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Abstract—For visual tracking methods based on kernel support vector machines (SVMs), data sampling is usually adopted to reduce

the computational cost in training. In addition, budgeting of support vectors is required for computational efficiency. Instead of sampling

and budgeting, recently the circulant matrix formed by dense sampling of translated image patches has been utilized in kernel

correlation filters for fast tracking. In this paper, we derive an equivalent formulation of a SVMmodel with the circulant matrix expression

and present an efficient alternating optimization method for visual tracking. We incorporate the discrete Fourier transform with the

proposed alternating optimization process, and pose the tracking problem as an iterative learning of support correlation filters (SCFs).

In the fully-supervision setting, our SCF can find the globally optimal solution with real-time performance. For a given circulant data

matrix with n2 samples of n� n pixels, the computational complexity of the proposed algorithm is Oðn2 lognÞ whereas that of the
standard SVM-based approaches is at least Oðn4Þ. In addition, we extend the SCF-based tracking algorithm with multi-channel

features, kernel functions, and scale-adaptive approaches to further improve the tracking performance. Experimental results on a large

benchmark dataset show that the proposed SCF-based algorithms perform favorably against the state-of-the-art tracking methods in

terms of accuracy and speed.

Index Terms—Visual tracking, correlation filters, support vector machine, max-margin learning

Ç

1 INTRODUCTION

ROBUST visual tracking is a challenging problem due to
large changes of object appearance caused by pose, illu-

mination, deformation, occlusion, distractors, as well as
background clutter [38], [41]. Among the state-of-the-art
methods, discriminative classifiers with model updating
and sampling have been demonstrated to perform well in
visual tracking. On the other hand, correlation filters [8],
[12], [23], [24] have been shown to be efficient for locating
objects using the circulant matrix and fast Fourier trans-
form. Central to the advances in visual tracking are the
development of effective appearance models and efficient
sampling schemes [41], [42].

Discriminative appearance models have been extensively
studied in visual tracking and have achieved the state-of-the-
art results. One representative discriminative appearance

model is based on support vector machines (SVMs) [2], [4],
[21], [42]. To learn classifiers for detecting objects within local
regions, SVM-based tracking approaches are developed
based on two modules: a sampler to generate a set of positive
and negative samples, and a learner to update the classifier
using the training samples. To reduce the computational
load, sampling is usually required in SVM-based trackers to
select a small set of samples [21], [42]. As kernel SVM-based
tracking methods are susceptible to the curse of kernelization,
budgeting is introduced for online learning of the structural
SVM tracker [21] to restrict the number of support vectors, or
an explicit feature mapping function is used to approximate
the intersection kernel [42]. While sampling and budgeting
may improve tracking efficiency at the expense of accuracy,
most SVM-based trackers [4], [21], [42] do not run in real-time.

Correlation filters (CFs) [8], [23], [24], [43] have recently
been utilized for efficient visual tracking. Here a base sam-
ple is defined as the first row of a circulant matrix. Then the
data matrix formed by dense sampling (i.e., cyclic shifts) of
base sample should have circulant structures, which facili-
tates the use of the discrete Fourier transform (DFT) for effi-
cient and effective visual tracking [8], [23], [24], [43].
Among the existing CF-based trackers, ridge regression or
kernel ridge regression are generally adopted as the predic-
tors. Henriques et al. [22] apply the circulant property for
training of support vector regression (SVR) efficiently to
detect pedestrians. However, this algorithm is developed to
solve an approximation of the SVR model and cannot be
used for SVM due to the discrete labels in the classification
task. The problem on how to exploit the circulant property
to accelerate SVM-based trackers remains unaddressed.
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In this paper, we propose a novel SVM-based algorithm
via support correlation filters (SCFs) for efficient and accu-
rate visual tracking. Instead of sampling and budgeting, the
proposed algorithm based on SCFs deals with the efficiency
issue by using the data matrix formed by dense sampling.
By exploiting the circulant property, we formulate the pro-
posed SVM-based tracker as a learning problem for support
correlation filters and propose an efficient algorithm. By
incorporating the discrete Fourier transform in an alternat-
ing optimization process, the SVM classifier can be effi-
ciently updated by iterative learning of correlation filters.
For an n� n image, there are n2 training sample images of
the same size in the circulant data matrix and the computa-
tional complexity of the proposed algorithm is Oðn2 lognÞ
whereas that of the standard SVM-based approaches is at
least Oðn4Þ. Furthermore, we extend the proposed SCF-
based algorithm to multi-channel SCF (MSCF), kernelized
SCF (KSCF), and scale-adaptive KSCF (SKSCF) methods to
improve the tracking performance.

