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Abstract

Without prohibitive and laborious 3D annotations, weakly-
supervised 3D human pose methods mainly employ the model
regularization with geometric projection consistency or geome-
try estimation from multi-view images. Nevertheless, those ap-
proaches explicitly need known parameters of calibrated cam-
eras, exhibiting a limited model generalization in various real-
istic scenarios. To mitigate this issue, in this paper, we propose
a Deductive Weakly-Supervised Learning (DWSL) for 3D
human pose machine. Our DWSL firstly learns latent represen-
tations on depth and camera pose for 3D pose reconstruction.
Since weak supervision usually causes ill-conditioned learn-
ing or inferior estimation, our DWSL introduces deductive
reasoning to make an inference for human pose from a view to
another and develops a reconstruction loss to demonstrate what
the model learns and infers is reliable. This learning by deduc-
tion strategy employs the view-transform demonstration and
structural rules derived from depth, geometry and angle con-
straints, which improves the reliability of the model training
with weak supervision. On three 3D human pose benchmarks,
we conduct extensive experiments to evaluate our proposed
method, which achieves superior performance in comparison
with state-of-the-art weak-supervised methods. Particularly,
our model shows an appealing potential for learning from 2D
data captured in dynamic outdoor scenes, which demonstrates
promising robustness and generalization in realistic scenarios.
Our code is publicly available at https://github.com/Xipeng-
Chen/DWSL-3D-pose.

Introduction
3D human pose estimation is a fundamental problem in com-
puter vision for many applications, such as human-robot inter-
action, virtual reality, and action recognition, etc. However, it
is greatly bottlenecked by the availability of abundant 3D an-
notated data, since 3D images are usually subject to specific
conditions with constrained laboratory environments and thus
have limited pose variations and simple backgrounds, and
particularly, accurate 3D annotation demands prohibitively
expensive cost. Accordingly, they cause the poor generaliza-
tion of 3D pose models to the cases in the wild.

Without any 3D pose annotation, many researchers resort
to Weakly-Supervised Learning (WSL) methods (Kocabas,
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Karagoz, and Akbas 2019; Rhodin et al. 2018; Rhodin, Salz-
mann, and Fua 2018; Chen et al. 2019a), which inherit the
benefits of rich annotation and diversity of 2D pose datasets.
They usually utilize annotated 2D pose images by lifting
2D poses to the 3D space together with geometric consis-
tency constraints and train models without 3D pose labels
for 3D human pose estimation. (Chen et al. 2019a) proposes
a method to learn from single-view self-supervision, but re-
quires a very large amount of diverse 2D human poses. (Ko-
cabas, Karagoz, and Akbas 2019; Rhodin et al. 2018; Rhodin,
Salzmann, and Fua 2018) propose a multi-view consistency
from images which are taken for the same person from differ-
ent viewpoints. Nevertheless, these methods have to obtain
well-defined rigid transformation from annotations (Rhodin,
Salzmann, and Fua 2018) or predictions from off-the-shelf
methods (Kocabas, Karagoz, and Akbas 2019; Rhodin et al.
2018). Meanwhile, they employ the view synthesis strategy
to produce 3D poses which supervise the training of 3D pose
detectors. This casts the weakly-supervised learning problem
of 3D pose estimation with only 2D annotation into a con-
ventional fully-supervised learning task with synchronized
information from multi-view images (Chen et al. 2019a). Es-
sentially, fully supervised models are trained inductively in
a data-driven manner, which greatly depends on abundant
observations or samples with labels. Nevertheless, following
the same spirit, with weak supervision or without annotation,
the training of models suffers from a large knowledge of
uncertainty or controversial ambiguity, which would cause
ill-conditioned learning or inferior estimation.

To mitigate this problem, we propose Deductive Weakly-
Supervised Learning (DWSL) for 3D human pose estima-
tion. Rather than following the spirit of data-driven inductive
learning in most existing methods, the proposed paradigm of
learning by deduction utilizes deduction with view-transform
demonstration and structural rules to infer the plausible 2D
pose from another view and develop a reconstruction loss
for training. This is regarded as a self-demonstration with
deductive reasoning from one view to another view, namely,
deduction with view-transform demonstration, and the de-
rived reconstruction loss provides a checkpoint for the current
weakly-supervised learning. At the same time, we also in-
troduce structural rules to further promote the learning by
deduction, which would ease the model training and reduce
the searching space of parameters. We conduct experiments
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on three public 3D human estimation benchmarks, where our
superior performance demonstrates an appealing reliability
and robustness of our method.

