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Abstract

FRAME (Filters, Random fields, And Maximum Entropy) is
an energy-based descriptive model that synthesizes visual re-
alism by capturing mutual patterns from structural input sig-
nals. The maximum likelihood estimation (MLE) is applied
by default, yet conventionally causes the unstable training en-
ergy that wrecks the generated structures, which remains un-
explained. In this paper, we provide a new theoretical insight
to analyze FRAME, from a perspective of particle physics
ascribing the weird phenomenon to KL-vanishing issue. In
order to stabilize the energy dissipation, we propose an al-
ternative Wasserstein distance in discrete time based on the
conclusion that the Jordan-Kinderlehrer-Otto (JKO) discrete
flow approximates KL discrete flow when the time step size
tends to 0. Besides, this metric can still maintain the model’s
statistical consistency. Quantitative and qualitative experi-
ments have been respectively conducted on several widely
used datasets. The empirical studies have evidenced the ef-
fectiveness and superiority of our method.

Introduction
FRAME (Filters, Random fields, And Maximum En-
tropy) (Zhu, Wu, and Mumford 1997) is a model built
on Markov random field that can be applied to approxi-
mate various types of data distributions, such as images,
videos, audios and 3D shapes (Lu, Zhu, and Wu 2015;
Xie, Zhu, and Wu 2017; Xie et al. 2018). It is an energy-
based descriptive model in the sense that besides its pa-
rameters are estimated, samples can be synthesized from
the probability distribution the model specifies. Such distri-
bution is derived from maximum entropy principle (MEP),
which is consistent with the statistical properties of the ob-
served filter responses. FRAME can be trained via an infor-
mation theoretical divergence between real data distribution
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Figure 1: Visual and numerical results of FRAME and
wFRAME. Left: the generating steps and selected typical
results of “spaceship” from two algorithms. The first and
the second-row images are respectively from FRAME and
wFRAME. wFRAME achieves higher quality images com-
pared with FRAME, which collapses at the very beginning
of the sampling iteration. Right: the observed model energy
of both algorithms. The instability of the energy curve is the
signal of the model collapse. The detailed discussion can be
found in the experiment section.

Pr and model distribution Pθ. Primitive efforts model it as
KL-divergence by default, which also leads to the same re-
sults of MLE.

A large number of experimental results reveal that
FRAME tends to generate inferior synthesized images and
is often arduous to converge during training. For instance,
displayed in Fig. 1, the synthesized images of FRAME se-
riously deteriorates along with the model energy. This phe-
nomenon is caused by KL-vanishing in the stepwise parame-
ters estimation of the model due to the existence of the great
filter responses disparity between Pθ and Pr. Specifically,
the MLE-based learning algorithm attempts to optimize a
transformation from the high dimensional support of Pθ to
the non-existing support of Pr, i.e., it starts from an initial-
ization of a Gaussian noise covering the whole support of
Pθ and Pr, then gradually updates θ by calculating the KL
discrete flow step-wisely. Therefore in the discrete time set-
ting of the actual iterative training process, the dissipation of
the model energy may become considerably unstable, and
the stepwise minimization scheme may suffer serious KL-
vanishing issue during the communicative parameters esti-
mation.

To tackle the above shortcomings, we first investigate this
model from a particle perspective by regarding all the ob-
served signals as Brownian particles (pre-condition of KL

3256



discrete flow), which helps explore the reasons for the col-
lapses of the FRAME model. This is inspired by the fact
that the empirical measure of a set of Brownian particles
generated by Pθ satisfies Large Deviation Principle (LDP)
with rate functional coincides exactly with the KL discrete
flow (see Lemma 1). We then delve into the model in discrete
time state and translate its learning mechanism from KL
discrete flow into the Jordan-Kinderlehrer-Otto (JKO) (Jor-
dan, Kinderlehrer, and Otto 1998) discrete flow, which is a
procedure for finding time-discrete approximations to solu-
tions of diffusion equations in Wasserstein space. By resort-
ing to the geometric distance between Pθ and Pr through
optimal transport (OT) (Villani 2003) and replacing the
KL-divergence with Wasserstein distance (a.k.a. the earth
mover’s distance (Rubner, Tomasi, and Guibas 2000)), this
method manages to stabilize the energy dissipation scheme
in FRAME and maintain its statistical consistency. The
whole theoretical contribution can be summed up as the fol-
lowing deduction process:

• We deduce the learning process of data density in
FRAME model from a view of particle evolution and con-
firm that it can be approximated by a discrete flow model
with gradually decreasing energy driven by the minimiza-
tion of the KL divergence.

