
Proposal-Free Network for Instance-Level
Object Segmentation

Xiaodan Liang, Liang Lin , Yunchao Wei , Xiaohui Shen, Jianchao Yang, and Shuicheng Yan

Abstract—Instance-level object segmentation is an important yet under-explored task. Most of state-of-the-art methods rely on region

proposal methods to extract candidate segments and then utilize object classification to produce final results. Nonetheless, generating

reliable region proposals itself is a quite challenging and unsolved task. In this work, we propose a Proposal-Free Network (PFN) to

address the instance-level object segmentation problem, which outputs the numbers of instances of different categories and the

pixel-level information on i) the coordinates of the instance bounding box each pixel belongs to, and ii) the confidences of different

categories for each pixel, based on pixel-to-pixel deep convolutional neural network. All the outputs together, by using any off-the-shelf

clustering method for simple post-processing, can naturally generate the ultimate instance-level object segmentation results. The

whole PFN can be easily trained without the requirement of a proposal generation stage. Extensive evaluations on the challenging

PASCAL VOC 2012 semantic segmentation benchmark demonstrate the effectiveness of the proposed PFN solution without relying on

any proposal generation methods.

Index Terms—Instance-level object segmentation, semantic segmentation, region-proposal-free, convolutional neural network

Ç

1 INTRODUCTION

OVER the past few decades, two of the most popular
object recognition tasks, object detection and semantic

segmentation, have received a lot of attention. The goal of
object detection is to accurately predict the semantic cate-
gory and the bounding box location for each object instance,
which is a quite coarse localization. Different from object
detection, the semantic segmentation task aims to assign the
pixel-wise labels for each image but provides no indication
of the object instances, such as the number of object instan-
ces and precise semantic region for any particular instance.
In this work, we follow some of the recent works [1], [2], [3]
and attempt to solve a more challenging task, instance-level
object segmentation, which predicts the segmentation mask
for each instance of each category. We suggest that the next
generation of object recognition should provide a richer and

more detailed parsing for each image by labeling each object
instance with an accurate pixel-wise segmentation mask.
This is particularly important for real-world applications
such as image captioning, image retrieval, 3-D navigation
and driver assistance, where describing a scene with
detailed individual instance regions is potentially more
informative than describing roughly with located object
detections. However, instance-level object segmentation is
very challenging due to high occlusion, diverse shape defor-
mation and appearance patterns, obscured boundaries with
respect to other instances and background clutters in real-
world scenes. In addition, the exact number of instances of
each category within an image is dramatically different.

Recently, tremendous advances in semantic segmenta-
tion [4], [5] and object detection [6], [7], [8] have been made
relying on deep convolutional neural networks (DCNN) [9],
[10]. Some previous works have been proposed to address
instance-level object segmentation. In general, these previ-
ous methods take complicated pre-processing such as bot-
tom-up region proposal generation [11], [12], [13], [14] or
post-processing such as graphical inference as the requisite.
Specifically, the recent two approaches, SDS [1] and the one
proposed by Chen et al. [2], use the region proposal methods
to first generate potential region proposals and then classify
on these regions. After classification, post-processing such as
non-maximum suppression (NMS) or Graph-cut inference,
is used to refine the regions, eliminate duplicates and rescore
these regions. Note that most region proposal techni-
ques [11], [12], [14] typically generate thousands of potential
regions, and take more than one second per image. Depend-
ing on the region proposal techniques, the common pipelines
are often trained using several independent stages. These
separate pipelines rely on independent techniques at each
stage and the targets of the stages are significantly different.

� X. Liang and L. Lin are with the School of Data and Computer Science,
Sun Yat-sen University, Guangzhou, Guangdong Province 510275, China
and also with Engineering Research Center for Advanced Computing
Engineering Software of Ministry of Education, China.
E-mail: xdliang328@gmail.com, linliang@ieee.org.

� Y. Wei is with the Institute of Information Science, Beijing Jiaotong
University, Beijing 100044, China. E-mail: wychao1987@gmail.com.

� X. Shen is with Adobe Research, San Jose, CA 95110-2704.
E-mail: xshen@adobe.com.

� J. Yang is with Snapchat Research, Venice, CA 90291.
E-mail: jiayang@adobe.com.

� S. Yan is with the Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 119077.
E-mail: eleyans@nus.edu.sg.

Manuscript received 4 Sept. 2015; revised 17 Oct. 2017; accepted 14 Nov.
2017. Date of publication 22 Nov. 2017; date of current version 1 Nov. 2018.
(Corresponding author: Liang Lin.)
Recommended for acceptance by D. Ramanan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2017.2775623

2978 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 12, DECEMBER 2018

0162-8828� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2248-3755
https://orcid.org/0000-0003-2248-3755
https://orcid.org/0000-0003-2248-3755
https://orcid.org/0000-0003-2248-3755
https://orcid.org/0000-0003-2248-3755
https://orcid.org/0000-0002-2812-8781
https://orcid.org/0000-0002-2812-8781
https://orcid.org/0000-0002-2812-8781
https://orcid.org/0000-0002-2812-8781
https://orcid.org/0000-0002-2812-8781
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

For example, the region proposal methods try to maximize
region recalls while the classification optimizes for single
class accuracy.

In this paper, we propose a simple yet effective Proposal-
Free Network (PFN) for solving the instance-level segmen-
tation task. The motivation of the proposed network is illus-
trated in Fig. 1. The pixels belonging to the same instance
can be naturally clustered as an instance. For simplicity, we
use the term instance locations to denote the coordinates of
the bounding box of the instance each pixel belongs to. We
reformulate the instance-level segmentation task in the pro-
posed network by directly inferring the regions of object
instances from the global image context. The proposed PFN
framework is shown in Fig. 2. To solve the semantic
instance-level object segmentation task, three sub-tasks are
addressed: category-level segmentation, instance location
prediction for each pixel, and number prediction of instan-
ces for each category in the entire image.

First, the convolutional network is fine tuned based on
the pre-trained VGG classification net [10] to predict the cat-
egory-level segmentation. In this way, the domain-specific
feature representation on semantic segmentation for each
pixel can be learned.

Second, by fine-tuning on the category-level segmentation
network, the instance locations for each pixel as well as the
number of instances of each category are simultaneously pre-
dicted by the further updated instance-level segmentation
network. The prediction target for each pixel is called as
instance locations, which consists of four coordinates offsets
of each pixel with respect to that of the top left corner and the
bottom right corner of the bounding box of each instance.
The precise prediction of instance locations is very crucial for
segmenting the heavily occluded instances. To obtain more
precise instance location prediction for each pixel, multi-
scale prediction streams with individual supervision (i.e.,
multi-loss) are appended to jointly encode local details from
the early, fine layers and the global semantic information
from the deep, coarse layers. The feature maps from deep
layers often focus on the global structure, but are insensitive
to local boundaries and spatial displacement. In contrast, the
feature maps from early layers can sense better the local
detailed boundaries. The fusion layer combining multi-scale
predictions is utilized before the final prediction layer.

Third, the number of instances of all categories are
described with a real number vector and also regressed with
euclidean loss in the instance-level segmentation network.

Fig. 1. Exemplar instance-level object segmentation results. Different colors indicate the different object instances for each category. To better show
the predicted locations of each instance, we plot velocity vectors starting from each pixel to its corresponding predicted instance center as shown by
the arrow. Note that the pixels predicting similar object centers can be directly collected as one instance region. Best viewed in color.

Fig. 2. An overview of our proposal-free network. The targets of our PFN include the number of instances of all categories, category-level confiden-
ces for each pixel and the coordinates of the instance bounding box that each pixel belongs to. The off-the-self clustering method can be utilized to
generate final instance-level segmentation results.

LIANG ET AL.: PROPOSAL-FREE NETWORK FOR INSTANCE-LEVEL OBJECT SEGMENTATION 2979

Note that the number of instances embraces the category-
level information (whether the instance of a specific category
appears or not) and instance-level information (how many
object instances appear for a specific category). Thus, the
intermediate feature maps from the category-level segmen-
tation network and the instance-level feature maps after the
fusion layer from the instance-level segmentation network
are concatenated together, which can be utilized to jointly
predict the number of instances.

In the testing stage, the number of instances and pixel-
level information including category-level confidences and
coordinates of the instance bounding box each pixel belongs
to, can together help generate the final instance-level seg-
mentation results after clustering. Note that any off-the-self
clustering method can be used for this simple post-process-
ing, and the predicted number of instances specifies the
exact number of clusters for the corresponding category.

Comprehensive evaluations and comparisons on the
PASCAL VOC 2012 segmentation benchmark well demon-
strate that the proposed proposal-free network yields
results that significantly surpass all previous published
methods. It should be noted that all previous works utilize
the extra region proposal extraction algorithms to generate
the region candidates and then feed these candidates into a
classification network and complex post-processing steps.
Instead, our PFN generates the instance-level segmentation
results in a much simple and more straightforward way.