Overall, our main contributions are summarized as follows:

1) We propose a deductive weakly-supervised learning
method for 3D human pose machines with multi-view
images and only 2D pose annotations. Instead of view
synthesis which involves given camera parameters and
complex view alignment, it employs deductive reasoning
for human pose inference and develops a mechanism of
self-demonstration to guide the model learning.

2) We propose learning by deduction with view-transform
demonstration and structural rules, aiming to make an in-
ference reasonably for human pose from a view to another
and improve the reliability of the model training with weak
supervision.

3) Quantitative and qualitative experimental results on chal-
lenging 3D human pose datasets show a superior per-
formance of our proposed method, demonstrating the
effectiveness of our learning by deduction for weakly-
supervised 3D human pose estimation, even in uncon-
strained scenes.

Related work
Fully-supervised learning methods Recent advances in
3D human pose estimation attribute to the availability of
large-scale datasets and sophisticated deep networks. Some
methods (Sun et al. 2018, 2017; Pavlakos et al. 2017; Mehta
et al. 2017a) directly predict 3D human poses from images.
Despite the great advance on standard 3D pose datasets, these
methods do not generalize well to outdoor scenes, since the
3D datasets are collected in constrained laboratory environ-
ments. While two-stage methods (Martinez et al. 2017; Wang
et al. 2018; Chen and Ramanan 2017; Fang et al. 2018) first
predict 2D human poses from images and then lift them to
3D. These methods are robust to the diverse appearance and
background, due to the advance in 2D human estimation (Cao
et al. 2018). However, they are still constrained to limited
motion and viewpoints for directly modeling 3D mapping
from a given dataset.

Weakly-supervised learning methods WSL methods pro-
vide a promising way for 3D human pose estimation, which
do not heavily rely on the 3D annotations. Some methods
use adversarial training for learning from single-view 2D
data (Kudo et al. 2018; Drover et al. 2018; Chen et al. 2019a).
These methods project the predicted 3D human poses onto
the image plane from random viewpoints and a discriminator
distinguishes whether these projections are realistic. Even
these methods do not need extra supervision, the training pro-
cess needs a very large amount of diverse 2D human poses.
(Tung et al. 2017a; Kanazawa et al. 2018) utilize the 3D hu-
man model SMPL (Loper et al. 2015) to assist the learning of
3D human pose. They predict parameters of SMPL from im-
ages and the rendered 3D human pose is projected to match
the 2D human poses in images. Although SMPL provides a
strong structure prior of the human body, it is generated from

the statistics of 3D human body, which may still be limited
to some unseen human motions. Besides, some methods seek
help from multi-view consistency (Kocabas, Karagoz, and
Akbas 2019; Rhodin et al. 2018; Suwajanakorn et al. 2018),
learning from multi-view 2D images. (Rhodin et al. 2018)
trains a deep neural network to predict 3D pose from an im-
age, with the supervision that the predicted 3D pose from
different viewpoints shares the same shape. These methods
still need a small part of 3D annotations for warming up,
since lacking learnable view-transform. (Rhodin, Salzmann,
and Fua 2018) proposes to get geometry-aware representa-
tions via novel viewpoint image generation, which still rely
on annotated view-transform. (Kocabas, Karagoz, and Akbas
2019) uses epipolar geometry to obtain 3D pose annotations
from multi-view 2D human pose. Although its images is
unnecessarily captured from calibrated cameras, the recon-
structed 3D poses may be not very stable with the limited
number of viewpoints. In our work, rather than separate the
learning of view-transform and 3D human pose into two
steps, we propose a novel deductive learning framework to
simultaneously learn the view-transform and 3D human pose
in our framework.

Deductive Weakly-Supervised Learning Model
Our goal is to train a model for monocular 3D human pose
estimation with only 2D human poses. To this end, We pro-
pose a novel deductive weakly-supervised learning model to
automatically learn from multi-view 2D human poses, shown
in Fig.1. Given a pair of images observed from two views,
our proposed model formulates the depth for the input view
image and the camera pose between two images as latent
variables, and proposes learning by deduction with a view-
transform demonstration and structural rules in a deductive
module.