We evaluate the proposed SCF-based algorithms on a
large benchmark dataset with comparison to the state-of-the-
art methods [41] and analyze the tracking results. First, with
the discriminative strength of SVMs, the proposed KSCF
method performs favorably against the existing regression-
based correlation filter trackers. Second, by exploiting the cir-
culant structure of training samples, the proposed KSCF
algorithm performs well compared with the existing SVM-
based trackers [21], [42] in terms of efficiency and accuracy.
Third, the proposed KSCF and SKSCF algorithms outper-
form the state-of-the-art methods including the ensemble
and scale-adaptive trackingmethods [12], [31], [42].

2 RELATED WORK AND PROBLEM CONTEXT

Visual tracking has long been an active research topic in
computer vision which involves developments of both
learning methods (e.g., feature learning and selection,
online learning and ensemble models) and application
domains (e.g., auto-navigation, visual surveillance and
human-computer interactions). Performance evaluation on
state-of-the-art tracking algorithms have been reported [38],
[41], and we discuss the most relevant methods to this work
in this section.

Appearance Models for Visual Tracking. Appearance mod-
els play an important role in visual tracking which can be
broadly categorized as generative or discriminative. Gener-
ative appearance methods based on holistic templates, sub-
space representations and sparse representations have been
developed for object representations [25], [40], [45]. Discrim-
inative appearance methods are usually based on features
and classifiers learned from a large set of examples. Visual
tracking is posed as a task to distinguish the target objects
from the backgrounds. Tracking methods based on discrim-
inative appearance models have been shown to achieve the
state-of-the-art results [41].

Discriminative tracking methods are usually based on
object detection within local search using classifiers such as
boosting methods, random forests, and SVMs [41]. Among
these classifiers, boosting methods [3], [28] and random for-
ests [36] are ensemble learning methods, where sampling
from large sets of features is indispensable and that makes

it difficult to adopt correlation filters in these approaches. In
this work, we exploit the discriminative strength of SVMs
and efficiency of correlation filters for visual tracking.

Label ambiguity has also been studied for visual track-
ing, e.g., semi-supervised [19] and multiple instance learn-
ing methods [3]. Considering that classification based
methods are trained to predict the class label rather than the
object location, Hare et al. [21] propose a tracker based on
structured SVM. In this work, we alleviate the label ambigu-
ity problem by using the assignment scheme in a way simi-
lar to that for object detection and tracking [18].

Correlation Filters for Tracking. A correlation filter uses a
designed template to generate strong response to a region
that is similar to the target object while suppressing
responses to distractors. Correlation filters have been
widely applied to numerous problems such as object detec-
tion [9] and object alignment [6]. A number of correlation fil-
ters have been proposed in the literature including the
minimum output sum of squared error (MOSSE) [8] meth-
ods. Recently, the max-margin CF (MMCF) [35], multi-chan-
nel CF [12], [13], [14], [24], and kernelized CF [23], [24]
methods have been developed for object detection and
tracking. The MMCF [35] scheme combines the localization
properties of correlation filters with good generalization
performance of SVM. The multi-channel correlation fil-
ters [12], [13], [14], [24] are designed to use more effective
features, e.g., histogram of oriented gradients (HOG). In
addition, a method that combines MMCF and multi-channel
CF is developed [7] for object detection and landmark locali-
zation. The kernel tricks are also employed to learn kernel-
ized synthetic discriminant functions (SDF) [32] with
correlation filters. We note that the MMCF [7], [35] methods
do not exploit the circulant structure of the data matrix in
the max-margin loss function.