• We further propose Wasserstein perspective of
FRAME (wFRAME) by reformulating the FRAME’s
learning mechanism from KL discrete flow into the JKO
discrete flow, of which the former theoretically explains
the cause of the vanishing problem, while the latter
overcomes the drawbacks, including the instability of
sample generation and the failure of model convergence
during training.

Qualitative and quantitative experiments demonstrate that
the proposed wFRAME greatly ameliorates the vanishing
issue of FRAME and can generate more visually promis-
ing results, especially for structurally complex training data.
Moreover, to our knowledge, this method can be applied to
most sampling processes which aim at abridging the KL-
divergence between real data distribution and the generated
data distribution by time sequence.

Related Work
Descriptive Model for Generation. The descriptive mod-
els originated from statistical physics have an explicit prob-
ability distribution of the signal, where they are ordinarily
called the Gibbs distributions (Landau and Lifshitz 2013).
With the massive developments of Convolutional Neural
Networks (CNN) (Krizhevsky, Sutskever, and Hinton 2012)
which has been proven to be a powerful discriminator, re-
cently, increasing researches on the generative perspective
of this model have drawn a lot of attention. (Dai, Lu, and
Wu 2014) first introduces a generative gradient for pre-
training discriminative ConvNet by a non-parametric impor-
tance sampling scheme and (Lu, Zhu, and Wu 2015) pro-
poses to learn FRAME using pre-learned filters of modern
CNN. (Xie et al. 2016b) further studies the theory of gen-
erative ConvNet intensively and show that the model has a

representational structure which can be viewed as a hierar-
chical version of the FRAME model.

Implicit Model for Generation. Apart from the descrip-
tive models, another popular branch of deep generative mod-
els is black-box models which map the latent variables to
signals via a top-down CNN, such as the Generative Ad-
versarial Network (GAN) (Goodfellow et al. 2014) and its
variants. These models have gained remarkable success in
generating realistic images and learn the generator network
with an assistant discriminator network.

Relationship. Unlike the majority of implicit generative
models, which use an auxiliary network to guide the training
of the generator, descriptive models maintain a single model
which simultaneously serves as a descriptor and generator,
though FRAME can be served as an auxiliary and be com-
bined with GAN to facilitate each other (Xie et al. 2016a).
They factually generate samples directly from the input set,
rather than from the latent space, which to a certain extent
ensures that the model can be efficiently trained and produce
stable synthesized results with relatively less model struc-
ture complexity. In this paper, FRAME and its variants as
described above share the same MLE based learning mech-
anism, which follows an analysis-by-synthesis scheme and
works by first generating synthesized samples from the cur-
rent model using Langevin dynamics and then learn the pa-
rameters through observed-synthesized samples’ distance.

Preliminaries
Let P denote the space of Borel probability measures
on any given subset of space X , where ∀x ∈ X ,
x ∈ Rd. Given some sufficient statistics φ : X → R,
scalar α ∈ R and base measure q, the space of distri-
butions satisfying linear constraint is defined as P linα ={
p, f ∈ P : p = fq, f ≥ 0,

∫
pdx = 1, Ep[φ(x)] = α

}
.

The Wasserstein space of order r ∈ [1,∞] is defined as
Pr =

{
p ∈ P :

∫
|x|rdp <∞

}
, where | · |r denotes the

r-norm on X . |X | is the number of elements in domain X .
∇ denotes gradient and∇· denotes the divergence operator.