Formally, given a pair of images I1 and I2, which are taken
from different viewpoints for the same human body, their 2D
human poses are estimated from images by a trained 2D
pose estimator (Duan et al. 2019). Considering our deductive
learning strategy with view-transform demonstration from
one view to another, for convenience, one of two images is
regarded as the input view and the other one is as the target
view. Let [u,v] ∈ RN×2 and [û, v̂] ∈ RN×2 be the pixel
coordinate of the input and target respectively, where N is
the number of human pose keypoints.

Latent representations for depth and camera pose
We aim to train a model for monocular 3D human pose esti-
mation. In contrast to previous methods (Chen et al. 2019b;
Rhodin, Salzmann, and Fua 2018), which first learn an im-
plicit 3D geometry-aware representation and then need fine-
tuning on the 3D annotations, our framework is capable of
directly predicting the depth z for every 2D keypoints, from
which the accurate 3D human pose is reconstructed. The
neural network P aims to predict the depth of each keypoint
and neural network Q predicts the view transformation, i.e.,
camera pose. We use the simple backbone in (Martinez et al.
2017) for neural networks P and Q. The architecture of back-
bone is a multilayer neural network with residual blocks.
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Figure 1: Illustration of our framework. Given a pair of 2D human poses predicted by a 2D pose estimator, our framework learns
to predict 3D human pose via learning by deduction with view-transform demonstration and structural rules. The neural networks
P and Q aim to predict the depth and camera pose; the deduction module mainly consists of three parts: re-projection, transform
and projection.
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Figure 2: Visualization of the learned 3D human pose with
view-transform. The input view 3D pose and the target view
3D pose are shown in the second and third column.

Specifically, the neural network P is parameterized by θP
and generate implicitly the depth z from the 2D coordinate
[u,v] of the input view.

z = P ([u,v]; θP ). (1)

We utilize the neural network Q parameterized by θQ to
estimate the transformation R ∈ R3×3 and t ∈ R3×1 from
the input 2D pose [u,v] and target 2D pose [û, v̂].

[R, t] = Q([u,v, û, v̂]; θQ). (2)

Learning by Deduction
Our DWSL leverages the learning by deduction strategy,
which is regarded as a self-demonstration with deductive
reasoning from one view to another, namely, deduction with
view-transform demonstration, and the derived reconstruction

loss provides a checkpoint for the current weakly-supervised
learning. At the same time, we also introduce structural rules
to further promote the learning by deduction, which would
ease the model training and reduce the searching space of
parameters.

Deduction with view-transform demonstration. In the
deductive module, our deduction with view-transform demon-
stration firstly employs re-projection to guarantees the input
data is lifted from 2D to 3D based on the learned depth z;
then it transforms the 3D pose prediction from one view to
another based on the learned camera pose between these
two views; finally, the derived 3D pose for another view is
projected to its 2D counterpart.

We assume that the re-projection and the projection both
use an ideal pinhole camera with fixed intrinsic parame-
ters, the camera center [cx, cy] = [0, 0] and focal length
[fx, fy] = [1, 1]. This constrains the input view 3D pose
within a fixed camera coordinate system, reducing the learn-
ing difficulty of the transformation. Specifically, the neural
network P is employed to generate implicitly the depth z
from 2D coordinate [u,v], from which the 3D pose of the
input view [x,y, z] is obtained.

[xi, yi, zi] = [ui · zi, vi · zi, zi] (i = 1, 2, ..., N). (3)

Different from previous work (Chen et al. 2019b; Kocabas,
Karagoz, and Akbas 2019; Rhodin et al. 2018; Rhodin, Salz-
mann, and Fua 2018), the relative transformation is acquired
from annotation or estimated by off-the-shelf algorithms,
which limits the generalization of these methods to realistic
dynamic scenes with moving cameras. In our framework,
we propose to predict the relative transformation end-to-end
together with the 3D pose. If the input view 3D pose is cor-
rect, there will exist a certain viewpoint, from which the 3D
pose is projected to match the target 2D pose. Specifically,



we utilize the neural network Q to estimate the transforma-
tion R ∈ R3×3 and t ∈ R3×1. The target view 3D pose
[x′, y′, z′] is obtained via applying the transform.

[x′i, y
′
i, z
′
i]
> = R·[xi, yi, zi]>+t (i = 1, 2, ..., N). (4)

With view-transform, the target view 3D pose [x′, y′, z′]
is first projected onto the image plane to obtain the predicted
2D pose [u′, v′], and then the reconstruction loss is defined
with the target 2D pose [û, v̂] as supervision.

