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Abstract. Biomedical image segmentation plays a significant role in
computer-aided diagnosis. However, existing CNN based methods rely
heavily on massive manual annotations, which are very expensive and
require huge human resources. In this work, we adopt a coarse-to-fine
strategy and propose a self-supervised correction learning paradigm for
semi-supervised biomedical image segmentation. Specifically, we design
a dual-task network, including a shared encoder and two independent
decoders for segmentation and lesion region inpainting, respectively. In
the first phase, only the segmentation branch is used to obtain a rel-
atively rough segmentation result. In the second step, we mask the
detected lesion regions on the original image based on the initial seg-
mentation map, and send it together with the original image into the
network again to simultaneously perform inpainting and segmentation
separately. For labeled data, this process is supervised by the segmenta-
tion annotations, and for unlabeled data, it is guided by the inpainting
loss of masked lesion regions. Since the two tasks rely on similar feature
information, the unlabeled data effectively enhances the representation
of the network to the lesion regions and further improves the segmen-
tation performance. Moreover, a gated feature fusion (GFF) module is
designed to incorporate the complementary features from the two tasks.
Experiments on three medical image segmentation datasets for different
tasks including polyp, skin lesion and fundus optic disc segmentation
well demonstrate the outstanding performance of our method compared
with other semi-supervised approaches. The code is available at https://
github.com/ReaFly/SemiMedSeg.
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1 Introduction

Medical image segmentation is an essential step in computer-aided diagnosis.
In practice, clinicians use various types of images to locate lesions and analyze
diseases. An automated and accurate medical image segmentation technique is
bound to greatly reduce the workload of clinicians.

With the vigorous development of deep learning, the FCN [15], UNet [19]
and their variants [12,23] have achieved superior segmentation performance for
both natural images and medical images. However, these methods rely heavily on
labeled data, which is time-consuming to acquire especially for medical images.
Therefore, many studies adopt semi-supervised learning to alleviate this issue,
including GAN-based methods [9, 24], consistency training [17,20], pseudo label-
ing [11] and so on. For instance, Mean Teacher (MT) [20] and its variants [13,22]
employ the consistency training for labeled data and unlabeled data by updat-
ing teacher weights via an exponential moving average of consecutive student
models. Recently, some works [1,14] integrate self-supervised learning such as
jigsaw puzzles [16] or contrastive learning [4] to semi-supervised segmentation
and achieve competitive results. However, few of them try to dig deeply into
the context and structural information of unlabeled images to supplement the
semantic segmentation.

In this work, we also consider introducing self-supervised learning to semi-
supervised segmentation. In contrast to [1,14], we make full use of massive
unlabeled data to exploit image internal structure and boundary characteris-
tics by utilizing pixel-level inpainting as an auxiliary self-supervised task, which
is combined with semantic segmentation to construct a dual-task network. As
the inpainting of normal non-lesion image content will only introduce addi-
tional noise for lesion segmentation, we design a coarse-to-fine pipeline and then
enhance the network’s representations with the help of massive unlabeled data
in the correction stage by only masking the lesion area for inpainting based on
the initial segmentation result. Specifically, in the first phase, only the segmen-
tation branch is used to acquire a coarse segmentation result, while in the second
step, the masked and original images are sent into the network again to simul-
taneously perform lesion region inpainting and segmentation separately. Since
the two tasks rely on similar feature information, we also design a gated feature
fusion (GFF) module to incorporate complementary features for improving each
other. Compared with the most related work [2] which introduces a reconstruc-
tion task for unlabeled data, their two tasks lack deep interaction and feature
reuse, thus cannot collaborate and facilitate each other. Besides, our network not
only makes full use of massive unlabeled data, but also explores more complete
lesion regions for limited labeled data through the correction phase, which can
be seen as “image-level erase [21]” or “reverse attention [3]”.