Markov Random Fields (MRF). MRF belongs to the
family of undirected graphical models, which can be writ-
ten in the Gibbs form as

P (x;θ) =
1

Z(θ)
exp

{
K∑
k=1

θkfk(x)

}
, (1)

where K stands for the number of features {fk}Kk=1 and
Z(·) is the partition function (Koller and Friedman 2009).
Its MLE learning process follows the iteration of the follow-
ing two steps:

I. Update model parameter θ by ascending the gradient of
the log likelihood

∂

∂θk

1

N
logP (x;θ) = EPr [fk (x)]−EP (x;θ) [fk (x)] , (2)

where EPr [fk (x)] and EP (x;θ) [fk (x)] is respectively the
feature response over real data distribution Pr and current
model distribution P (x;θ).
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II. Sample from the current model by parallel MCMC
chains. The sampling process, according to (Younes 1989),
does not necessarily converge at each θt, thus we only estab-
lish one persistent sampler that converges globally in order
to reduce calculus.

FRAME Model. Based on an energy function, FRAME
is defined on the exponential tilting of a reference distribu-
tion q, which is a reformulation of MRF and can be written
as (Lu, Zhu, and Wu 2015):

P (x;θ) =
1

Z(θ)
exp

{
K∑
k=1

∑
x∈X

θkh (〈x,w〉+ b)k

}
q(x),

(3)

where h(x) = max(0,x) is the nonlinear activation func-
tion, 〈x,w〉 is the filtered image or feature map and q (x) =

1
(2πσ2)|X|/2

exp
[
− 1

2σ2 ‖x‖2
]

denotes the Gaussian white
noise model with mean 0 and variance σ2.

KL Discrete Flow. This flow is related to discrete prob-
ability distributions (evolutions discretized in time) with fi-
nite dimensional problems. More precisely, it indicates the
system of n independent Brownian particles {xi}ni=1 ∈ Rd
whose position in Rd is given by a Wiener process satisfies
the following stochastic differential equation (SDE)

dxt = µ(xt)dt+ ε(xt)dBt. (4)

µ is the drift term, ε stands for the diffusion term,B denotes
the Wiener process and subscript t denotes time point. The
empirical measure of those particles is proved to approxi-
mate Eq. 3 by an implicit descent step ρ∗ = argminρ It,
where It is the so called KL discrete flow consists of KL
divergence and energy function Φ : Rd → R.

It = K(ρ | ρt) +

∫
Φdρ. (5)

Particle Perspective of FRAME Model
Although there is a traditional statistical perspective to in-
terpret the FRAME theory (Xie et al. 2016b), we still need
a more stable sampling process to avoid this frequent gen-
eration failure. We revisit the FRAME model from a com-
pletely new particle perspective and prove that its parameter
update mechanism is actually equivalent to the reformula-
tion of KL discrete flow. Its further transformation, a mech-
anism in JKO discrete flow manner which we will next prove
the equivalence on condition of enough sampling time steps,
has ameliorated this unpredictably vanishing phenomenon.
All the proofs in detail are added to Appendix A.

Discrete Flow Driven by KL-divergence
Herein we first introduce FRAME in discrete flow manner.
If we regard the observed signals {xit}ni=1 with the gener-
ating function of Markov property as Brownian particles,
then Theorem 1 points out that Langevin dynamics can be
deduced from KL discrete flow sufficiently and necessarily
through Lemma 1.

Lemma 1. For i.i.d. particles {xit}ni=1 with common gen-
erating function E[eΦ(x;θ)] which has Markov property, the
empirical measure ρt = 1

n

∑n
i=1 δxit satisfies LDP with rate

functional in the form of It.
Theorem 1. Given a base measure q, a clique potential Φ ,
the density of FRAME in Eq. 3 can be obtained sufficiently
and necessarily by solving the following constrained opti-
mization.

ρt+1 = argmin
ρ
K(ρ | ρt),

s.t.

∫
Φdρ =

∫
ΦdPr, ρ0 = q, ∀ρ ∈ P linα .