2 RELATED WORK

Deep convolutional neural networks have achieved great
success in object classification [9], [10], [15], [16], object
detection [6], [7], [17] and object segmentation [1], [4], [18],
[19]. In this section, we discuss the most relevant work on
object detection, semantic segmentation and instance-level
object segmentation.

Object Detection. Object detection aims to localize and rec-
ognize every object instance with a bounding box. The
detection pipelines [6], [7], [20], [21] generally start from
extracting a set of box proposals from input images and
then identify the objects using classifiers or localizers. The
box proposals are extracted either by the hand-crafted pipe-
lines such as selective search [12], EdgeBox [13] or the
designed convolutional neural network such as deep Multi-
Box [22] or region proposal network [6]. For instance, the
region proposal network [6] simultaneously predicts object
bounds and objectiveness scores to generate a batch of pro-
posals and then uses the Fast R-CNN [23] for detection. Dif-
ferent from these prior work, Redmon et al. [7] first
proposed a You Only Look Once (YOLO) pipeline that pre-
dicts bounding boxes and class probabilities directly from
full images in one evaluation. Our work shares some simi-
larities with YOLO, where the region proposal generation is
discarded. However, our PFN is based on the intuition that
the pixels inferring similar instance locations can be directly
collected as a single instance region. The pixel-wise instance
locations and the number of instances of each category are
simultaneously optimized in one network. Finally, the fine-
grained segmentation mask of each instance can be pro-
duced with our PFN instead of the coarse outputs depicted
by the bounding boxes from YOLO.

Semantic Segmentation. The most recent progress in object
segmentation [4], [18] was achieved by fine-tuning the pre-
trained classification network with the ground-truth cate-
gory-level masks. For instance, Dai et al. [4] estimated seg-
mentation masks for training by extracting region proposals
from the annotated boxes. Papandreou et al. [18] utilized
the foreground/background segmentation methods to gen-
erate segmentation masks, and conditional random field
inference is used to refine the segmentation results. Zheng
et al. [5] formulated the conditional random fields as recur-
rent neural networks for dense semantic prediction. Differ-
ent from the category-level prediction by these previous
methods, our PFN targets at predicting the instance-level
object segmentation that provides more powerful and infor-
mative predictions to enable the real-world vision applica-
tions. These previous pipelines using the pixel-wise cross-
entropy loss for semantic segmentation cannot be directly
utilized for instance-level segmentation because different
instances are often distinguished by their spatial transla-
tions, and the output size of prediction maps cannot be con-
strained to a pre-determined number due to the uncertain
maximal number of instances of all categories in all images.

Instance-Level Object Segmentation. Recently several
approaches which tackle the instance-level object segmenta-
tion [1], [2], [3], [24], [25], [26], [27], [28], [29] have emerged.
Most of the prior works utilize the region proposal methods
as the requisite. For example, Hariharan et al. [1] classified
region proposals using features extracted from both the
bounding box and the region foreground with a jointly
trained CNN. Similar to [1], Chen et al. [2] proposed to use
the category-specific reasoning and shape prediction
through exemplars to further refine the results after classify-
ing the proposals. Dai et al. [28] trained to classify the
region-level feature maps that are masked out based on
region proposals. [24] designed a higher-order loss function
to make an optimal cut in the hierarchical segmentation tree
based on the region features. Other works have resorted to
the object detection task to initialize the instance segmenta-
tion and the complex post-processing such as integer qua-
dratic program [25] and probabilistic model [30] to further
determine the instance segments. Hariharan et al. [26]
defined the hypercolumn at a pixel as the vector of activa-
tions of all CNN units above that pixel to allowmore precise
localization. Dai et al. [27] proposed to use multi-task net-
work cascades for differentiating instances, estimating
masks, and categorizing objects. Ren et al. [29] introduced
an integrated recurrent network with an attention mecha-
nism, which sequentially employs a box proposal network,
a segmentation network and a scoring network to obtain
instance-level predictions.

These prior works based on region proposals are
very complicated due to several pre-processing and post-
processing steps. In addition, combining independent steps
is not an optimal solution because the local and global con-
text information cannot be incorporated together for infer-
ring. In contrast, our PFN directly predicts pixel-wise
instance location maps and uses a simple clustering tech-
nique to generate instance-level segmentation results. In
particular, Zhang et al. [3] predicted depth-ordered instance
labels of the image patch and then combined predictions
into the final labeling via the Markov Random Field

2980 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 12, DECEMBER 2018

inference. However, the number of instances to be present
in each image patch is limited to be smaller than 6 (includ-
ing background), which makes it not scalable for real-world
images with an arbitrary number of possible object instan-
ces. Instead, our network predicts the number of instances
in a totally data-driven way by the trained network, which
can be naturally scalable and easily extended to other
instance-level recognition tasks.

Recently, more research interests have been attracted to
develop kinds of “proposal-free”-like pipelines [31], [32],
[33], [34] that aim to generate instance-level object segmen-
tation without relying on any proposal generation. Note
that all these methods were proposed after the first submis-
sion of this paper. For example, Uhrig et al. [31] proposed to
produce a semantic segmentation and instance-aware angle
map that encoding the instance centroids. They also used
ground-truth pixel-wise depth labeling for training.
Bai et al. [32] learned the energy map of the watershed
transform with the assumption that instances naturally cor-
respond to basins in the energy map. [33] employed both
semantic segmentation and object boundary prediction to
separate instances. Liu et al. [34] trained sequential group-
ing networks to progressively group instance segments.

3 PROPOSAL-FREE NETWORK

Fig. 3 shows the detailed network architecture of PFN. The
category-level segmentation, instance locations for each
pixel and the number of instances of all categories are taken
as three targets during the PFN training.

3.1 Category-Level Segmentation Prediction

The proposed PFN is fine-tuned based on the publicly avail-
able pre-trained VGG 16-layer classification network [10] for

the dense category-level segmentation task. We utilize the
“DeepLab-CRF-LargeFOV” network structure as the basic
presented in [35] due to its leading accuracy and competi-
tive efficiency. The important convoluational filters are
shown in the top row of Fig. 3, and other intermediate
convolutional layers can be found in the published model
file [35]. The reception field of the “DeepLab-CRF-
LargeFOV” architecture is 224� 224 with zero-padding,
which enables effective prediction of the subsequent
instance locations that requires the global image context for
reasoning. For category-level segmentation, the 1000-way
ImageNet classifier in the last layer of VGG-16 is replaced
with C þ 1 confidence maps, where C is the number of cate-
gories. The loss function is the sum of pixel-wise cross-
entropy in terms of the confidence maps (down-sampled by
8 compared to the original image). During testing, the fully-
connected conditional random fields [35] are employed to
generate more smooth and accurate segmentation maps.

This fine-tuned category-level network can generate
semantic segmentation masks for the subsequent instance-
level segmentation for each input image. Then the instance-
level network is fine-tuned based on the category-level
network, where the C þ 1 category-level predictions are
eliminated. Note that we use two separate stages from opti-
mizing category-level segmentation and instance-level seg-
mentation. The intuition is that category-level segmentation
prefers the prediction that is insensitive for different object
instances of a specific category while instance-level segmen-
tation aims to distinguish between individual instances.
The motivations of two targets are significantly different.
Therefore the convolutional feature maps, especially for the
latter convolutional layers, cannot be shared. We verify
the superiority of subsequently fine-tuning two separate

Fig. 3. The detailed network architecture and parameter setting of PFN. First, the category-level segmentation network is fine-tuned based on the
pre-trained VGG-16 classification network. The cross-entropy loss is used for optimization. Second, the instance-level segmentation network that
simultaneously predicts the number of instances of all categories and the instance location vector for each pixel is further fine-tuned. The multi-scale
prediction streams (with different resolution and reception fields) are appended to the intermediate convolutional layers, and are then fused to gener-
ate ultimate instance location predictions. The regression loss is used during training. To predict the number of instances, the convolutional feature
maps and the instance location maps are concatenated together for inference, and the euclidean loss is used. The two losses from two targets are
jointly optimized for the whole network training.

LIANG ET AL.: PROPOSAL-FREE NETWORK FOR INSTANCE-LEVEL OBJECT SEGMENTATION 2981

networks for two tasks in the experiment. In addition, the
performance on instance-level segmentation is much better
when fine-tuning the instance-level network based on the
category-level segmentation network compared to the origi-
nal VGG-16. This may be because the category-level seg-
mentation can provide a better start for parameter learning
where the basic segmentation-aware convolutional filters
have already been well learned.

3.2 Instance-Level Segmentation Prediction

The instance-level segmentation network takes an image
with an arbitrary size as the input and outputs the corre-
sponding instance locations for all the pixels and the num-
ber of instances belonging to each category.