Our contribution is summarized as follows. (1) We propose a novel self-
supervised semi-supervised learning paradigm for general lesion region segmenta-
tion of medical imaging, and verify that the pretext self-supervised learning task
of inpainting the lesion region at the pixel level can effectively enhance the fea-
ture learning and greatly reduce the algorithm’s dependence on large-scale dense
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annotation. (2) We propose a dual-task framework for semi-supervised medical
image segmentation. Through introducing the inpainting task, we create supervi-
sion signals for unlabeled data to enhance the network’s representation learning
of lesion regions and also exploit additional lesion features for labeled data, thus
effectively correct the initial segmentation results. (3) We evaluate our method
on three tasks, including polyp, skin lesion and fundus optic disc segmentation,
under a semi-supervision setting. The experimental results demonstrate that
our method achieves superior performance compared with other state-of-the-art
semi-supervised methods.

2 Methodology

2.1 Overview

In this work, we adopt a coarse-to-fine strategy and propose a self-supervised
correction learning paradigm for semi-supervised biomedical image segmenta-
tion. Specifically, we introduce inpainting as the pretext task of self-supervised
learning to take advantage of massive unlabeled data and thus construct a dual-
task network, as shown in Fig.1. Our proposed framework is composed of a
shared encoder, two decoders and five GFF modules placed on each layer of
both decoders. We utilize ResNet34 [8] pretrained on the ImageNet [5] as our
encoder, which consists of five blocks in total. Accordingly, the decoder branch
also has five blocks. Each decoder block is composed of two Conv-BN-ReLU
combinations. For the convenience of expression, we use Fyeg, Dseq to represent
the encoder and decoder of the segmentation branch, and FEj,, and D, for
those of the inpainting branch.
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Fig. 1. The overview of our network. Both encoders share weights. G1—G5 represent
five GFF modules. The red and blue arrows denote the input and output of our network
in the first and second stage respectively. (Color figure online)

In the first step, given the image x € RE*WXC "in which H, W, C are the
height, width and channels of the image respectively, we use the segmenta-
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tion branch Eg.q4, Dseq with skip-connections, the traditional U-shape encoder-
decoder structure, to obtain a coarse segmentation map Jcoarse and then mask
the original input based on its binary result ¥,.,,,s. Py the following formulas:

gcoarse = Dseg(Eseg(x)) (1)

Tmask = T X (1 - ycoarse) (2)

In the second phase, the original image x and the masked image .45 are
sent into Es.y, and Fjy,, simultaneously to extract features eseq and e;pnp. Obvi-
ously, eseq is essential for the inpainting task, and since the initial segmentation
is usually inaccurate and incomplete, e;,, may also contain important residual
lesion features for the correction of the initial segmentation. In order to adap-
tively select the useful features of e;;, and achieve complementary fusion of e,
and e;p;,, we design the GFF modules (G1-G5) and place them on each decoder
layer of both branches. Specifically, for the i'” layer, the features e’_, and eénp

seg
are delivered into G; through skip-connections to obtain the fusion e’ = G; (€.,
eénp), and then sent to the corresponding decoder layer. Thus, both G; of the

two branches shown in Fig. 1 actually share parameters, taking the same input
and generating the identical output. To enhance the learning of the GFF mod-
ules, we adopt a deep supervision strategy and each layer of the two decoder
branches generate a segmentation result and an inpainting result respectively by
the following formulas:

Qi' . Déeg([eivdi-ggl])7 1=1,2,3,4
Fine Di_ ('), i=5

seg

3)

i Dinplle'dipy ), i=1,2,3,4 W
r = ) .
D;ﬂp(ez), =5
Where [, -] denotes the concatenation process, and di:gl, dé:; represent the

features from previous decoder layers. The deep supervision strategy can also
avoid Dy, directly copying the features of the low-level ey, to complete the
inpainting task without in-depth lesion feature mining. The output of the last
layer g)}me is the final segmentation result of our network.

2.2 Gated Feature Fusion (GFF)

To better incorporate complementary features and filter out the redundant infor-
mation, we design the GFF modules placed on each decoder layer to integrate
the features delivered from the corresponding encoder layer of two branches. The
details are shown in Fig. 2. Our GFF module consists of a reset gate and a select
gate. Specifically, for the G; placed on the i*" decoder layer, the value of two
gates is calculated as follows:

ri =o(W, [ei el ) (5)

seg’ “inp
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Fig. 2. Gated feature fusion module

5i=0(Ws [€hegs €inpl) (6)

seg’ “inp

Where W,., W denote the convolution process, taking the concatenation of e’ 9

and eﬁnp as input. o represents the Sigmoid function. r; and s; represent the
value of the reset gate and the select gate, respectively. Since the input of the
inpainting branch is the masked image, the reset gate is necessary to suppress
massive invalid background information. And then the select gate achieves adap-
tive and complementary feature fusion between the reintegrated features & and

i

the original segmentation feature e;,, by the following operations:

E =W [ri x el ete,]) (7)

inpr Cseg
el =5 x &+ (1 —54) x eieg (8)

where W also represents the convolution process to make the reintegrated fea-

tures e’ have the same dimension with eg, .