(6)

Let θ be the Lagrange multiplier integrated in Φ(x;θ)
and ensure E[eΦ(x;θ)] <∞, the optimizing objective can be
reformulated as

Ilt = min
ρ

max
θ

{
K(ρ | ρt) +

∫
Φ(x;θ)dρ−

∫
Φ(x;θ)dPr

}
. (7)

Since ∇x logP (x;θ) = ∇xΦ(x;θ), the SDE iteration
of xt in Eq. 4 can be expressed in the Langevin form as

xt+1 = xt +∇x logP (xt;θ) +
√

2ξt. (8)
By Lemma 1, if we fix θ, the sampling scheme in Eq. 8
approaches the KL discrete flow Ilt , the flow will fluctuate
in case θ varies. θ is updated by calculating ∇θIlt , which
implies θ can dynamically transform the transition map into
desired. The sampling process of FRAME can be summed
up asxt+1 = xt −

(xt
σ2
−∇xΦ(xt;θ)

)
+
√

2ξt

θt+1 = θt +∇θEρt [Φ(x;θ)]−∇θEPr [Φ(x;θ)],
(9)

where −xt/σ2 is the derivative of initial Gaussian noise q.
If we take a close look at the objective function, there is an
adversarial mechanism while updating xt and θt. Regard-
less of fixing θ updating x, or fixing x updating θ, the cor-
rect direction cannot be insured to the optimal of minimizing
K(P (x; θ) | Pr).

Discrete Flow Driven by Wasserstein Metric
Although KL approach is relatively rational in the method-
ology of FRAME, there exists a risk of the KL-vanishing
problem as we have discussed, since the parameter updating
mechanism of MLE may not converge. To avoid this prob-
lem, we introduce the Wasserstein metric to discrete flow,
according to the statement of (Montavon, Müller, and Cu-
turi 2016) that Pθ can be closer from a KL method given
empirical measure ρt, but further from the same measure in
the Wasserstein distance. And (Arjovsky, Chintala, and Bot-
tou 2017) also claims that a better convergence and approx-
imated results can be obtained since Wasserstein metric de-
fines a weaker topology. The conclusion that It ≈ Jt when
time step size τ → 0 rationalizes the proposed method. The
proof of this conclusion in the one-dimensional situation has
shown in (Adams et al. 2011) and in higher-dimensional
has been proved by (Duong, Laschos, and Renger 2013;
Erbar et al. 2015). Here we first provide some background
knowledge about the transformation then we briefly show
the derivation process.
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Fokker-Planck Equation. Under the influence of drifts
and random diffusions, this equation describes the evolution
of the probability density of the particle velocity. Let F be
an integral function and δF/δρ denote its Euler-Lagrange
first variation, the equations are

∂tρ+∇ · (ρν) = 0 (Continuity equation)

ν = −∇δF
δρ

(Variational condition)

ρ(·, 0) = ρ0 ρ0 ∈ L1(Rd), ρ0 ≥ 0.

(10)

Wasserstein Metric. The Benamou-Brenier form of this
metric (Benamou and Brenier 2000) of order r involves
solving a smoothy OT problem over any probabilities µ1 and
µ2 in Pr using the continuity equation showed in Eq. 10 as
follows, where ν belongs to the tangent space of the mani-
fold governed by some potential and associated with curve
ρt.

Wr(µ1, µ2) := min
ρt∈Pr

{
∫ 1

0

∫
Rd
|νt|rdρtdt : ∂tρt

+∇ · (ρt · νt) = 0 | ρ0 = µ1, ρ1 = µ2}.
(11)

JKO Discrete Flow. Following the initial work (Jordan,
Kinderlehrer, and Otto 1998), which shows how to re-
cover Fokker-Planck diffusions of distributions in Eq. 10
when minimizing entropy functionals according to Wasser-
stein metric W2, the JKO discrete flow is applied by our
method to replace the initial KL divergence with the entropic
Wasserstein distanceW2 −H(ρ). The function of the flow
is

