nificant level), it indicates that the significant difference
exits between two models. The evaluation results of p for
two-tailed t-test on six datasets in terms of two metrics are
provided in Table 2 and Table 3, respectively. We observe
that all the values of p between the proposed models (i.e.,
GCFM and GCFM GBO) and all the compared models
in terms of two metrics (AUC and Logloss) on all the
datasets are less than 0.05. This indicates that there is a
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Fig. 5. Validation errors of GCFM and FMs-based methods w.r.t.
different epochs. Best viewed in color.

significant difference between the proposed model and all
the baseline models. This further verifies the effectiveness
of the proposed model.

4.4 Model Evaluation

In this section, we conduct a series of experiments about
model evaluation, including ablation study on GBO, eval-
uation on hyperparameters and evaluation on the number
of GCFC layers.

4.4.1 Evaluation on GBO
We conduct ablation study on GBO on six datasets in this
section to verify the effectiveness of our GCFM GBO. As
shown in Table 1, GCFM GBO outperforms the state-of-
the-arts on six datasets. Besides, we conduct a group of
comparison experiments about GCFM and GCFM GBO
from Fig.7 to Fig.8. For example, as shown in Fig.6, it is ob-
served that GCFM GBO outperforms GCFM in the setting
of dropout, this because it can adaptively search the hyper-
parameters to optimize model. Especially, GCFM GBO
has quick convergence in Fig.5. The similar observation
can be find in the setting of lambda and learning rate.

4.4.2 Evaluation on hyperparameter
Hyperparameters are generally intractable for stable train-
ing of deep network based models and would effect
greatly the model performance. Thus, in this section, we
conduct a comprehensive study on their influences on
Criteo, Avazu, USCFC, Adult, OTC and TF datasets. Our
involved hyperparameters are dropout rate, regulariza-
tion parameter λ, and learning rate.

Dropout rate: The dropout rate [59] is the probability
that a neuron will be kept in the network during training.
Dropout is a regularization technique for reducing overfit-
ting in neural networks and predicting unseen data more
accurately. We set the dropout rate to 0.1, 0.2, 0.3, 0.4, 0.5,

Fig. 6. Test errors of the GCFM and GCFM GBO methods w.r.t.
different dropout rates on the six datasets. Best viewed in color.

0.6, 0.7, 0.8, 0.9, and 1.0. As shown in Fig.6, all models
achieve their own best performance when the dropout
rate is properly set (between 0.6 and 0.8). The results show
that reasonably increasing the randomness of a model can
improve its generalization.

Regularization parameter λ: λ is a regularization param-
eter to limit the model complexity. This parameter can
balance data fitting with rules for preventing overfitting.
We set λ to 0, 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05. As
shown in Fig.7, on the USCFC dataset, all models achieve
their own best performance when λ is set to 0.005. The
results show that the smaller value of a λ can effectively
prevent overfitting.

Learning rate: Learning rate is an important hyper-
parameter in supervised learning, which determines
whether the objective function can converge to the local
minimum and when it converges to the minimum. We
set the learning rate to 1e-3, 1e-5, 1e-7, 1e-9, and 0.01. As
shown in Fig.8, GCFM achieves the optimal performance
when the learning rate is set to be a smaller value. The
results show that a proper learning rate can make the
proposed GCFM converge smoothly.

4.4.3 Evaluation on the number of GCFC layer
In this section, we evaluate the model depth (i.e., the
number of GCFC layers) fpr recommendation. We re-
port results with 5-fold cross-validation on Criteo, Avazu,
USCFC, Adult, OTC and TF datasets. On each cross-
validation split, we train for 100 epochs using the Adam
optimizer [62] with the learning rate 0.001. Other hyper-
parameters are set to be the same. Results are summarized
in Fig.9.

We observe that GCFM achieves the highest perfor-
mance with 2 or 3 layers on four datasets. For models with
more than 3 layers, they maintain a stable performance.

4.4.4 Interpretability of recommendations
For most existing methods, feature interactions are usu-
ally constructed through permutation and combination
operations. It is difficult to interpret the models due
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Fig. 7. Test errors of the GCFM and GCFM GBO methods w.r.t.
different λ values on the six datasets. Best viewed in color.

Fig. 8. Test errors of the GCFM and GCFM GBO methods w.r.t.
different learning rates on the six datasets. Best viewed in color.

to the complex transformations involved. In the GCFM
framework, this dilemma is resolved by the design of the
GCFC layer. To explain its mechanism, we visualize all
MIG of our four datasets shown in Fig.10, and the Fig.11
shows the similarity between an anchor features and other
features with of FM, which also provide the convincing
result for our interpretability.

For OTC, we can see that the feature tra name has eight
neighbor features, which are zipcode, fund int, cust code,
channel mode, currency diversity, date id, profession code,
and fund code. Namely, the feature tra name has close
relationship with these features. Apparently, in our real-
life, fund code, profession code and cust code determine the
trd name. Currency diversity and fund intl also effect the
tra name. This manner is consistent with human behavior.

For TF, the feature rise info impacts tra date, which
accords with actual fund trade. Meanwhile, the feature
tra name is relevant with secu code, which acts like the
OTC dataset. In fund trading, the fund code plays an
important on the transaction name and this behavior gives
a good explanation of fund trading.

For Adult, the feature workclass is affected by multiple

Fig. 9. Evaluation of the model depth (i.e., the number of GCFC
layers) on classification performance. Markers indicate mean classifi-
cation accuracy (training vs. testing) for 5-fold cross-validation.

features such as age, race, and occupation. Obviously, the oc-
cupation and age are the important factors for workclass. For
example, if a person is 10 years old, his occupation may
be a student and unlikely a scientist. This interpretability
is consistent with our human understanding.