[u′i, v
′
i, z
′
i] = [x′i / z

′
i, y
′
i / z

′
i, z
′
i] (i = 1, 2, ..., N), (5)

Lrec =
1

N

N∑
i=1

∥∥∥[u′i, v
′
i]
> − [ûi, v̂i]

>
∥∥∥2. (6)

Deduction with structural rules. With the limited num-
ber of viewpoints and sparse 2D keypoints correspondence,
even trivial errors of the predicted locations of 2D pose can
result in a remarkable position offset or even the failure of 3D
pose recovery. 3D pose estimation suffers from an intractable
challenge of the view ambiguity; to address this issue, apart
from deduction with view-transform demonstration, we ex-
plore common sense as structural rules to deductively con-
strain the model learning, which includes rules of positive
depth, symmetry length and valid angle.

Positive depth rule requests each element of the learnt
depth z to be non-negative. This reduces the searching pa-
rameter space of model optimization. Positive depth loss is
defined as follows,

Lpos =
1

N

N∑
i=1

(|zi| − zi). (7)

Symmetry length rule requests the length of the same body
part in the left half and the right half to be equal, since in
3D space, each limb has a nearly equal length no matter
from which viewpoint human poses are observed. Thus, we
define the length of the left body parts is {lli}Mi=1, and its
counterpart in the right body is {lri}Mi=1, where M is the
number of half body parts. This loss function can be defined
as follows,

Lsym =
1

M

M∑
i=1

∥∥∥lli − lri∥∥∥2. (8)

Valid angle rule helps to remove invalid 3D human poses,
which guides the model to distinguish the left from the right.
This rule penalizes the 3D poses that violate the knee or elbow
joint-angle limits. The examples are shown in Figure 3. This
constrains 3D poses generated in a feasible manner. Similar
to (Dabral et al. 2018), the valid angle rule is formulated as
follows,

Lang = Lleft-arm + Lright-arm + Lleft-leg + Lright-leg. (9)

GT w rule w/o rule

Figure 3: Illustration of the effect of the valid angle rule. The
predicted 3D pose is from our model trained with/without
the valid angle rule. As we can see, removing this rule will
result in the reversed left and right, while the correct human
shape is kept. The left part of the human pose is denoted in
red color and the right part is in blue color.

Training and inference
In the training stage, we train our model in an end-to-end man-
ner by minimizing the following total loss function, where
{αrec, αpos, αsym, αang} are the weights for losses.

L = αrec ·Lrec +αpos ·Lpos +αsym ·Lsym +αang ·Lang. (10)

In the inference stage, 2D human pose is first estimated
from single image I by a 2D pose estimator, and then 2D
coordinate [u,v] is fed into P to generate the depth z. The
3D human pose is efficiently recovered based on the depth z
using Equation 3, without the aforementioned deduction.

Experiments
Experimental settings
Datasets. Our experiments have been conducted on three
3D human pose datasets, i.e., Human3.6M (Ionescu et al.
2013), MPI-INF-3DHP dataset (Mehta et al. 2017a), and
Ski-PosePTZ (Rhodin et al. 2018). Human3.6M (Ionescu
et al. 2013) consists of 3.6 million images and has 11 subjects
with 15 daily actions from 4 different viewpoints. Following
the standard protocol in (Martinez et al. 2017), subject 1, 5,
6, 7, 8 are for training and subject 9, 11 are for evaluation.
MPI-INF-3DHP (Mehta et al. 2017a) contains about 1.3
million frames taken from different viewpoints. With the
dataset split similar to (Yang et al. 2018), its training set
covers five chest-height cameras and 17 joints (compatible
with H36M) are for training; its test set has 2929 frames taken
from both indoor and outdoor scenes. Ski-PosePTZ (Rhodin
et al. 2018) is more challenging since its frames are captured
in dynamic outdoor scenes with 6 pan-tilt-zoom cameras;
namely, it is a ski dataset with competitive racers going down
alpine slalom courses. It contains images of 6 subjects. The
subject 1 to 5 are for training (8481 frames) and the subject
6 is for testing (1716 frames).
Metrics. We report our results on Human3.6M in terms of
MPJPE (Mean Per joint Position Error) and PMPJPE (Pro-
crustes aligned Mean Per Joint Position Error), similar to



Table 1: Comparison results on Human3.6M. ‘Full’ refers
to fully-supervised methods; ‘Weak’ refers to weakly-
supervised methods; N/A means the result is not available
and ‘-’ is not provided by authors. ’SH detections’ indicates
that we trained and tested our model with Stacked Hour-
glass (Newell, Yang, and Deng 2016) 2D detections.