2.3 Loss Function

We only calculate loss in the second stage. The labeled dataset and unlabeled
dataset are denoted as D; and D,,. For the labeled data x; € Dy, y; is the Ground
Truth. Since we adopt the deep supervision strategy, the overall loss is the sum
of the combination of Binary CrossEntropy (BCE) Loss and Dice loss between
each output and the Ground Truth:

5

£569(ml) = ZL%CE(QZI7yZI) + Ll[)zce(gll7yll) (9)
i=1

where @li, yf denote the segmentation map g}}ine of the i*" decoder layer and the
corresponding down-sampling Ground Truth ;.
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For unlabeled data x,, € D,,, the inpainting loss is the sum of L1 loss between
each inpainting image and the original image in the masked region:

Linp ) = D 70 x |#), — 1] (10)
i=1

where #¢, 2% and 7', represent the inpainting image, down-sampling original
image and binary segmentation result of the i** decoder layer, respectively. In
the end, the total loss function is formulated as follows:

L= )\1 Z Lseg(xl) +)\2 Z Elnp(xu) (11)

€D Ty €Dy,

where A1, Ao are weights balancing the segmentation loss and the inpainting loss.
And we set Ay = 2 and A2 = 1 in our experiments.

3 Experimental Results

3.1 Dataset and Evaluation Metric

We conduct experiments on a variety of medical image segmentation tasks to
verify the effectiveness and robustness of our approach, including polyp, skin
lesion and fundus optic disc segmentation, respectively.

Polyp Segmentation. We use the publicly available kvasir-SEG [10] dataset
containing 1000 images, and randomly select 600 images as the training set, 200
images as the validation set, and the remaining as the test set.

Skin Lesion Segmentation. We utilize the ISBI 2016 skin lesion dataset [7] to
evaluate our method performance. This dataset consists of 1279 images, among
which 900 are used for training and the others for testing.

Optic Disc Segmentation. The Rim-one r1 dataset [6] is utilized in our exper-
iments, which has 169 images in total. We randomly split the dataset into a
training set and a test set with the ratio of 8:2.

Evaluation Metric. Referring to common semi-supervised segmentation set-
tings [13,22], for all datasets, we randomly use 20% of the training set as
the labeled data, 80% as the unlabeled data and adopt five metrics to quan-
titively evaluate the performance of our approach and other methods, including
“Dice Similarity Coefficient (Dice)”, “Intersection over Union (IoU)”, “Accuracy
(Acc)?, “Recall (Rec)” and “Specificity (Spe)”.

3.2 Implementation Details

Data Pre-processing. In our experiments, since the image resolution of all
datasets varies greatly, we uniformly resize all images into a fixed size of 320 x 320
for training and testing. And in the training stage, we use data augmentation,
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including random horizontal and vertical flips, rotation, zoom, and finally all the
images are randomly cropped to 256 x 256 as input.

Training Details. Our method is implemented using PyTorch [18] framework.
We set batch size of the training process to 4, and use SGD optimizer with
a momentum of 0.9 and a weight decay of 0.00001 to optimize the model. A
poly learning rate police is adopted to adjust the initial learning rate, which is
Ir = init_Ir x (1 — 2 ypower wwhere init_lr = 0.001, power = 0.9). The total

mazx_iter
number of epochs is set to 80.