Jt =
1

2
W2(ρ, ρt) +

∫
log ρdρ+

∫
Φdρ. (12)

Remark 1. The initial Gaussian term q is left out for con-
venience to facilitate the derivation, otherwise, the entropy
−H(ρ) =

∫
log ρdρ in Eq. 12 should be written as the rela-

tive entropy K(ρ | q).
By Theorem 1, Jt instead of It can be calculated in ap-

proximation and its steady state will approach Eq. 3. Apply-
ing Jt in the manner of dissipation mechanism as a substi-
tute of It allows regarding the diffusion Eq. 4 as the steep-
est descent of clique energy Φ and entropy −H(P ) w.r.t.
Wasserstein metric. Solving such optimization problem us-
ing W is identical to solve the Monge-Kantorovich mass
transference problem.

With Second Mean Value theorem for definite integrals,
we can approximately recover the integral W2 by two ran-
domly interpolated rectangles

W2 (ρt0 , ρt1) := inf
ρt

∫ t1

t0

∫
Rd
|∇Φ|2dρtdt

≈ (ζ − t0)

∫
Rd
|∇Φ|2dρt0 + (t1 − ζ)

∫
Rd
|∇Φ|2dρt1

= −β
(

(1− γ)

∫
Rd
|∇Φ|2dρt0 + γ

∫
Rd
|∇Φ|2dρt1

)
.

(13)

where β = t1 − t0 parameterizes the time piece and γ =
ζ/β (0 ≤ γ ≤ 1) represents random interpolated parameter

since ζ is random. With Eq. 13, the functional derivative of
W2(ρt0 , ρt1) w.r.t. ρt1 is then proportional to

δW2(ρt0 , ρt1)

δρt1
∝ |∇Φ|2, (14)

which is exactly the result of Proposition 8.5.6 in (Ambro-
sio, Gigli, and Savaré 2008). Assume Φ be at least twice
differentiable and treat Eq. 14 as the variational condition
in Eq. 10, then plug Eq. 14 into the continuity equation of
Eq. 10, which turns into a modified Wasserstein gradient
flow in Fokker-Planck form as follows

∂tρ = ∆ρ−∇ ·
(
ρ(∇Φ−∇|∇Φ(x)|2)

)
. (15)

Then the corresponding SDE can be written in Euler-
Maruyama form as

xt+1 = xt +∇Φ(xt)−∇|∇Φ(xt)|2 +
√

2ξt. (16)

By Remark 1, if we reconsider the initial Gaussian term,
the discrete flow of xt+1 in Eq. 16 should be added with
−xt/σ2.
Remark 2. If Φ is the energy function defined in Eq. 3, then
∇|∇Φ(x)|2 = 0.

It’s a direct result since Φ(x,θ) defined in FRAME
only involves inner-product, ReLu (piecewise linear) and
other linear operations, the second derivative is obviously 0.
Therefore, both the time evolution of density ρt in Eq. 15
and sample xt in Eq. 16 will respectively degenerate to
Eq. 10 and Eq. 8. Thus the SDE of xt remains default, i.e.
Langevin form while the gradients of the model parameter
θt doesn’t degenerate.

Alike to the parameterized KL flow Ilt defined in Eq. 7,
we propose a similar form in JKO manner. With Eq. 13 and
Eq. 14, the final optimization objective function J lt can be
formulated as

J lt = min
ρ

max
θ

{
− β

2
(1− γ)

∫
Rd
|∇xΦ(x;θ)|2dρt

− β

2
γ

∫
Rd
|∇xΦ(x;θ)|2dρ+

∫
logρdρ

+

∫
Φ(x;θ)dρ−

∫
Φ(x;θ)dPr

}
.

(17)

With all discussed above, the learning progress of
wFRAME can be constructed by ascending the gradient of
θ, i.e. ∇θJ lt . The calculating steps in formulation are sum-
marized in Eq. 18.

xt+1 = xt −
(xt
σ2
−∇xΦ(xt;θ)

)
+
√

2ξt

θt+1 = θt +∇θEρt [Φ(x;θ)]−∇θEPr [Φ(x;θ)]

− β

2
(1− γ)∇θEρt−1

[|∇xΦ(x;θ)|2]

− β

2
γ∇θEρt [|∇xΦ(x;θ)|2].