In visual tracking, Bolme et al. [8] propose the MOSSE
method to learn adaptive correlation filters with high effi-
ciency and competitive performance. Subsequently, the ker-
nelized correlation filter (KCF) [24] is developed by
exploiting the circulant property of the kernel matrix. Exten-
sions of CF and KCF with multi-channel features are intro-
duced for visual tracking [12], [13], [14], [24]. We note
existing CF-based trackers are developed with ridge regres-
sion schemes for locating the target. On the other hand, the
SVM-based trackers, e.g., Struck [21] and MEEM [42], have
been demonstrated to achieve the state-of-the-art perfor-
mance. One straightforward extension is to integrate SVM-
based trackers with the MMCF method [35]. Nevertheless,
the MMCF scheme is computationally prohibitive for real-
time applications, and the training data matrix for SVM is
not circulant. In this work, we develop novel discriminative
tracking algorithms based on SVMs and correlation filters
that perform both efficiently and effectively.

3 SUPPORT CORRELATION FILTERING

We first present the problem formulation and propose an
alternating optimization algorithm to learn support correla-
tion filters efficiently. We then develop the MSCF, KSCF
and SKSCF methods to learn multi-channel, kernelized and
scale-adaptive correlation filters respectively for robust
visual tracking.
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3.1 Problem Formulation

Given an image x, the full set of its translated versions forms
a circulant matrix X with several interesting properties [20],
where each row represents one possible observation of a tar-
get object (see Fig. 1). A circulant matrix consists of all possi-
ble cyclic translations of a target image, and tracking is
formulated as determining the most likely row. In general,
the eigenvectors of a circulant matrix X are the base vectors
F of the discrete Fourier transform:

X ¼ FHdiagðx̂ÞF; (1)

where FH is the Hermitian transpose of F and x̂ ¼ FðxÞ
denotes the Fourier transform of x. In the following, we use
diagð�Þ to form a diagonal matrix from a vector.

Our goal is to learn a support correlation filter w and a
bias b, to classify any translated image xi by

yi ¼ sgn w>xi þ b
� �

: (2)

Note that all the translated images xi form a circulant matrix
X. We can classify all the samples in X by

y ¼ sgn F�1ðx̂� � ŵÞ þ b
� �

; (3)

where � denotes the element-wise multiplication operator.
F�1ð�Þ denotes the inverse discrete Fourier transform
(IDFT), and x̂� denotes the complex conjugate of x̂. Given
the circulant matrix X generated by an n� n image x, the
computational complexity of classifying every xi by (2) is
Oðn4Þ, while that of classifying all samples of X by (3) is
Oðn2 lognÞ.

Given the training set of a circulant matrix X ¼ ½x1;
x2; . . . ; xn2 � with the corresponding class labels y ¼ ½y1;
y2; . . . ; yn2 �>, the SVM with the squared hinge loss can be
defined as:

min
w;b;��

kwk2 þ C
X
i

�2i

s.t. yiðw>xi þ bÞ 	 1� �i; 8i;
(4)

where �� ¼ ½�1; . . . ; �i; . . . ; �n2 � is the vector of slack variables.
The squared hinge loss function has been widely adopted in
vision applications. Compared to the least-squares SVM
(LS-SVM) [39], the squared hinge loss penalizes the estima-
tion error caused by misclassification, and usually helps
generalize better and perform robustly [30].