Pixel-Wise Instance Location Prediction. For each image,
the instance location vector of each pixel is defined as the
bounding box information of its corresponding object
instance that contains the pixel. The object instance s of a
specific category can be identified by its top-left corner
ðlx; lyÞ and the bottom-right corner ðrx; ryÞ of its surrounding
bounding box, as illustrated in Fig. 2. For each pixel i with
coordinates ðpxi ; pyi Þ belonging to the object instance s, we
propose to predict the offsets between the coordinates of
each pixel and the coordinates of its corresponding bound-
ing box instead of directly predicting the coordinates of
bounding boxes. The intuition is that due to various spatial
displacements of objects in each image, the coordinates are
more difficult to be predicted than the offsets between each
pixel position and its corresponding object locations. The
ground-truth instance location vector for each pixel is thus

defined as the offsets ti ¼ ðl
x
s�px

i
ws

;
l
y
s�p

y
i

hs
;
rxs�px

i
ws

;
r
y
s�p

y
i

hs
Þ, where ws

and hs are the width and the height of the object instance s,
respectively. With these definitions, we minimize an objec-
tive function to optimize the instance location which is
inspired by the one used for Fast R-CNN [23]. Let ti denote
the predicted location vector and t�i the ground-truth loca-
tion vector for each pixel i, respectively. The loss function ‘o

can be defined as

‘oðti; t�i Þ ¼ ½k�i � 1�Rðti � t�i Þ; (1)

where k�i 2 f0; 1; 2; . . . ; Cg is the semantic label for the pixel
i, and C is the total number of categories. R is the robust
loss function (smooth-L1) in [23]. The term ½k�i � 1�Rðti � t�i Þ
means the regression loss that is activated only for the fore-
ground pixels and disabled for background pixels. The rea-
son of using this filtered loss is that predicting the instance
locations is only possible for foreground pixels which defi-
nitely belong to a specific instance.

Following the recent results of [35], we have also utilized
the multi-scale prediction to increase the instance location
prediction accuracy. As illustrated in Fig. 3, the five multi-
scale prediction streams are attached to the input image, the
output of each of the first three max pooling layers and the
last convolutional layer (fc7) in the category-level segmenta-
tion network. For each stream, two layers (first layer: 128
convolutional filters, second layer: 130 convolutional filters)
and deep supervision (i.e., individual loss for each stream)
are utilized. The spatial padding for each convolutional
layer is set so that the spatial resolution of feature maps is

preserved. The multi-scale predictions from five streams are
accordingly down-sampled and then concatenated to gener-
ate the fused feature maps (as the fusing layer in Fig. 3).
Then the 1� 1 convolutional filters are used to generate the
final pixel-wise predictions. It should be noted that multi-
scale predictions are with different spatial resolution and
inferred under different reception fields. In this way, the
fine local details (e.g., boundaries and local consistency)
captured by early layers with higher resolution and the
high-level semantic information from subsequent layers
with lower resolution can jointly contribute to the final
prediction.

Consider that the feature maps qv of the vth convolu-
tional layer are a three-dimensional array of size
hv � wv � dv, where hv and wv are spatial dimensions and dv

is the number of channels. The outputs qvþ1
ix;iy

at the location
ðix; iyÞ in the next layer can be computed by

xvþ1
ix;iy

¼ fbðfqvixþdix ;ixþdiy
g0�dix ;diy�bÞ; (2)

where b is the kernel size and fb is the convolutional filters.
In PFN, qvþ1 represents the final instance location prediction
maps with four channels.

Suppose we have M ¼ 5 multi-scale prediction streams,
and each stream is associated with a regression loss
‘omð	Þ;m 2 f1; 2; . . . ;Mg. For each image, the loss for the final
prediction maps after fusing is denoted as ‘ofuseð	Þ. The over-
all loss function for predicting pixel-wise instance locations
then becomes

Loðt; t�Þ ¼
XM
m¼1

X
i

‘omðti; t�i Þ þ
X
i

‘ofuseðti; t�i Þ; (3)

where t ¼ ftig and t� ¼ ft�i g represent the predicted
instance locations and ground-truth instance locations of all
pixels, respectively.

Number Prediction of Instances. Another sub-task of PFN is
to predict the numbers of instances of all categories. The
number of instances of the input image that account for the
object instances of each category naturally contains the cate-
gory-level information and instance-level information. As
shown in Fig. 3, the feature maps of the last convolutional
layer from the previously trained category-level segmenta-
tion network and the instance location predictions are com-
bined together to form the fused feature maps with 1024þ 4
channels. These fused feature maps are then convolved with
3� 3 convolutional filters and down-sampled with stride 2
to obtain the 128 feature maps. Then the fully-connected
layer with 1,024 outputs is performed to generate the final
C-dimensional number predictionmaps of instances.

Given an input image I, we denote the number vector of
instances of all C categories as g ¼ ½g1; g2; . . . ; gC �, where
gc; c 2 f1; 2; . . . ; Cg represents the number of object instan-
ces of each category appearing in the image. Let g denote
the predicted number vector of instances and g� represent
the ground-truth number vector of instances for each image,
respectively. The loss function Ln is defined as

Lnðg; g�Þ ¼ 1

C

XC
c¼1

jjgc � g�c jj2: (4)

2982 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 12, DECEMBER 2018

Network Training. To train the whole instance-level net-
work, the over loss function L for each image is actuated as

Lðt; t�; g; g�Þ ¼ �Loðt; t�Þ þ Lnðg; g�Þ: (5)

The parameter � is empirically set to 10, which means the
bias towards better pixel-wise instance location prediction.
In this way, the number predictions of instances and pixel-
wise instance location predictions are jointly optimized in a
unified network. The two different targets can benefit each
other by learning more robust and discriminative shared
convolutional filters. We borrow the convolutional filters
except for those of the last prediction layer in the previously
trained category-level network to initialize the parameters
of the instance-level network. We randomly initialize all
newly added layers by drawing weights from a zero-mean
Gaussian distribution with standard deviation 0.01. The net-
work can be trained by back-propagation and stochastic
gradient descent (SGD) [36].

3.3 Testing Stage

During testing, we first feed the input image I into the
category-level segmentation network to obtain category-
level segmentation results, and then pass the input image
into the instance-level network to get the number vector g of
instances and the pixel-wise instance location predictions t.

Then the clustering based on all the predicted instance
locations t of all the pixels can be performed. We separately
cluster the predicted instance locations for each category,
which can be obtained by filtering the t with the category-
level segmentation result p, and the predicted numbers of
instances of all categories g indicate the expected numbers
of clusters used for spectral clustering. The simple normal-
ized spectral clustering [37] is utilized due to its simplicity
and effectiveness. For each category c, the similarity matrix
W is constructed by calculating the similarities between
any pair of pixels that belong to the resulting segmentation
mask pc. Let the spatial coordinate vectors for the pixel i
and j be qi ¼ ½ix; iy� and qj ¼ ½jx; jy�, respectively. The ti and
qi vectors are all normalized by their corresponding maxi-
mum. The Gaussian similarity function wi;j for each pair
ði; jÞ is computed as

wi;j ¼ exp
�jjti � tjjj2=jtij

2s2

 !
þ exp

�jjqi � qjjj2=jqij
2s2

 !
; (6)

where jtij denotes the feature dimension for the vector ti,
which equals 4 (the coordinates of top-left corner and bot-
tom-right corner), and jqij indicates the feature dimension
of qi, which equals 2. During clustering, we simply connect
all pixels in the same segmentation mask of a specific cate-
gory with positive similarity because the local neighboring
relationships can be captured by the second term in
Eqn. (6). We simply set s ¼ 0:5 for all images. To make the
clustering results robust to the initialization of seeds during
the k-means step of spectral clustering, we randomly select
the seeds twenty times by balancing the accuracy and
computational cost. Then the clustering result with maximal
average within-cluster similarities for all clusters is selected
as the final result.

Note that inconsistent global image category predictions
from number vectors of instances and pixel-wise category-
level segmentation are often observed. For example, as illus-
trated in the first row of Fig. 4, the number prediction of
instances infers 4 person instances and 2 bicycle instances
while the category-level segmentation indicates three catego-
ries (i.e., person, bicycle, car) appearing in the image. Thus it
is necessary to keep the predicted global image category to
be consistent between the number prediction of instances
and the pixel-wise segmentation. Note that the number pre-
diction task of instances is much simpler than pixel-wise
semantic segmentation due to dense pixel-wise optimization
targets. We can thus use the number prediction of instances
to refine the produced category-level segmentation.

The object category from the number prediction of
instances can be easily obtained by thresholding the number
vector of instances by t ¼ 0:5, which means, if the predicted
number of instances of a specific category c is larger than t,
the category c is regarded as the true label. Specifically, two
strategies are adopted: first, if more than one category is
predicted to have at least one instance in the image, any pix-
els assigned with all other categories will be re-labeled as
the background, as illustrated in the first row of Fig. 4; sec-
ond, if only one category is inferred from the number pre-
diction of instances, pixels labeled with other object

Fig. 4. The exemplar segmentation results by refining the category-level segmentation with the predicted numbers of instances. For each image, we
show their classification results inferred from category-level segmentation and the predicted numbers of instances in the left. In the first row, the refin-
ing strategy is to convert the inconsistent predicted labels into background. In the second row, the refining strategy is to convert the wrongly predicted
labels in category-level segmentation to the ones predicted in the number vector of instances. Different colors indicate different object instances. Bet-
ter viewed in zoomed-in color pdf file.