Supervision Method PMPJPE MPJPE

Full Our baseline (Martinez et al. 2017) 52.1 62.9

Weak Tung et al. (2017a) 98.4 -
Tung et al. (2017b) 97.2 -
Kocabas, Karagoz, and Akbas (2019) 70.7 N/A
Wandt and Rosenhahn (2019) 65.1 -
Drover et al. (2018) 64.6 -
Wang, Kong, and Lucey (2019) 57.5 83.0

Ours (SH detections) 60.6 80.2
Ours 58.6 76.7

Table 2: Results on MPI-INF-3DHP. H36M refers to the
Human3.6M dataset and MPI refers to the MPI-INF-3DHP
dataset. All the methods are evaluated on the test set of MPI-
INF-3DHP dataset.

Supervision Method Training Data PCK AUC

Full Kanazawa et al. (2018) H36M+MPI 86.3 47.8
Mehta et al. (2017b) H36M+MPI 83.9 47.3

Weak Kanazawa et al. (2018) H36M+MPI 77.1 40.7
Ours H36M 86.3 49.8
Ours H36M + MPI 88.1 50.5

(Wang, Kong, and Lucey 2019). Besides, in order to evaluate
on MPI-INF-3DHP, following (Chen et al. 2019a), we also re-
port PCK (Percentage of Correct Keypoints) and AUC (Area
Under the Curve) calculated based on PMPJPE.
Implementation details. 2D poses used in our model are
normalized to unit size together with their pelvis points at ori-
gin. For the input 2D poses, they are augmented by a random
rotation within ±30◦, and are re-scaled by a factor within
1± 0.1. For the target 2D poses, we introduce the flip opera-
tion to generate data as if it was taken from a virtual camera,
via multiplying the x coordinate by -1. In every training
epoch, we randomly choose a pair of viewpoints for every
frame when there exist multiply ones. The weights in the
losses, (αrec, αpos, αsym, αang), are set to (1, 1, 10, 10−3).
We train the network on an RTX 2080 GPU with a batchsize
of 64 for 100 epochs.

Comparison results with state-of-the-art methods
We compare our proposed method with existing state-of-
the-art weakly-supervised learning methods on Human3.6M
dataset, shown in Table 1. It is observed that for PMPJPE,
our method achieves a performance of 58.5mm and out-
performs most of the state-of-the-art methods. It also ob-
tains comparable performance with (Wang, Kong, and Lucey
2019), in comparison of which our method just utilize a
more light-weighted backbone. When compared with the

Table 3: Results on Ski-PosePTZ. -3D refers to using the 3D
ground truth in the training set of the dataset. -MV refers
to using multi-view images in the training set of the dataset.
All the methods are evaluated on the test set of Ski-PosePTZ
dataset.

Method Training Data PMPJPE MPJPE

Martinez et al. (2017) H36M-3D 111.3 141.3
Zhao et al. (2019) H36M-3D 108.8 125.1
Ours H36M-MV 108.7 130.2
Ours H36M-MV+Ski-MV 74.7 99.4

Table 4: Ablation study on Human3.6M dataset. ∆ indicates
the performance decrease in comparison with our DWSL.
N/A means the result is not available.

Method PMPJPE ∆

Ours 58.6 -
w/o reconstruction N/A N/A
w/o positive depth rule 73.2 14.6
w/o symmetry rule N/A N/A
w/o shape rule 104.0 45.4
w/o data augmentation 62.1 3.5

method (Kocabas, Karagoz, and Akbas 2019) that generates
3D supervisions via conventional 3D reconstruction algo-
rithm, our method outperforms it by a large margin (58.6mm
vs. 70.7mm in PMPJPE). Besides, our model also achieves
the best performance 76.7mm on the MPJPE, which has a sig-
nificant improvement by 8.3mm in comparison with (Wang,
Kong, and Lucey 2019), demonstrating that our method can
capture the 3D orientations of the human body more accu-
rately. We also compare our weakly-supervised framework
with our fully-supervised baseline (Martinez et al. 2017),
which is trained with 3D annotations. As shown in Table 1,
our method has a comparable performance with the fully-
supervised baseline by only 6.5mm gaps under PMPJPE on
Human3.6M dataset. This indicates that our method can ef-
fectively learn 3D information from multi-view images.