Similar to (3), as X is circulant, the SVM model can be
equivalently formulated as:

min
w;b;��

kwk2 þ Ck��k22
s.t. y � ðF�1ðx̂� � ŵÞ þ b1ÞÞ 	 1� ��;

(5)

where 1 denotes a vector of 1s.
Class Labels of Translated Images. Let p� denote the center

position of the target object x�, and pi as the position of the
translated image xi. In object detection, the overlap ratio of
xi is used to measure the similarity between x� and xi. In
this work, we use the overlap ratio to guide the labeling of
the translated image xi where samples above a pre-defined
upper threshold are considered as positive, and samples
below a lower threshold are treated as negative. The opti-
mal upper and lower thresholds for SCF, MSCF and KSCF
are empirically determined (see Section 4).

We use the following confidence map of object posi-
tion [43] to define the class label:

mðpi;p
�Þ ¼ g exp �akpi � p�kb

� �
; (6)

where g is a normalization constant, a and b are the scale and
shape parameters, respectively. Based onmðpi;p

�Þ, we divide
the samples into a labeled subsetVl and an unlabeled oneVu,

i 2 Vu; if ul < mðpi;p
�Þ < uu;

Vl; otherwise;

(
(7)

where ul and uu are the lower and upper thresholds, respec-
tively. For the labeled samples, we define the class labels as
follows:

yi ¼
1; if mðpi;p

�Þ 	 uu;

�1; if mðpi;p
�Þ 
 ul:

�
(8)

The sample xi with i 2 Vu is treated as an unlabeled sample,
and its class label yi 2 f�1; 1g is adaptively determined in
the learning stage by a semi-supervised learning manner.

Comparisons with Existing CF-Based Trackers.As illustrated
in Fig. 2a, existing CF-based trackers generally use the
Regularized Least Squares (RLS) model [33]. That is, with
the continuous confidence map m, RLS-based CFs seek the
optimal correlation filter by minimizing the mean squared
error (MSE) between the pre-defined confidence map and
actual output,

Fig. 1. Illustration of the proposed SCF learning algorithm. The proposed algorithm iterates between updating e and updating SVM classifier fw; bg
until convergence. In each iteration, only one DFTand one IDFTare required, which make the proposed algorithm computationally efficient. The black
blocks in e denote support vectors, and our algorithm can adaptively find and exploit difficult samples (i.e., support vectors) to learn support correla-
tion filters.
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min
w

�kwk2 þ kX>w�mk22; (9)

which has the closed-form solution,

ŵ ¼ x̂� � m̂
x̂� � x̂þ �

: (10)

The success of CF-based trackers should be attributed
more to dense sampling than regularized regression. As
most leading non-CF based trackers are based on SVM [21],
[42], the incorporation of dense sampling and SVM could
further improve tracking performance and outperform
RLS-based methods. Unlike RLS-based CF-based methods
which impose symmetric penalty to the estimate error, the
proposed SCF model adopts the asymmetric squared hinge
loss by only penalizing the error caused by misclassifica-
tion. Thus, the convolutional outputs of SCF can be higher
for positive samples, and lower for negative samples, result-
ing in the non-smooth convolutional map in Fig. 2b.

Using the label assignment schemes in (7) and (8), we can
use the unlabeled samples in a semi-supervised learning
manner to alleviate the label ambiguity problem. The imp-
ortance of SVM and label ambiguity issues have been dem-
onstrated in object detection [16]. The proposed model
copes with both issues (classification and label ambiguity)
in dense sampling setting for effective visual tracking.

3.2 Alternating Optimization

In this section, we modify the model in (5) by taking unla-
beled samples into account, and propose an alternating
optimization algorithm to learn SCFs efficiently. To exploit
the property of the circulant matrix for learning SCFs, we
let �� ¼ eþ 1� y � ðF�1ðx̂� � ŵÞ þ b1Þ, and the semi-super-
vised SVMmodel in (5) is formulated as:

min
w;b;e;yiði2VuÞ

kwk2 þ Cky�ðF�1ðx̂��ŵÞ þ b1Þ � 1� ek22
s.t. e 	 0:

(11)