LIANG ET AL.: PROPOSAL-FREE NETWORK FOR INSTANCE-LEVEL OBJECT SEGMENTATION 2983

categories (excluding background pixels) in the semantic
segmentation mask will be totally converted into the
predicted ones, as illustrated in the second row of Fig. 4.
The refined category-level segmentation masks are used to
further generate instance-level segments.

In addition, the predicted segmentation result is not per-
fect due to the noisy background pixels. The instance loca-
tions of pixels belonging to one object have much higher
possibilities to form a cluster while the predictions of back-
ground pixels are often quite random, forming very small
clusters. Therefore, we experimentally discard those clus-
ters, whose numbers of pixels are less than 0.1 percent of
the pixels in the segmentation mask. Finally, after obtaining
the final clustering result for each category, the instance-
level object segmentation result can be easily obtained by
combining all the clustering results of all categories. Exam-
ple results after constraining the number of pixels of each
clustered instance region are shown in Fig. 5.

4 EXPERIMENTS

4.1 Experimental Settings

Dataset and Evaluation Metrics. The proposed PFN is exten-
sively evaluated on the PASCAL VOC 2012 validation seg-
mentation benchmark [38]. We compare our method with
four state-of-the-art algorithms: SDS [1], CFM [28], Chen
et al. [2] and MNC [27]. Following the baselines [1], [2], [26],
the instance-level segmentation annotations from SBD data-
set [39] are used when training all variants of the PFN, since
VOC 2012 did not provide all annotations of the training set
for instance-level segmentation. The training set for the seg-
mentation task on VOC 2012 is used for training all the
models and we use the 1,449 images in the validation set for
testing. Note that, both SBD dataset [39] and VOC 2012 [38]
provide annotations of instance-level object segmentation
for the 1,449 images on VOC 2012 validation set. As com-
pared in [2], VOC 2012 provides very elaborated segmenta-
tion annotations (e.g., carefully labeled skeletons for a
bicycle) for each instance while SBD just gives the whole
region (e.g., a rough region for a bicycle). Since Chen
et al. [2] re-evaluated the performance of the method in [1]
with the annotations from VOC 2012 validation set, most of
our evaluations are thus performed with respect to the
annotations from VOC 2012 [38] when comparing with [1],

[2]. For comparison with HC [26], CFM [28] and MNC [27]
that use 5,623 images for training and 5,732 for testing
according to VOC 2012 detection split, we also evaluate the
performance of PFN with the annotations from SBD data-
set [39]. For fair comparison with state-of-the-art instance
level segmentation methods, APr and APr

vol metrics are
used following SDS [1]. The APr metric measures the aver-
age precision under 0.5 IoU overlap with ground-truth seg-
mentation. Hariharan et al. [2] proposed to vary IoU scores
from 0.1 to 0.9 to show the performance for different applica-
tions. The APr

vol metric calculates the mean of APr under all
IoU scores. Note that two baselines fine-tune the networks
based on Alexnet architecture [40]. For fair comparison,
we also report results based on the Alexnet architecture [40].
Our PFN directly calculated the mAPr between the
clustered instance-level object segments with the ground-
truth results.

Training Strategies. All networks in our experiments
are trained and tested based on the published DeepLab
code [18], which is implemented based on the publicly
available Caffe platform [41] on a single NVIDIA GeForce
Titan GPU with 6 GB memory. We first train the category-
level segmentation network, which is then used to initialize
our instance-level segmentation network for fine tuning.
For both training stages, we randomly initialize all new
layers by drawing weights from a zero-mean Gaussian dis-
tribution with standard deviation 0.01. We use mini-batch
size of 8 images, initial learning rate of 0.001 for pre-trained
layers, and 0.01 for newly added layers in all our experi-
ments. We decrease the learning rate to 1/10 of the previous
one after 20 epochs and train the two networks for roughly
60 epochs one after the other. The momentum and
the weight decay are set as 0.9 and 0.0005, respectively.
The same training setting is utilized for all our compared
network variants.

We evaluate the testing time by averaging the running
time for images on the VOC 2012 validation set on NVIDIA
GeForce Titan GPU and Intel Core i7-4930KCPU@3.40GHZ.
Our PFN can rapidly process one 300� 500 image in about
one second, which includes 0.4 second for two network pre-
diction and 0.6 second for clustering on average. This com-
pares much favorably to other state-of-the-art approaches, as
the current state-of-the-art methods [1], [2] rely on region
proposal pre-processing and complex post-processing

Fig. 5. Comparison of segmentation results by constraining the number of pixels of each clustered object instance. The version without size
constraints wrongly clusters two neighboring instances as one instance while our full version can precisely separate them.

2984 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 12, DECEMBER 2018

steps: [1] takes about 40 seconds while [2] is excepted to be
more expensive than [1] because more complex top-down
category specific reasoning and shape prediction are further
employed for inference based on [1].

4.2 Results and Comparisons

In the first training stage, we train a category-level segmen-
tation network using the same architecture as “DeepLab-
CRF-LargeFOV” in [18]. By evaluating the pixel-wise seg-
mentation in terms of pixel intersection-over-union (IOU)
averaged across 21 classes, we achieve 67.53 percent on cate-
gory-level segmentation task on the PASCAL VOC 2012 val-
idation set [38], which is only slightly inferior to 67.64
percent reported in [18].

Table 1 provides the results of SDS [1], HC [26], CFM [28],
MNC [27] and our proposed PFN for instance-level segmen-
tation evaluation with respect to the annotations from
SBD dataset [39]. HC [26] used the “hypercolumn” feature
representation for each pixel to combine outputs of all units
above at all layers of the CNN in order to incorporate rich
information. CFM [28] proposed to segment out feature
maps via region proposals. MNC [27] sequentially predicts
bounding boxes of objects, binary masks and instance
segments in a cascaded network architecture. However, dif-
ferent from the feature enhancement in HC [26], feature
masking in CFM [28] and cascaded prediction in MNC [27],
our PFN directly resolves the pixel grouping of each instance
by enforcing that pixels belonging to same instances
have coherent representations and predictions of instance
locations. The proposed PFN outperforms the previous
approaches by a significant margin, averagely 14.7 percent
better than SDS [1], 4.4 percent better than HC [26], 3.7 per-
cent than CFM [28] and 0.9 percent than MNC [27] in terms
of mean APr metric at 0.5 IoU score. When evaluating on
0.7 IoU score, a 2.8 percent improvement in APr is obtained
by comparing our PFN with HC [26]. We can only compare

the results evaluated on 0.5 to 0.7 IoU scores, since no other
results evaluated on higher IoU scores are reported for the
baselines. Previous methods [28], [26] employed two sepa-
rated steps for object proposal generation and object recogni-
tion, respectively. As a result, the inaccurate proposals may
severely degenerate the final segmentation performance. In
addition, the separate processing steps obstruct introducing
the elaborately crafted neural network tricks (e.g., hypercol-
umn and convolutional feature masks) for refining object
masks. On the contrary, our PFN directly optimizes the final
structured outputs that correspond to the target instance-
level object segmentation. The intermediate convolutional
features in our framework are learned to simultaneously
exploit the region grouping of different object instances and
the semantic object categorization. The unified joint optimi-
zation of our PFN is the key to achieving better segmentation
and categorization performance.

Tables 2 and 5 present the comparison of the proposed
PFN with two state-of-the-art methods [2], [39] using APr

metric at IoU score 0.5 and 0.6 to 0.9, respectively. We
directly use their published results on PASCAL VOC 2012
validation set for fair comparison. All results of the state-of-
the-art methods were reported in [2] which re-evaluated the
performance of [39] using VOC 2012 validation set. For fair
comparison, we also report the results of PFN using the
Alexnet architecture [40] as used in two baselines [2], [39],
i.e., “PFN Alexnet”. Following the strategy presented
in [18], we convert the fully connected layers in Alexnet to
fully convolutional layers, and all other settings are the
same as those used in “PFN”. The results of [39] and [2]
achieve 43.8 and 46.3 percent in APr metric at IoU 0.5.
Meanwhile, our “PFN Alexnet” is significantly superior
over the two baselines, i.e., 53.9 percent versus 43.8 percent
[39] and 46.3 percent [2] in APr metric. Further detailed
comparisons in APr over 20 classes at IoU scores 0.6 to 0.9
are listed in Table 5. By utilizing the more powerful VGG-16
network architecture, our PFN can substantially improve
the performance and outperform these two baselines by
over 18.5 percent for SDS [39] and 16.0 percent for the
method of Chen et al. [2]. PFN also gives huge boosts in
APr metrics at 0.6 to 0.9 IoU scores, as reported in Table 5.
For example, when evaluating at 0.9 IoU score where the
localization accuracy for object instances is strictly required,
the two baselines achieve 0.9 percent for SDS [39] and 2.6
percent for [2] while PFN obtains 17.1 percent. This verifies
the effectiveness of our PFN although it does not require
extra region proposal extractions as the pre-processing step.
The detailed APr scores for each class are also listed. In

TABLE 1
Comparison of Instance-Level Segmentation Performance with
Four State-of-the-Arts Using Mean APr Metric over 20 Classes

at 0.5 and 0.7 IoU Scores, When Evaluating with the
Ground-Truth Annotations from SBD Dataset, Including

5,623 Images for Training and 5,732 for Testing

mAPr SDS [1] HC [26] CFM [28] MNC [27] PFN (ours)

0.5 49.7 60.0 60.7 63.5 64.4
0.7 - 40.4 - 41.5 43.2

All numbers are in %.