(18)

The equation above indicates that the gradient of θ in
Wasserstein manner is being added with some soft gradi-
ent norm constraints between the last two iterations. Such
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Algorithm 1 Persistent Learning and Synthesizing in
Wasserstein FRAME
Input: Training data {yi, i = 1, ..., N}
Output: Synthesized data {xi, i = 1, ...,M}

1: Initialize xi0 ← 0
2: for t = 1 to T do
3: Hobs ← 1

N

∑N
i ∇θtΦ(yi)

4: for j = 1 to L do
5: G ← ∇xt×L+j−1

Φ(xt×L+j−1)

6: S ← xt×L+j−1

σ2

7: Sample Σ← N (0, σ2 · Id)
8: xt×L+j ← xt×L+j−1 + δ2

2 (G − S) + δΣ
9: end for

10: Hsyn ← 1
M

∑M
i ∇θtΦ(xi(t+1)×L)

11: Pt ← 1
M

∑M
i ∇θt |∇x(t+1)×LΦ(xi(t+1)×L)|2

12: Pt−1 ← 1
M

∑M
i ∇θt |∇xt×LΦ(xit×L)|2

13: Sample γ ∼ U [0, 1]
14: Update θt+1 ← θt + λ · (Hobs − Hsyn) −

β
2 ((1− γ)Pt−1 + γPt)

15: end for

gradient norm has the following advantages compared with
the original iteration process (Eq. 9).

First the norm serves as the constant speed geodesic con-
necting ρt with ρt+1 in the manifold spanned by Pθ and Pr,
which may provide a speedup on converge. Next, it can be
interpreted as the soft anti-force against the original gradi-
ent and prevent the whole learning process from vanishing.
Moreover, in experiments, we find it can preserve data inner
structural information. The new learning and synthesizing
process of wFRAME is summarized in Algorithm 1 in de-
tail.

Experiments
In this section, we intensively compare our proposed method
with FRAME from two aspects, one is the confirmatory
experiment of model collapse under varied settings with
respect to the baseline, the other is the quantitative and
qualitative comparison of generated results on extensively
used datasets. In the first stage, as expected, the proposed
wFRAME is verified to be more robust in training and the
synthesized images are of higher quality and fidelity in most
circumstances; In the second stage, we evaluate both models
on the whole datasets. We propose a new metric, response
distance R, which measures the gap between the generated
data distribution and the real data distribution.

Confirmation of Model Collapse
We recognize that under some circumstances FRAME will
suffer serious model collapse issue. Due to MEP, the ex-
pected well-learned FRAME model P ∗θ should achieve min-
imum K(P ∗θ | q), i.e. the minimum amount of transforma-
tions to the reference measure. But such minimization of KL
divergence might be the unpredictable cause of the energy to
0, namely the learned model will degenerate to produce ini-
tial noise instead of the desired minimum modification. So,

in case Φ(x,θ) ≤ 0, the learned model intends to degen-
erate, the images synthesized from FRAME driven by KL
divergence will collapse immediately and the quality may
barely restore. Consequently, the best curve of Φ is slowly
asymptotic to and slightly above 0.

To manifest the superiority of our method over FRAME
compared with the baseline settings, we conduct the valida-
tion experiments on a subset of SUN dataset (Xiao et al.
2010) under different circumstances. Intuitively, a simple
trick to the model collapse issue is to restrict θ in a safe
range, a.k.a. weight clipping. The experimental settings in-
clude respectively altering λ and δ to an insecure range, turn-
ing on or off the weight clipping and varying the inputs di-
mensions. The results are presented in Fig. 3, which shows
the property of a more robust generation compared with the
original strategy or FRAME with weight clipping trick.