With this formulation, the subproblem on each of e, fw; bg,
and yiði 2 VuÞ has its own closed-form solution when the
other variables are given. Therefore, the solution of the

above model can be efficiently solved using the alternating
optimization algorithm by iterating between the following
three steps:

Updating e. Given fw; bg and yiði 2 VuÞ, we let
e0 ¼ y � ðF�1ðx̂� � ŵÞ þ b1Þ � 1, and the subproblem on e
becomes:

min
e
ke� e0k2; s.t. e 	 0: (12)

The e subproblem has the closed-form solution:

e ¼ maxfe0; 0g: (13)

Updating fw; bg. As y is the class label vector with
yi 2 f1;�1g, we have y � y ¼ 1 and ky � vk2 ¼ kvk2. Given e
and yiði 2 VuÞ, by letting q ¼ yþ y � e, the subproblem on
fw; bg becomes:

min
w;b
kwk2 þ CkF�1ðx̂� � ŵÞ þ b1� qk22: (14)

With u ¼ ½w; b�, we have the closed-form solution on u since
it is a quadratic programming problem. However, this
approach fails to exploit the circulant property of X. Instead,
we can eliminate b from (14). The mean vector of the circu-
lant matrix X can be written as �x ¼ 1

n2

Pn2

i¼1 xi ¼ �x1, where

�x ¼ 1
n2

Pn2

j¼1 xij. By defining Xc ¼ X� �x11> and xc ¼ x� �x, it

is clear that Xc is also a circulant matrix with x̂c ¼ FðxcÞ.
Then, the closed-form solution to the subproblem on fw; bg
can be obtained by the following lemma:

Lemma 1. The subproblem on fw; bg is reformulated as:

min
w
kwk2 þ CkX>c w� qck22: (15)

The optimal solutions tow and b are:

ŵ ¼ x̂�c � q̂c

x̂�c � x̂c þ 1
C

; b ¼ �q; (16)

where �q is the mean of q, and qc ¼ q� �q1.

The proof of Lemma 1 is given in Appendix A.1.
Updating yiði 2 VuÞ. Given e and fw; bg, yiði 2 VuÞ can be

updated by solving the following subproblem,

min
yi2f�1;1g

yiðw>xi þ bÞ � 1� ei
�� ��2; i 2 Vu;

and the closed-form solution is,

yi ¼
1; if w>xi þ b 	 0

�1; if w>xi þ b < 0:

�

The algorithm above can be easily extended to the fully-
supervision setting by excluding the step of updating
yiði 2 VuÞ. Thus, the proposed model can be used in either
fully or semi-supervision settings, and handle both SVM
classification and label ambiguity while exploiting the circu-
lant property.

As illustrated in Fig. 1, when the tth frame xt with class
labels yt arrives, the proposed algorithm learns support cor-
relation filters by iterating between updating e and updat-
ing fw; bg until convergence. The complexity of updating
yiði 2 VuÞ is Oðn2Þ. Given fxt; yt;w; bg, the updating of e can

Fig. 2. Differences between the proposed SCF model and existing CF
approaches [8], [23], [43]. (a) Existing CF-based models are designed to
learn correlation filters that make the actual output being close to the
predefined confidence maps. (b) The SCF model aims to learn a support
correlation filter together with the bias b for distinguishing a target object
from the background based on the max-margin principle. The peak value
in the right response map of (b) locates the target object well.
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be computed element-wise, which has the complexity of
Oðn2Þ. Given fxt; yt; eg, the complexity of updating b is
Oðn2Þ and that of updating w is Oðn2 lognÞ. Thus, the com-
plexity is Oðn2 lognÞ per iteration which makes our algo-
rithm efficient in learning support correlation filters. The
main steps of the proposed learning algorithm for support
correlation filters are summarized in Algorithm 1.