TABLE 2
Comparison of Instance-Level Segmentation Performance with Two State-of-the-Arts Using APr Metric over 20 Classes at 0.5 IoU

on the PASCAL VOC 2012 Validation Set, Including 9,906 Images for Training and 1,449 Images for Testing

Settings Method

p
la
n
e

b
ik
e

b
ir
d

b
o
at

b
o
tt
le

b
u
s

ca
r

ca
t

ch
ai
r

co
w

ta
b
le

d
o
g

h
o
rs
e

m
o
to
r

p
er
so
n

p
la
n
t

sh
ee
p

so
fa

tr
ai
n

tv average

Baselines
SDS [39] 58.8 0.5 60.1 34.4 29.5 60.6 40.0 73.6 6.5 52.4 31.7 62.0 49.1 45.6 47.9 22.6 43.5 26.9 66.2 66.1 43.8

Chen et al. [2] 63.6 0.3 61.5 43.9 33.8 67.3 46.9 74.4 8.6 52.3 31.3 63.5 48.8 47.9 48.3 26.3 40.1 33.5 66.7 67.8 46.3

Ours (Alexnet) PFN Alexnet 64.7 18.7 71.2 50.1 25.2 65.9 35.8 84.8 14.6 62.6 42.8 76.4 78.8 64.7 38.4 34.8 43.2 60.1 80.2 65.7 53.9

Ours (VGG 16) PFN 79.2 25.6 77.8 58.1 38.4 75.1 40.2 92.9 19.0 74.5 49.2 84.1 83.2 75.1 46.6 43.9 58.9 64.6 86.2 73.7 62.3

All numbers are in %.

LIANG ET AL.: PROPOSAL-FREE NETWORK FOR INSTANCE-LEVEL OBJECT SEGMENTATION 2985

general, our method shows dramatically higher perfor-
mance than the baselines. Especially, in predicting small
object instances (e.g., bird and chair) or object instances
with a lot of occlusion (e.g., table and sofa), our method
achieves a larger gain. This demonstrates that our network
can effectively deal with the internal boundaries between
the object instances and robustly predict the instance-level
masks with various appearance patterns or occlusion.

4.3 Ablations Studies of our Networks

We further evaluate the effectiveness of our important com-
ponents of PFN, including the training strategy, network
structure, the number prediction of instances, testing strat-
egy and upperbounds, respectively. To validate different
architecture variants of our PFN more fairly, we randomly
select 1,449 images from the training set as the validation
set for all our ablation experiments and the rest images in
the training set for training the networks. The performance

over all the categories by all variants is reported in Tables 3
and 4.

Training Strategy. Note that our PFN training includes
two stages: the category-level segmentation network and
the instance-level network. To justify the necessity of using
two stages, we evaluate the performance of training a uni-
fied network that consists of the category-level segmenta-
tion, pixel-wise instance location prediction and the number
prediction of instances in one learning stage, namely “PFN
unified”. “PFN unified” is fine-tuned based on the VGG-16
pre-trained model and three losses for three sub-tasks are
optimized in one network. The category-level prediction is
appended in the last convolutional layer within the dashed
blue box in Fig. 3, and the loss weight for category-level seg-
mentation is set as 1. From our experimental results, “PFN
unified” leads to 9.6 percent decrease in average APr and
6.4 percent decrease in average APr

vol, compared with
“PFN”. Intuitively, the target of category-level segmentation

TABLE 3
Comparison of Instance-Level Segmentation Performance with Different Architecture Variants of Our PFN Using APr Metric
over 20 Classes at 0.5 IoU on the Randomly Selected 1,449 Images from PASCAL VOC 2012 Train Set for the Validation

Settings Method

p
la
n
e

b
ik
e

b
ir
d

b
o
at

b
o
tt
le

b
u
s

ca
r

ca
t

ch
ai
r

co
w

ta
b
le

d
o
g

h
o
rs
e

m
o
to
r

p
er
so
n

p
la
n
t

sh
ee
p

so
fa

tr
ai
n

tv average

Training Strategy PFN unified 74.5 22.2 80.5 57.3 27.7 70.1 21.2 75.6 17.2 66.5 48.9 72.8 73.1 65.7 43.2 12.5 29.5 49.4 75.3 59.2 52.1

Network structure
PFN w/o multiscale 74.3 17.6 72.9 58.2 28.3 73.2 32.1 93.4 18.3 70.3 49.1 81.2 79.6 72.2 47.9 25.3 52.0 62.9 88.1 72.6 58.5
PFN fusing_summation 77.3 25.0 75.7 57.1 37.0 73.9 40.1 92.6 18.1 73.2 47.6 82.8 82.7 75.4 44.8 42.4 56.6 63.5 85.7 71.9 61.2

The number of instances
PFN w/o category-level 75.7 21.3 79.5 58.3 34.3 65.4 36.1 79.2 16.8 63.5 40.1 72.1 71.2 69.2 46.2 15.2 44.9 48.2 74.3 67.8 54.0
PFN w/o instance-level 77.1 24.6 75.1 56.9 36.9 73.3 39.8 91.2 17.3 73.5 47.1 83.1 82.8 75.8 44.1 41.4 54.2 64.1 85.1 71.9 60.8
PFN separate_finetune 77.3 23.1 74.2 57.8 37.1 73.7 39.2 92.1 17.6 73.8 47.5 82.7 82.9 75.3 44.9 42.1 55.8 63.0 85.2 71.7 60.9

Testing strategy

PFN w/o coordinates 72.3 16.2 71.3 56.8 28.6 73.1 30.5 91.9 17.3 64.2 47.9 81.5 80.4 72.8 48.3 24.2 52.7 63.2 87.8 71.6 57.6
PFN w/o classify+size 76.0 22.2 73.1 55.9 32.5 73.1 34.6 91.9 17.4 70.1 47.4 80.2 82.4 74.0 43.5 40.5 54.7 62.1 84.2 70.1 59.3
PFN w/o size 76.2 25.6 74.7 57.1 35.2 74.0 39.4 92.3 17.6 73.8 48.3 82.7 83.0 75.4 44.7 41.0 53.8 63.6 85.5 70.6 60.7
PFN w/o classify 77.3 23.6 74.8 56.9 34.4 73.6 36.5 92.4 17.7 72.3 47.8 81.6 82.5 74.3 44.8 41.8 55.3 63.2 84.0 71.8 60.3

Ours (VGG 16) PFN 78.2 25.3 76.1 57.5 37.2 74.3 40.4 93.2 18.7 74.1 48.1 83.2 83.2 76.2 45.9 42.9 57.2 64.2 86.0 72.1 61.7

Upperbound

PFN upperbound_instnum 84.9 26.1 84.3 62.7 36.8 80.8 36.2 95.1 21.7 85.2 60.8 84.1 86.9 77.4 52.1 24.3 59.1 72.3 93.9 73.8 64.9
PFN upperbound_instloc 86.6 30.1 88.9 70.2 42.9 78.7 39.1 96.4 28.3 87.1 64.8 86.2 92.8 82.1 57.1 30.9 68.1 75.1 96.5 76.3 68.9
PFN upperbound_category 92.3 84.1 94.5 86.9 82.5 86.6 85.3 97.1 86.7 84.2 82.3 90.5 95.3 86.5 84.3 86.7 82.3 85.8 98.1 85.1 87.8

Lowerbound PFN clustering 52.1 0.1 53.1 26.1 22.5 54.8 35.1 60.1 1.2 46.1 26.9 50.1 38.8 37.6 40.3 16.8 37.1 22.5 59.6 58.3 37.0

All numbers are in %.