Empirical Setup on Common Datasets
We apply wFRAME on several widely used datasets in the
field of generative modeling. As for default experimental
settings, σ = 0.01, β = 60, the number of learning itera-
tions is set to T = 100, the step number L of Langevin sam-
pling within each learning iteration is 50 and the batch size is
N = M = 9. The implementation of Φ(x) in our method is
the first 4 convolutional layers of a pre-learned VGG-16 (Si-
monyan and Zisserman 2014). Input shape varies by datasets
and is specified following. The hyper-parameters appear in
Algorithm 1 differs on each dataset in order to achieve the
best results. As for FRAME we use default settings in (Lu,
Zhu, and Wu 2015).

CelebA (Liu et al. 2015) and LSUN-Bedroom (Yu et al.
2015) images are cropped and resized to 64 × 64. we set
λ = 1e−3 in both datasets, δ = 0.2 in CelebA and δ = 0.15
in LSUN-Bedroom. The visualizations of two methods are
exhibited in Fig. 2.

CIFAR-10 (Krizhevsky and Hinton 2009) includes var-
ious categories and we learn both algorithms conditioned

Figure 2: Comparison on LSUN-Bedroom and CelebA,
where the first row is synthesized from FRAME the second
is from wFRAME. More visual results have been added to
the Appendix B.
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Algorithms FRAME(64×64) wFRAME(64×64) FRAME(224×224) wFRAME(224×224) 
Default setting: 𝛿𝛿 = 0.112; Weight Clip=False; 𝜆𝜆 = 1𝑒𝑒 − 3; 𝛽𝛽 = 40 

Baseline 
  

  

Weight Clip 
=True   

  

𝜆𝜆 = 3𝑒𝑒 − 3 
  

  

𝜆𝜆 = 5𝑒𝑒 − 3 
  

  

𝜆𝜆 = 1𝑒𝑒 − 2 
  

  

𝛿𝛿 = 0.3 
  

  
 
 
 

Figure 3: The synthesized results under different circumstances.

on the class label. In this experiment, we set δ = 0.15,
λ = 2e−3 and images’ size are of 32 × 32. Numerically
and visually in Fig. 4, 5 and Table 1, the results show great
improvement.

For a fair comparison, two metrics are utilized to evaluate
FRAME and wFRAME. We offer a new metric response dis-
tance to measure the disparity between two distributions ac-
cording to the results sampled out, while the Inception score
is a widely used standard in measuring samples diversity.

Response distance R is defined as

R =
1

K

K∑
k=1

∣∣∣∣∣ 1

N

N∑
i=1

Fk(xi)− 1

M

M∑
i=1

Fk(yi)

∣∣∣∣∣
where Fk denotes the kth filter. The smaller the R is,
the better the generated results will be, since R ∝
maxθEr[F (yi)] − EPθ [F (xi)], which implies that R pro-
vides an approximation of the divergence between the target
data distribution and the generated data distribution. Further-
more, by Eq. 2, the faster R falls the better θ converges.
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Figure 4: The averaged learning curves of response distance
R on CelebA, LSUN-Bedroom and CIFAR-10.

Inception score (IS) is the most widely adopted metric of
generative models, which estimates the diversity of the gen-

erated samples. It uses a network Inception v2 (Szegedy et
al. 2016) pre-trained on ImageNet (Deng et al. 2009) to cap-
ture the classifiable properties of samples. This method has
the drawbacks of neglecting the visual quality of the gener-
ated results and prefers models who generate objects rather
than realistic scene images, but it can still provide essential
diversity information of synthesized samples in evaluating
generative models.

Model Type Name Inception Score
Real Images 11.24±0.11

Implicit Models
DCGAN 6.16±0.07

Improved GAN 4.36±0.05
ALI 5.34±0.05

Descriptive Models

WINN-5CNNs 5.58±0.05
FRAME (wl) 4.95±0.05

FRAME 4.28±0.05
wFRAME (ours,wl) 6.05±0.13

wFRAME (ours) 5.52±0.13

Table 1: Inception score on datasets CIFAR-10 where ’wl’
means training with labels. The IS result of ALI is reported
in (Warde-Farley and Bengio 2016). IS of DCGAN is re-
ported in (Wang and Liu 2016), and the result of Improved
GAN(wl) is reported in (Salimans et al. 2016). WINN’s is
reported in (Lee et al. 2018). In the Descriptive Model plate,
wFRAME outperforms the most methods.