Algorithm 1. SCF Model Training

Input: training image patch xt n� nð Þ, center position p�

Output: ŵ; bð Þ.
1: Initialize ŵ0, b0, V

l;Vu, k ¼ 1,

2: 8i 2 Vl; ytðiÞ ¼
1; if mðpi;p

�Þ 	 uu
�1; if mðpi;p

�Þ 
 ul:

�
3: while not converged do
4: // Line 5-6 : update ek.
5: d ¼ yt � F�1 x̂�t � ŵk�1ð Þ þ b1

� �� 1,
6: ek ¼ max 0;dð Þ,
7: // Line 8-10 : update qk, bk, pk.
8: qk ¼ yt þ yt � ek,
9: bk ¼ meanðqkÞ,
10: pk ¼ qk � bk1,
11: // Line 12-13: updatewk.
12: xc ¼ xt � �xt1

13: ŵk ¼ x̂�c�p̂k
x̂�c�x̂cþ1=C,

14: // Line 15 : update yt.

15: 8i 2 Vu; ytðiÞ ¼ 1; if w>xtðiÞ þ b 	 0
�1; if w>xtðiÞ þ b < 0

�
16: k kþ 1.
17: end while

Convergence. In the fully-supervision setting, the objective
is a convex quadratic function and the linear constraint e 	 0
is convex, thereby making it solvable by convex optimiza-
tion. The proposed algorithm converges to the global opti-
mum with the q-linear convergence rate. For presentation
clarity, we give the detailed analysis and proof on its opti-
mality condition, global convergence, and convergence rate
in Appendix B. Based on the optimality condition, we define

r1 ¼: wþ CF�1ðx̂ � x̂� � ŵ� r̂Þ;
r2ðiÞ ¼: ei þ 1� ðy � ðF�1ðx̂� � ŵÞ þ bÞÞi; if ei > 0

r3ðiÞ ¼: ðy � ðF�1ðx̂� � ŵÞ þ bÞÞi � 1; if ei ¼ 0

8><
>: (17)

and adopt the following stopping criterion:

maxfkr1k1;max
ei > 0
fkr2ðiÞkg;max

ei¼0
fr3ðiÞgg 
 �: (18)

Comparisons with MMCF. The objective function of maxi-
mum margin correlation filters (MMCFs) [7], [35] includes
localization and max-margin criteria. The localization crite-
rion is used to exploit the circulant property with the stan-
dard CF form, while the max-margin criterion treats each
image as one sample and does not consider cyclic transla-
tions. In contrast, we directly use the circulant property in
the SVMwith themax-margin loss and develop a novel alter-
natingminimization algorithm to solve the proposedmodel.

Specifically, the proposed SCF model and learning algo-
rithm are different from the MMCF approach in three
aspects. First, the training samples for MMCF are N images
of n� n pixels, while those for SCF are n2 translated images

of n� n pixels. We exploit the circulant property of the data
matrix X to develop an efficient learning algorithm. Second,
we propose an alternating optimization algorithm to solve
the proposed model, which has the complexity of
Oðn2 lognÞ. In contrast, the MMCF method adopts the con-
ventional SMO algorithm with the complexity of OðN2dÞ
where d is the dimension of the sample. For visual tracking
considered in this work, we have N ¼ n2 and d ¼ n2, and
the complexity of MMCF is Oðn6Þ, which is computationally
expensive for real-time applications. Third, the proposed
model has the squared hinge loss and regularizer terms,
while the MMCFmethod adopts the hinge loss and includes
an extra CF-based localization term.

3.3 Multi-Channel SCF

Different local descriptors, e.g., color attributes, HOG, and
SIFT, provide rich image features for effective visual track-
ing. We treat local descriptors as multi-channel images
where multiple measurements are associated to each pixel.
To exploit multi-dimensional features, we propose the
multi-channel SCF as follows:

min
w;b;��;yiði2VuÞ

kwk2 þ Ck��k22

s.t. y � F�1
XL
l¼1
ðx̂lÞ� � ŵl

 !
þ b1

 !
	 1� ��;