TABLE 4
Comparison of Instance-Level Segmentation Performance with Different Architecture Variants of Our PFN Using APr

vol Metric over
20 Classes That Averages All APr Performance from 0.1 to 0.9 IoU Scores on the Randomly Selected 1,449 Images from PASCAL

VOC 2012 Train Set for the Validation

Settings Method

p
la
n
e

b
ik
e

b
ir
d

b
o
at

b
o
tt
le

b
u
s

ca
r

ca
t

ch
ai
r

co
w

ta
b
le

d
o
g

h
o
rs
e

m
o
to
r

p
er
so
n

p
la
n
t

sh
ee
p

so
fa

tr
ai
n

tv average

Training Strategy PFN unified 71.1 24.2 74.8 47.8 25.9 61.4 21.8 72.2 16.3 60.9 43.3 72.5 65.6 60.2 39.3 17.8 37.9 49.2 68.6 54.1 49.2

Network structure
PFN w/o multiscale 72.3 26.8 66.9 51.3 28.9 68.8 28.5 85.2 20.2 62.6 46.7 73.8 67.9 64.2 43.2 25.4 45.1 56.9 76.8 59.1 53.5
PFN fusing_summation 73.5 28.8 74.9 49.7 30.2 65.8 28.9 85.4 23.8 66.4 49.8 78.9 73.2 66.4 42.4 25.2 51.0 57.9 79.1 59.2 55.5

Instance number
PFN w/o category-level 72.3 26.1 74.6 48.9 29.1 62.1 22.0 73.6 17.9 61.8 48.6 73.9 66.3 61.6 40.4 18.2 38.1 50.8 69.3 55.6 50.6
PFN w/o instance-level 72.4 27.1 73.9 49.1 30.1 64.8 28.3 84.9 22.6 66.2 49.3 78.8 72.2 65.8 42.3 24.6 50.8 56.3 78.6 58.7 54.8
PFN separate_finetune 72.3 27.2 73.8 48.1 30.2 66.0 29.7 84.1 22.4 65.8 48.5 78.2 71.9 65.5 42.7 24.3 50.1 56.8 78.1 58.2 54.7

Testing strategy

PFN w/o coordinates 70.8 26.0 70.4 49.2 28.1 65.2 27.6 83.2 18.5 62.2 46.8 75.2 69.4 64.7 43.2 23.8 46.4 56.2 77.8 59.4 53.2
PFN w/o classify+size 71.4 28.2 71.5 48.5 27.1 65.4 28.2 83.6 20.1 63.6 48.1 76.8 69.8 63.6 42.1 24.1 47.3 57.1 78.0 59.6 53.7
PFN w/o size 73.5 29.3 75.8 50.0 30.8 65.9 28.9 84.6 22.8 65.1 49.2 78.3 71.2 66.5 42.7 23.6 50.4 57.9 78.1 60.1 55.2
PFN w/o classify 73.0 28.9 73.1 49.0 28.6 65.5 28.4 84.1 21.8 64.7 49.2 77.9 70.4 64.1 42.7 23.8 49.1 57.6 78.2 59.9 54.5

Ours (VGG 16) PFN 73.8 29.7 75.3 50.1 31.1 66.7 29.2 84.9 23.0 65.8 50.2 79.3 72.1 65.1 43.6 24.4 50.2 58.2 78.3 60.4 55.6

All numbers are in %.

2986 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 12, DECEMBER 2018

is to be robust for individual object instances of the same
category while erasing the instance-level information dur-
ing optimization. On the contrary, the instance-level net-
work aims to learn the instance-level information for
distinguishing different object instances with large variance
in appearance, view or scale. This comparison result verifies
well that training with two sequential stages can lead to bet-
ter global instance-level segmentation.

Network Structure. Extensive evaluations on different net-
work structures are also performed. First, the effectiveness
of multi-scale prediction is verified. “PFN w/o multiscale”
shows the performance of using only one straightforward
layer to predict pixel-wise instance locations. The perfor-
mance decreases by 3.2 percent in APr compared with
“PFN”. This significant inferiority demonstrates the effec-
tiveness of multi-scale fusing that incorporates the local fine
details and global semantic information into predicting the
pixel-wise instance locations.

In the fusing layer for predicting pixel-wise instance loca-
tions, “PFN” utilizes the concatenation operation instead of
element-wise summation for multi-scale prediction. “PFN
fusing_summation” shows 0.5 percent decrease in APr

when compared to “PFN”. The 1� 1 convolutional filters are
utilized to adaptively weigh the contribution of the instance
location prediction of each scale, which is more reasonable
and experimentally effective than simple summation.

TheNumber Prediction of Instances.Weexplore other options
to predict the numbers of instances of all categories for each
image. “PFN w/o category-level” only utilizes the instance
location predictions as the feature maps for predicting num-
bers of instances and the category-level information is totally
ignored. The large gap between “PFN w/o category-level”
and “PFN” (54.0 percent versus 61.7 percent) verifies the
importance of using category-level information for predicting
numbers of instances. Because the instance location predic-
tions only capture the numbers of instances of all categories
and category-level information is discarded, the exact number
of instances for a specific category thus cannot be inferred.
The importance of incorporating instance-level information is

also verified by comparing “PFN w/o instance-level” with
“PFN”, 60.8 percent versus 61.7 percent in APr. This shows
that the number prediction of instances can benefit from the
pixel-wise instance location prediction, where more fine-
grained annotations (pixel-wise instance-level locations) are
provided for learning better featuremaps.

We also evaluate the performance of sequentially opti-
mizing the instance locations and the number of instances
instead of using one unified network. “PFN separate_-
finetune” first optimizes the network for predicting pixel-
wise instance locations, and then fixes the current network
parameters and only trains the newly added parameters for
the number prediction of instances. The performance
decrease of “PFN separate_finetune” compared to “PFN”
(60.9 percent versus 61.7 percent in APr) shows well the
effectiveness of training one unified network. The informa-
tion in the global aspect from numbers of instances can be
utilized for predicting more accurate instance locations.

Finally, we report the accuracy of the number prediction of
instances by our PFN by calculating the mean absolute errors
between the predicted number of instances and the ground-
truth of each category for all images. It is observed that the
PFN achieves 2.31 numbers in terms of mean absolute errors
on average for all categories. The number prediction of instan-
ces may fail for the images with many small and occluded
instances and thus is a bottleneck for the final performance of
our PFN. By refining the category-level segmentation results
with the predicted numbers of instances, the category-level
segmentation performance in terms of pixel-wise IoU accu-
racy can be boosted from 67.53 to 68.45 percent.

Testing Strategy. We also test different strategies for gen-
erating final instance-level segmentations during testing.
Note that during spectral clustering, the similarity of two
pixels is computed by considering both the prediction
instance locations with four dimensions and two spatial
coordinates of each pixel. By eliminating the coordinates in
the similarity function, a significant decrease in APr can be
seen by comparing “PFN w/o coordinates” with “PFN”,
57.6 percent versus 61.7 percent. This verifies that the spatial

TABLE 5
Per-Class Instance-Level Segmentation Results Using APr Metric over 20 Classes at 0.6 to 0.9 (with a Step Size of 0.1)

IoU Scores on the VOC PASCAL 2012 Validation Set

IoU score Method

p
la
n
e

b
ik
e

b
ir
d

b
o
at

b
o
tt
le

b
u
s

ca
r

ca
t

ch
ai
r

co
w

ta
b
le

d
o
g

h
o
rs
e

m
o
to
r

p
er
so
n

p
la
n
t

sh
ee
p

so
fa

tr
ai
n

tv average

0.6

SDS [39] 43.6 0 52.8 19.5 25.7 53.2 33.1 58.1 3.7 43.8 29.8 43.5 30.7 29.3 31.8 17.5 31.4 21.2 57.7 62.7 34.5
Chen et al. [2] 57.1 0.1 52.7 24.9 27.8 62.0 36.0 66.8 6.4 45.5 23.3 55.3 33.8 35.8 35.6 20.1 35.2 28.3 59.0 57.6 38.2
PFN Alexnet 62.5 10.1 69.3 33.4 20.8 55.3 21.9 78.1 10.7 57.2 38.4 73.6 66.4 67.8 31.7 18.1 34.1 51.2 68.6 51.8 46.1
PFN 76.1 13.8 72.5 43.3 29.1 68.8 29.1 85.9 13.4 68.2 45.4 80.1 71.6 75.2 41.7 21.3 48.5 54.2 79.4 64.2 54.1

0.7

SDS [39] 17.8 0 32.5 7.2 19.2 47.7 22.8 42.3 1.7 18.9 16.9 20.6 14.4 12.0 15.7 5.0 23.7 15.2 40.5 51.4 21.3
Chen et al. [2] 40.8 0.07 40.1 16.2 19.6 56.2 26.5 46.1 2.6 25.2 16.4 36.0 22.1 20.0 22.6 7.7 27.5 19.5 47.7 46.7 27.0
PFN Alexnet 59.8 8.2 61.7 29.4 18.3 52.8 21.9 71.8 6.9 45.4 28.5 66.1 61.2 57.8 24.3 10.7 28.8 41.3 61.2 45.6 40.1
PFN 71.0 9.6 64.3 35.7 21.8 62.9 28.9 80.4 9.3 52.4 29.7 70.7 62.8 62.5 28.4 13.3 37.5 45.8 73.6 48.1 45.4