To further validate the generalization ability, we further
conduct experiments on MPI-INF-3DHP and Ski-PosePTZ,
which contain challenging outdoor scenes. Following the
similar experimental setting (Chen et al. 2019b), we first train
our model on Human3.6M, and then test on MPI-INF-3DHP.
Our method generalizes well and achieves a performance of
86.3 in PCK and 49.8 in AUC. When it is further trained on
the multi-view images of MPI-INF-3DHP, we have a better
performance of 88.1 in PCK and 50.5 in AUC. As shown in
Table 3, when it is trained only on the multi-view images of
Human3.6M and Ski-PosePTZ, our model outperforms the
fully-supervised method (Zhao et al. 2019) by reducing the
error by 31.4% (74.7mm vs. 108.8mm) in PMPJPE.

Ablation studies
We conduct ablation experiments to verify the effectiveness
of each component in our framework on Human3.6M, shown
in Table 4. The absence of reconstruction loss leads to model
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Figure 4: 3D human pose predictions observed in the front view and top view on Ski-PosePTZ dataset.

collapse, demonstrating that multi-view images provide the
information for the learning of depth. Without positive depth
rule, the error increases by 14.6mm. When the predicted
depth is negative, the re-projection is applied along the nega-
tive z axis, which increases the difficulty of the model learn-
ing. Symmetry length rule ensures reasonable 3D human
poses to be predicted from noisy multi-view data. In Figure
5, without symmetry length rule, the model fails to predict
reasonable 3D human pose, even if 2D human pose can be
predicted. Due to noisy 2D human pose predictions, the lim-
ited number of viewpoints and unknown camera parameters,
it is hard to reconstruct the correct 3D human pose under such
conditions. The shape rule teaches the method to distinguish
the left from right, as shown in Figure 3. Removing this rule
will result in the reversed left and right, while the correct
human shape is kept. When this component is removed, the
error increases by 45.4mm. When the data augmentation is
not applied, the small increase in the error is 3.5mm.

Model analysis
Learning from multi-view images of unconstrained
scenes. To validate the ability of our model to learn from
multi-view images of unconstrained scenes, we conduct ex-
periments on Ski-PosePTZ. Specifically, this dataset is chal-
lenging due to diverse distributed camera poses and complex
human poses. The result is shown in Table 3. It is shown
that the model trained only on Human3.6M is difficult to be
generalized to the Ski-PosePTZ dataset. The fully-supervised
method (Zhao et al. 2019) get the performance of 108.8mm
in PMPJPE, and our model trained only on the multi-view
images of Human3.6M also has difficulty to be adopted on
Ski-PosePTZ. However, only using extra multi-view images
from the training set of Ski-PosePTZ, without any 3D su-
pervisions (including camera parameters), we achieve the

Input PredictionInput View Target View

Figure 5: Illustration of the effect of the symmetry length rule.
‘Input view’ and ‘Target view’ are reconstructed 3D human
poses in input and target viewpoints, respectively. Without the
symmetry length rule, the model fails to predict reasonable
3D pose, even if 2D human poses can be reconstructed.

performance of 74.7mm in PMPJPE, which reduces the error
by 31.2 compared to our baseline (74.7mm vs. 108.7mm).
The qualitative results are shown in Figure 4 and we present
the predicted 3D human pose in front viewpoints and top
viewpoints. Even if all the methods show correct projections
from the front viewpoints, the difference of depth can be
viewed from the top viewpoints.

Conclusion
In this paper, we propose a deductive weakly-supervised
learning method for 3D human pose machines with multi-
view images from uncalibrated cameras and only 2D pose
annotations. To mitigate the issue of ill-conditioned learning



and inferior estimation due to weak supervision, our method
employs deductive reasoning for human pose inference and
develops a mechanism of self-demonstration to guide the
model learning. Our learning by deduction is performed with
view-transform demonstration and structural rules to make
an inference reasonably for human pose from a view to an-
other. This ensures the reliability of the model training with
weak supervision. Extensive experiments on 3D human pose
datasets show that our method has achieved a remarkable
performance improvement. Especially, our method demon-
strates appealing effectiveness and generalization for more
challenging scenes in the wild. Our work provides a fresh
insight with learning by deduction for weakly-supervised 3D
human pose estimation.
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