Comparison with GANs
We compare FRAME and wFRAME with GAN models im-
plemented on CIFAR-10 via the Inception score in Table 1.
Most GAN-family models achieve pretty high on this score,
however, our method is a descriptive model instead of an
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Figure 5: Images generated by two algorithms conditioned on labels in CIFAR-10, every three columns are of one class, the
first group is from FRAME and the second is from wFRAME.

implicit model. GANs with high scores perform badly in
descriptive situations, for example, the image reconstruction
task or training on a small amount of data. FRAME can han-
dle most of these situations properly. The performance of
DCGAN in modeling mere few images is presented in Fig. 6
where for equal comparison, we duplicate the input images
several times to the total amount of 10000 to adopt the train-
ing environment of DCGAN. The compared wFRAME is
trained in our own method. The DCGAN’s training proce-
dure is ceased as it converges but still remains collapsed re-
sults.

Input
DCGAN

wFRAME

Figure 6: The first left row is the selected input images from
the SUN dataset, the right first row is the random outputs of
DCGAN, the right last row is the outputs of our method.

Comparison of FRAME and wFRAME
From two aspects, we analyze FRAME and wFRAME as a
summary of the whole experiments conducted above. As ex-
pected, our algorithm is more suitable for synthesizing com-
plex and varied scene images and the resulting images are
apparently more authentic compared with FRAME.

Quality of Generation Improvement. According to our
performances on response distance R, the quality of the
image synthesis is improved. This measurement is corre-
sponding with the iteration learning process of both FRAME
and wFRAME. The learning curves presented in Fig. 4 are
the observations of the overall datasets synthesis. From the
curves can we draw the conclusion that wFRAME converges
better than FRAME. The results of generation on CelebA,
LSUN-Bedroom and CIFAR-10 in Fig. 2 and 5 shows that
even if the training images are relatively aligned with con-

spicuous structural information, or with only simple categor-
ical context information, the images produced by FRAME
are still abundant with motley noise and twisted texture,
while ours are more reasonably mixed, more sensible struc-
tured and bright-colored with less distortion.

Training Steadiness Improvement. Compared with
FRAME as shown in Fig. 1 which illustrates the typical
evolution of generated samples, we found an improvement
in the training steadiness. The generated images are almost
identical at the beginning, however, images produced by
our algorithm are able to be back on track after 30 iterations
while FRAME’s deteriorate. Quantitatively in Fig. 4, the
curves are calculated by averaging across the whole dataset.
wFRAME reaches lower cost on response distance, namely
the direct L1 critic of filter banks between synthesized
samples and target samples is smaller and decreases more
steadily. To be more specific, our algorithm has mostly
solved the model collapse problem of FRAME for it not
only ensures the closeness between the generated samples
and “ground-truth” samples but also stabilizes the learning
phase of the model parameter θ. The three plots clearly
show the quantitative measures are well correlated with
qualitative visualizations of generated samples. In the
absence of collapsing, we attain comparable or even better
results over FRAME.

Conclusion
In this paper, we re-derivatively track the origin of FRAME
from the viewpoint of particle evolution and have discov-
ered the potential factors that may lead to the deterioration
of sample generation and the instability of model training,
i.e, the inherent vanishing problem existing in the minimiza-
tion of KL divergence. Based on this discovery, we pro-
pose wFRAME by reformulating the KL discrete flow in the
FRAME to the JKO scheme, and prove through empirical
examination that it can overcome the above-mentioned de-
ficiencies. The experiments are carried out to demonstrate
the superiority of the proposed wFRAME model and com-
parable results have shown that it can greatly ameliorate the
vanishing issue of FRAME and can produce more visually
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promising results.
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