0.8

SDS [39] 2.1 0 8.3 4.5 11.5 32.3 9.0 17.9 0.7 4.7 9.0 6.5 1.8 4.4 3.3 1.9 7.9 10.2 12.7 24.3 8.7
Chen et al. [2] 10.5 0 15.7 9.8 11.4 32.7 12.5 34.8 1.1 11.6 9.5 15.3 4.6 6.5 6.0 3.0 13.9 14.4 27.0 30.4 13.5
PFN Alexnet 47.9 2.6 49.3 17.2 9.5 45.8 12.1 59.4 3.8 38.2 16.8 48.9 42.1 35.2 15.3 5.2 21.6 25.1 51.8 31.1 28.9
PFN 57.3 5.8 51.3 24.2 14.3 51.8 18.1 65.2 6.7 40.1 22.1 53.9 43.4 38.2 20.3 8.5 28.1 27.4 61.2 39.2 33.9

0.9

SDS [39] 0 0 0.2 0.3 2.0 3.8 0.2 0.9 0.1 0.2 1.5 0 0 0 0.1 0.1 0 2.3 0.2 5.8 0.9
Chen et al. [2] 0.6 0 0.6 0.5 4.9 9.8 1.1 8.3 0.1 1.1 1.2 1.7 0.3 0.8 0.6 0.3 0.8 7.6 4.3 6.2 2.6
PFN Alexnet 38.8 2.2 25.2 8.4 7.2 31.9 6.3 41.7 2.2 24.8 4.9 29.8 15.4 8.2 7.1 3.4 11.5 13.6 24.7 9.2 15.8
PFN 44.9 3.2 26.1 8.8 8.2 32.9 7.1 43.4 2.9 26.1 5.3 30.5 16.2 9.2 7.8 3.9 15.3 15.4 25.2 10.2 17.1

All numbers are in %.

LIANG ET AL.: PROPOSAL-FREE NETWORK FOR INSTANCE-LEVEL OBJECT SEGMENTATION 2987

coordinates can enhance the local neighboring connections
during clustering, which can lead to more reasonable and
meaningful instance-level segmentation results.

In addition, we also test the performance influenced by
using different feature representations (i.e., how to use the
predicted coordinates) considered in the similarity function
during clustering. First, we evaluate the version that uses the
predicted center coordinates transformed from the predicted
top-left and down-right coordinates as the additional features
in the similarity function. It achieves 0.9 percent improvement
in terms of APr metric on 0.5 IoU over our “PFN” that only
uses the predicted top-left and down-right coordinates as fea-
tures. Second, our PFN achieves 1.3 percent higher perfor-
mance over the version that uses the predicted center
coordinates, height and width as the feature instead of
predicted top-left and down-right coordinates. These experi-
ments prove that the redundant feature representation can
improve the discriminative capability of segmenting instances
during the clustering step.

Recall that two steps are used for post-processing,
including refining the segmentation results with the num-
ber prediction of instances and constraining the cluster size
during clustering. We extensively evaluate the effectiveness
of using these two steps. By comparing 59.3 percent of
“PFN w/o classify + size” that eliminates these two steps
with 61.7 percent of “PFN” in APr, better performance can
be obtained by leveraging the number prediction of instan-
ces and constraining the cluster size to refine instance-level
segmentation. Only eliminating the refining strategy by con-
straining the cluster size results in 1.0 percent decrease. It
demonstrates that constraining the cluster size can help
reduce the effect of noisy background pixels to some extent
and more robust instance level segmentation results can be

obtained. On the other hand, the incorporation of the num-
ber prediction of instances can help improve the perfor-
mance in APr by 1.4 percent when comparing “PFN w/o
classify” with “PFN”. In particular, significant improve-
ments are obtained for easily confused categories such as
“cow”, “sheep” and “horse”. This demonstrates the effec-
tiveness of using the number prediction of instances for
refining the pixel-wise segmentation results.

Upperbound. We also evaluate the limitations of our cur-
rent algorithm. First, “PFN upperbound_instnum” reports
the performance of using the ground-truth number predic-
tion of instances for clustering and other experimental set-
tings are kept the same. It can be seen that only 3.2 percent
improvement in APr is obtained. The errors from the num-
ber prediction of instances are already small and have only
little effect on the final instance-level segmentation. Second,
the upperbound for instance location predictions is reported
in “PFN upperbound_instloc” by using the ground-truth
instance locations for each pixel as the features for cluster-
ing. The large gap between 68.9 percent of “PFN upper-
bound_instloc” and 61.7 percent of “PFN” verifies that the
accurate instance location prediction is critical for good
instance-level segmentation. Note that the current category-
level segmentation only achieves 67.53 percent of pixel-wise
IoU score, which largely limits the performance of our
instance-level segmentation because we perform the cluster-
ing on the category-level segmentation. A better category-
level segmentation network architecture can definitely help
improve the performance of instance-level segmentation
under our PFN framework.

To validate the effectiveness of our designed instance-level
network, we also report the upperbound performance
of using ground-truth category-level segmentation, the

Fig. 6. Illustration of instance-level object segmentation results by the proposed PFN. We also compare our results with that of SDS [39]. Since
SDS [39] predicts the scores for each proposal of each category, the top 10 predictions for each image of the person category are shown for the
visual comparison. Note that for instance-level segmentation results, different colors only indicate different object instances and do not represent the
semantic categories. In terms of category-level segmentation, different colors are used to denote different semantic labels. Best viewed in color.

2988 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 12, DECEMBER 2018

predicted instance locations and numbers to generate the
final instance-level segmentation results, i.e., “PFN upper-
bound_category”. The “PFNupperbound_category” achieves
87.8 percent, much higher than 68.9 percent of “PFN upper-
bound_instloc”, which verifies the capability of our instance-
level segmentation network on predicting good pixel-wise
instance locations.

Lowerbound. Finally, we also evaluate the performance of
the version that directly clusters the pixels of the same cate-
gory by using their pixel coordinates and number of instan-
ces based on the category-level segmentation results. It
obtains 37.0 percent in terms of APr metric at 0.5 IoU, which
is much worse than ours 61.7 percent. Directly clustering
the connected components of category-level segmentation
results can only handle the sole instances in the image and
fail to detect the adjacent and occluded instances. This
experiment demonstrates the effectiveness of predicting the
pixel-wise instance locations proposed by our PFN.

4.4 Visual Illustration

Fig. 6 visualizes the predicted instance-level segmentation
results with our PFN. We visually compare with SDS [1]
and the top 10 detection results for the person category for
each image by SDS [1] are visualized. Our method can
directly produce exact region segments for each object
instance just like the results of category-level segmentation.
Different colors indicate different object instances for the
instance-level segmentation results. The semantic labels of
our instance-level segmentation results are exactly the same
with the ones labeled in category-level segmentation results.
The proposed PFN performs better in predicting the object
instances with heavy occlusion, large background clutters
and complex scenes. For example, the first three rows show
the results on images with very complex background clut-
ters, several objects with heavy occlusion and diverse
appearance patterns. The fourth row illustrates some
images with very small object instances, such as birds and
potted-plants. The fifth row shows examples where the

object instances in one image have high similarity in appear-
ance and much occlusion with each other. Other results
showmore examples of instance-level images under diverse
scenarios and with very challenging poses, scales, views
and occlusion. These visualization results further demon-
strate the effectiveness of the proposed PFN.

We also show some failure cases of our PFN in Fig. 7. The
heavily occluded instances and some small object instances
are difficult to identify and segment due to the imprecise
prediction for instance location. In addition, the instance-
level object segmentation results are also affected by impre-
cise category-level segmentation.

5 CONCLUSION AND FUTURE WORK

In this paper, we present an effective proposal-free network
for fine-grained instance-level segmentation. Instead of utiliz-
ing extra region proposal methods as the requisite, PFN
directly predicts the instance location vector for each pixel
that belongs to a specific instance and the numbers of instan-
ces of all categories. The pixels that predict the same or close
instance locations can be directly regarded as belonging to the
same object instance. Significant improvements over the
state-of-the-art methods are achieved by PFN on the PASCAL
VOC 2012 segmentation benchmark. Extensive evaluations of
different components of PFN are conducted to validate the
effectiveness of ourmethod. In futurework,we plan to extend
our framework to the generic multiple instances in outdoor
and indoor scenes, whichmay have higher degrees of clutters
and occlusion. Furthermore, the current framework may fail
to detect heavily occluded instances due to the wrongly pre-
dicted instance locations and numbers of instances. We will
address this problem by incorporating the spatial layout con-
texts of occluded instances into the neural network prediction.

ACKNOWLEDGMENTS

This work was supported by State Key Development
Program under Grant 2016YFB1001004, the National Natu-
ral Science Foundation of China under Grant 61622214, the
Science and Technology Planning Project of Guangdong
Province under Grant 2017A020208041, Special Program of
the NSFC-Guangdong Joint Fund for Applied Research on
Super Computation (the second phase), and Guangdong
Natural Science Foundation Project for Research Teams
under Grant 2017A030312006.