For USCFC, the feature complaint id has seven neigh-
bor features, which means this feature is related to
these seven features, which play a significant role in
complaint id. For instance, the feature timely response has
an influence on the central feature complaint id because
the earlier the time, the smaller the complaint id. It pro-
vides more reliable proof for our interpretability.

Overall, our GCFC layer provides interpretability of
our model in two aspects. The first one is finding the
neighborhood features for each feature in the graph,
which surprising accords with human logical thinking
because humans practically will narrow down the field
when seeking some relationship between objects. If the
neighborhood features for each feature cannot be found,
then each feature must interact with the rest of the fea-
tures, which will lead to unexplainable behavior and un-
controlled noise. The second one is weighting the different
features. Normally, different features have different rela-
tionships with each other. The GCFM layer performs this
behavior via a training model. The weights from model
training are used to judge whether an association is strong
enough to imply a meaningful causal relationship. Thus,
our GCFM is consistent with human behavior, which
facilitates the interpretability of our model.

5 REAL-WORLD APPLICATIONS

In Section 4, we follow the prevalent evaluation metric
similar to existing methods in RS research community and
conduct extensive experiments on four public benchmarks
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Fig. 10. Our MIGs in the proposed GCFM. On four datasets, we show the constructed MIGs, which behaves similarly to human logical thinking
and provide an appealing interpretability. We take an example from OTC dataset, the feature tra name has eight neighbor features, which
means this feature has positive relevant with these eight features. In our real-life, the features fund code, profession code and cust code
effect the feature trd name. Currency diversity and fund intl also effect the tra name. This manner is consistent with human behavior.

40 2 3 5 6 7 9 148 …
tra_name

…

OTC

…41 2 3 109
tra_date

0 11

 TF

41 2 3 65
workclass

0 7 11…

Adult

41 2 3 65
complaint_id

0 7 … 11 1210

USCFS

Fig. 11. Illustration of the feature similarity with an anchor feature in FM on four datasets. Each node has the same meaning as Fig.10. On four
datasets, we compute the similarity of other features with an anchor feature. For example, on OTC dataset, we calculate the first eight features
which have the greatest similarity with an anchor feature tra name. These first eight features are fund code, channel mode and class mode
and so on. Obviously, there are three features class mode, fund name and birthday that are different from eight neighbor features generated
by our GCFM. In real life, class mode and birthday have little positive effect on the an anchor feature tra name, especially the birthday.
Moreover, in FM, the anchor feature has connection weights with all the remaining features except these first eight features, this behavior is
prone to introduce noises.

(i.e., Criteo, Avazu, USCFC and Adult) and two financial
datasets that we collect offline in practical projects, (i.e.,
OTC and TF). e extend our models to online practical real-
world applications. Our GCFM method has been applied
to a practical fund recommendation project by SenseTime
Co., Ltd. Our project aims to offer accurate fund product
recommendations to individual users.

Especially, there are two groups of customers. Each
group has 1000 persons. These individuals are randomly
selected from active users in realistic daily trading data
for fund products during one year. We employ two strate-
gies to recommend fund products for both groups. One
strategy is expert knowledge and the other is our model
GCMF. Expert knowledge denotes the suggestion come
from financial human experts, who are professional in
financial markets. Concretely, two fund managers, with
financial backgrounds of master degree and the invest-
ment experience of 5 years. Both fund managers pick
the top-5 fund products that the customers would be
likely to buy according to users’ purchase behaviors in
recent a year. Our GCFM focuses on recommending their
preferred fund products to users. In this paper, our GCFM
is trained on the same historical daily trading data during
one year; the trained GCFM excavates user preference to
recommend the fund products to these customers.

Table 4 presents our experimental results. In the first
group, our GCFM recommends 1000 persons for their
interesting financial products, and 27 persons purchase
financial products 92 times. Meanwhile, GCFM makes
$14384.3 in profit. However, for fund managers of rec-
ommending financial products, there are just 2 persons
buying products 1 time, which only makes $214.05 in
profit. Obviously, in the second and third groups, GCFM
is also more effective than expert knowledge.

6 CONCLUSION

This paper presents a novel Graph-Convolved Factoriza-
tion Machine (GCFM) to improve RS performance via

TABLE 4
Results in real-world applications. We have three groups of

experiments, and each group has 1000 persons. For each group, we
recommend 1000 persons for their interested financial products with

our GCFM and human experts.
Group Retails (times) Buyers (persons) Revenue ($)

1-GCFM 92 27 14384.3

1-EXPERT 2 1 214.05

2-GCFM 76 24 12823.2

2-EXPERT 5 2 7463.2

3-GCFM 4 3 4444.6

3-EXPERT 0 0 0

graph-based modeling of multi-feature interactions. Since
conventional k-order feature interactions are extremely
rigid, high-cost and easily leads to feature vanishing, to
address these issues, the proposed GCFM models multi-
feature interactions with a graph. Each feature needs
to interact with its neighbor features and their connec-
tion weights can strengthen the closely related features
and weaken the negatively irrelevant features. Further-
more, our GCFM achieves state-of-the-art performance
and presents a superior interpretability in recommenda-
tion tasks. We further extend our model to online real-
world applications, which show an appealing human-
level decision intelligence in real scenarios. In the future,
we will explore the possibility of adding causal reasoning
to our GCFM to further improve personalized recommen-
dation.
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