Table 1. Comparison with other state-of-the-art methods and ablation study on the
Kvasir-SEG dataset

Methods Data Dice |IoU |Acc |Rec |Spe

Supervised 600L (All) 89.48 |83.69 |97.34 |91.06 | 98.58
Supervised 120L 84.40 |76.18 |96.09 |85.35 | 98.55
DAN [24] 120L + 480U | 85.77 | 78.12 |96.37 | 86.86 |98.53
MT [20] 120L + 480U | 85.99 |78.84 1 96.21 | 86.81 |98.79
UA-MT [22] 120L + 480U | 85.70 |78.34 |96.38 | 88.51 |98.40
TCSM_V2 [13] | 120L + 480U | 86.17 |79.15 |96.38 |87.14 |98.76
MASSL [2] 120L + 480U | 86.45 | 79.61 |96.34 |89.18 |98.32
Ours 120L + 480U | 87.14 | 80.49 | 96.42 | 90.78 | 97.89
Ours (add) 120L + 480U | 85.59 | 78.56 |96.12 | 87.98 |98.26
Ours (concat) | 120L + 480U | 86.09 |78.98 |96.21 |90.54 |97.63

3.3 Comparisons with the State-of-the-Art

In our experiments, ResNet34 [8] based UNet [19] is utilized as our baseline,
which is trained using all training set and our selected 20% labeled data sep-
arately in a fully-supervised manner. Besides, we compare our method with
other state-of-the-art approaches, including DAN [24], MASSL [2], MT [20]
and its variants (UA-MT [22], TCSM_V2 [13]). All comparison methods adopt
ResNet34UNet as the backbone and use the same experimental settings for a
fair comparison. On the Kvasir-SEG dataset, Table 1 shows that our method
obtains the outstanding performance compared with other semi-supervised
methods, with Dice of 87.14%, which is 2.74% improvement over the baseline
only using the 120 labeled data, outperforming the second best method by 0.69%.
On the ISBI 2016 skin lesion dataset, we obtain a 90.95% Dice score, which
is superior to other semi-supervised methods and very close to the score of
91.38% achieved by the baseline using all training set images. On the Rim-one
rl dataset, we can conclude that our method achieves the best performance
over five metrics, further demonstrating the effectiveness of our method. Note
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that detailed results on the latter two datasets are listed in the supplementary
material due to the space limitation. Some visual segmentation results are shown

in Fig. 3 (col. 1-8).

| Masked Inpainting

Fig. 3. Visual comparison of various lesion segmentation from state-of-the-art methods.
Our proposed method consistently produces segmentation results closest to the ground
truth. The inpainting result is shown in the rightmost column.

3.4 Ablation Study

Effectiveness of Our Approach with Different Ratio of Labeled Data.
We draw the curves of Dice score under three settings in Fig.4. To verify that
our proposed framework can mine residual lesion features and enhance the lesion
representation by GFF modules in the second stage, we conduct experiments and
draw the blue line. The blue line denotes that our method uses the same labeled
data with the baseline (the red line) to perform the two-stage process, without
utilizing any unlabeled data. Note that we only calculate the segmentation loss
for the labeled data. The performance gains compared with the baseline show
that our network mines useful lesion information in the second stage. The green
line means that our method introduces the remaining as unlabeled data for
the inpainting task, further enhancing the feature representation learning of the
lesion regions and improving the segmentation performance, especially when only
a small amount of labeled data is used. When using 100% labeled data, the green
line is equivalent to the blue line since no additional unlabeled data is utilized
to do the inpainting task, thus maintaining the same results.

Effectiveness of the GFF Modules. To verify the effectiveness of the GFF
modules, we also design two variants, which merge features by directly addition
and concatenation, denoting as Ours (add) and Ours (concat) respectively. In
Table 1, we can observe performance degradation by both approaches compared
with our method, proving that the GFF module plays a significant role in filtering
redundant information and improving the model performance.
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Fig. 4. The performance of our method with different ratio of labeled data on the
Kvasir-SEG dataset.

4 Conclusions

In this paper, we believe that massive unlabeled data contains rich context and
structural information, which is significant for lesion segmentation. Based on
this, we introduce the self-supervised inpainting branch for unlabeled data, coop-
erating with the main segmentation task for labeled data, to further enhance the
representation for lesion regions, thus refine the segmentation results. We also
design the GFF module for better feature selection and aggregation from the two
tasks. Experiments on various medical datasets have demonstrated the superior
performance of our method.
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