REFERENCES

[1] B. Hariharan, P. Arbel�aez, R. Girshick, and J. Malik, “Simultaneous
detection and segmentation,” in Proc. Eur. Conf. Comput. Vis., 2014,
pp. 297–312.

[2] Y.-T. Chen, X. Liu, and M.-H. Yang, “Multi-instance object seg-
mentation with occlusion handling,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2015, pp. 3470–3478.

[3] Z. Zhang, A. G. Schwing, S. Fidler, and R. Urtasun, “Monocular
object instance segmentation and depth ordering with CNNs,” in
Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2614–2622.

[4] J. Dai, K. He, and J. Sun, “BoxSup: Exploiting bounding boxes to
supervise convolutional networks for semantic segmentation,” in
Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1635–1643.

[5] S. Zheng, et al., “Conditional random fields as recurrent neural
networks,” inProc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1529–1537.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2015, pp. 91–99.

Fig. 7. Illustration of failure cases. Our PFN may fail to segment object
instances with heavy occlusion (in first row) and small size (in second row).
The instance-level segmentation of our PFN is also limited by the accuracy
of category-level segmentation prediction (in third and fourth row).

LIANG ET AL.: PROPOSAL-FREE NETWORK FOR INSTANCE-LEVEL OBJECT SEGMENTATION 2989

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2016, pp. 779–788.

[8] R. Stewart and M. Andriluka, “End-to-end people detection in
crowded scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 2325–2333.

[9] C. Szegedy, et al., “Going deeper with convolutions,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2015.

[11] J. Pont-Tuset, P. Arbel�aez, J. Barron, F. Marques, and J. Malik,
“Multiscale combinatorial grouping for image segmentation and
object proposal generation,” in arXiv:1503.00848, Mar. 2015.

[12] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” Int. J. Comput. Vis.,
vol. 104, no. 2, pp. 154–171, 2013.

[13] C. L. Zitnick and P. Doll�ar, “Edge boxes: Locating object proposals
from edges,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 391–405.

[14] P. O. Pinheiro, R. Collobert, and P. Doll�ar, “Learning to segment
object candidates,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2015,
pp. 1990–1998.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[16] Y. Wei, et al., “HCP: A flexible CNN framework for multi-label
image classification,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 9, pp. 1901–1907, Sep. 2016.

[17] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun, “Object detection
networks on convolutional feature maps,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 7, pp. 1476–1481, Jul. 2017.

[18] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille,
“Weakly- and semi-supervised learning of a DCNN for semantic
image segmentation,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1742–1750.

[19] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1520–1528.

[20] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2014, pp. 580–587.

[21] S. Gidaris and N. Komodakis, “Object detection via a multi-region
& semantic segmentation-aware CNN model,” in Proc. IEEE Int.
Conf. Comput. Vis., 2015, pp. 1134–1142.

[22] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable
object detection using deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2014, pp. 2155–2162.

[23] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1440–1448.

[24] N. Silberman, D. Sontag, and R. Fergus, “Instance segmentation of
indoor scenes using a coverage loss,” in Proc. Eur. Conf. Comput.
Vis., 2014, pp. 616–631.

[25] J. Tighe, M. Niethammer, and S. Lazebnik, “Scene parsing with
object instances and occlusion ordering,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2014, pp. 3748–3755.

[26] B. Hariharan, P. Arbel�aez, R. Girshick, and J. Malik,
“Hypercolumns for object segmentation and fine-grained local-
ization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 447–456.

[27] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation
via multi-task network cascades,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 3150–3158.

[28] J. Dai, K. He, and J. Sun, “Convolutional feature masking for joint
object and stuff segmentation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 3992–4000.

[29] M. Ren and R. S. Zemel, “End-to-end instance segmentation with
recurrent attention,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2017, pp. 293–301.

[30] Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes, “Layered
object models for image segmentation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 9, pp. 1731–1743, Sep. 2012.

[31] J. Uhrig, M. Cordts, U. Franke, and T. Brox, “Pixel-level encoding
and depth layering for instance-level semantic labeling,” in Proc.
German Conf. Pattern Recognit., 2016, pp. 14–25.

[32] M. Bai and R. Urtasun, “Deep watershed transform for instance
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 2858–2866.

[33] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and
C. Rother, “InstanceCut: From edges to instances with multicut,”
arXiv:1611.08272, 2016.

[34] S. Liu, J. Jia, S. Fidler, and R. Urtasun, “SGN: Sequential grouping
networks for instance segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 3496–3504.

[35] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Semantic image segmentation with deep convolutional
nets and fully connected CRFs,” in Proc. Int. Conf. Learn. Represen-
tations, 2015.

[36] Y. LeCun, et al., “Backpropagation applied to handwritten zip
code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec.
1989.

[37] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2002, pp. 849–856.

[38] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes challenge: A
retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, 2014.

[39] B. Hariharan, P. Arbel�aez, L. Bourdev, S. Maji, and J. Malik,
“Semantic contours from inverse detectors,” in Proc. Int. Conf.
Comput. Vis., 2011, pp. 991–998.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[41] Y. Jia, et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. ACM Int. Conf.Multimedia, 2014, pp. 675–678.

Xiaodan Liang is working toward the PhD degree
from Sun Yat-sen University, China, advised by
Prof. Liang Lin. She received her BS degree in
Software Engineering from Sun Yat-sen Univer-
sity in 2011. Her research interests mainly include
semantic segmentation, object/action recognition,
andmedical image analysis.

Liang Lin is the Executive R&D Director of Sense-
TimeGroup Limited and a full Professor of Sun Yat-
sen University. He is the Excellent Young Scientist
of the National Natural Science Foundation of
China. From 2008 to 2010, he was a Post-Doctoral
Fellow at University of California, Los Angeles.
From 2014 to 2015, as a senior visiting scholar he
was with The Hong Kong Polytechnic University
and The Chinese University of Hong Kong. He cur-
rently leads the SenseTime R&D teams to develop
cutting-edges and deliverable solutions on com-

puter vision, data analysis and mining, and intelligent robotic systems. He
has authorized and co-authorized on more than 100 papers in top-tier aca-
demic journals and conferences (e.g., 12 papers in TPAMI/IJCV and 50+
papers in CVPR/ICCV/NIPS/IJCAI). He has been serving as an associate
editor of IEEE Trans. Human-Machine Systems, The Visual Computer and
Neurocomputing. He served as Area/Session Chairs for numerous confer-
ences such as ICME, ACCV, ICMR. He was the recipient of Best Paper
Dimond Award in IEEE ICME 2017, Best Paper Runners-Up Award in ACM
NPAR 2010, Google Faculty Award in 2012, Best Student Paper
Award in IEEE ICME 2014, and Hong Kong Scholars Award in 2014. He is
a Fellowof IET.

Yunchao Wei is working toward the PhD degree
from the Institute of Information Science, Beijing
Jiaotong University, China. He is currently work-
ing at National University of Singapore as a
research intern. His research interests mainly
include object classification in computer vision
and multi-modal analysis in multimedia.

2990 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 12, DECEMBER 2018

Xiaohui Shen received the BS and MS degrees
from the Department of Automation, Tsinghua
University, China, and the PhD degree from
the Department of EECS, Northwestern Univer-
sity, in 2013. He is currently a research scientist
at Adobe Research, San Jose, California. His
research interests include image/video process-
ing and computer vision.

Jianchao Yang (S08, M12) received the MS and
PhD degrees in electrical and computer engineer-
ing from the University of Illinois at Urbana-
Champaign, Urbana, in 2011. His research inter-
ests include object recognition, deep learning,
sparse coding, image/video enhancement, and
deblurring. He is a member of the IEEE.

Shuicheng Yan (M’06-SM’09) is the Vice Presi-
dent and Chief Scientist of Qihoo 360 Technology
Co. Ltd., as well as Head of 360 Artificial Intelli-
gence Institute. He is also a tenured Associate Pro-
fessor at National University of Singapore, and
IEEE Fellow, IAPR Fellow and ACM Distinguished
Scientist. His research areas include computer
vision, machine learning and multimedia analysis,
and he has authored/co-authored about 500 high
quality technical papers, with Google Scholar cita-
tion over 25,000 times and H-index 70. He is TR

Highly Cited Researcher of 2014, 2015 and 2016. Besides, his team
received 7 times winner or honorable-mention prizes in 5 years over PAS-
CAL VOC and ILSVRC competitions which are core competitions in the
field of computer vision, alongwithmore than 10 times best (student) paper
awards and especially a Grand Slam in ACMMM, the top conference in the
field ofmultimedia, includingBest Paper Award, Best Student Paper Award
andBest DemoAward.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIANG ET AL.: PROPOSAL-FREE NETWORK FOR INSTANCE-LEVEL OBJECT SEGMENTATION 2991

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