(19)

where L is the number of channels, and xl andwl denote the
lth channel of the image and correlation filter, respectively.
To learn the proposed MSCF model, we adopt the same
equations on updating e, b and yiði 2 VuÞ, and compute w
by solving the following problem:

min
w

XL
l¼1
kŵlk2 þ Ck

XL
l¼1
ðx̂lÞ� � ŵl � r̂k22; (20)

where ŵ ¼ ½ŵ1; ŵ2; . . . ; ŵL�, and r̂ ¼ q̂� b1̂.
Let X̂ ¼ ½diagðx̂1Þ diagðx̂2Þ . . . diagðx̂LÞ�. The closed-form

solution for ŵ can be directly obtained by

ŵ ¼
�
X̂HX̂þ 1

C
I

	�1
X̂H r̂: (21)

where I is the identity matrix. Note that X̂ is an n2 � Ln2

matrix, ŵ is an Ln2 � 1 vector, and r̂ is an n2 � 1 vector. With
1 
 l 
 L and 1 
 j 
 n2, we use ŵlðjÞ to denote
ððl� 1Þn2 þ jÞth element of ŵ, and r̂ðjÞ denotes the jth ele-
ment of r̂. In addition, ŵðjÞ is introduced to denote the sub-
vector ŵðjÞ ¼ ½ŵ1ðjÞ; ŵ2ðjÞ; . . . ; ŵLðjÞ�> of ŵðr̂Þ. Similarly,
x̂l ð1 
 l 
 LÞ is an n2 � 1 vector. We use x̂lðjÞ to denote the
jth element of x̂l, and define the sub-vector x̂ðjÞ ¼ ½x̂1ðjÞ;
x̂2ðjÞ; . . . ; x̂LðjÞ�>. As X̂ has the diagonal block structure, ŵðjÞ
only depends on x̂ðjÞ and r̂ðjÞ. Hence, the subproblem on ŵ
can be further decomposed into n2 systems of equations:

x̂ðjÞx̂ðjÞH þ 1

C
I

� 	
ŵðjÞ ¼ x̂ðjÞr̂ðjÞ: (22)

Detailed derivation of (22) is provided in the supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2018.2829180.
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In [14], Galoogahi et al. solve these n2 systems of equa-
tions by an algorithm with the complexity of Oðn2L3 þ
Ln2 lognÞ. We note that the matrix on the left hand of (22) is
a rank-one matrix and a scaled identity matrix. Based on the
Sherman-Morrison-Woodbury formula [26] we have

x̂ðjÞx̂ðjÞH þ 1

C
I

� 	�1
¼ C I� Cx̂ðjÞx̂ðjÞH

1þ Cx̂ðjÞH x̂ðjÞ

 !
: (23)

The closed-form solution for ŵðjÞ is then obtained by

ŵðjÞ ¼ Cx̂ðjÞr̂ðjÞ
1þ Cx̂ðjÞH x̂ðjÞ : (24)

The expression in (24) is similar to the solution of single-
channel CF, i.e., MOSSE. However, the solution of MOSSE
is defined in the batch setting for all elements, but (24)
is in the element-wise setting for all channels. From (24),
the solution to the lth channel for all elements can be
written as:

ŵl ¼ C x̂l
� ��� r̂

1þ C
PL

l¼1 x̂l
� ��� x̂l : (25)

When L ¼ 1, the solution in (25) degrades to a SCF, which
has the same expression but adopts different definition on r̂
with MOSSE. For MOSSE, r̂ denotes the Fourier transform
of Gaussian-shaped confidence map. For SCF, r̂ is defined
as q̂� b1̂.

Using the Sherman-Morrison-Woodbury formula, we
provide a unified solution to both the single-channel and
multi-channel problems. It should be noted that all x̂ls can
be pre-computed with the complexity of Oðn2 lognÞ. As
such, the proposed algorithm only involves one DFT, one
IDFT and OðLn2Þ element-wise operations per iteration,
and the complexity is Oðn2 lognÞ.

3.4 Kernelized SCF

Given the kernel function Kðx; x0Þ ¼ hcðxÞ;cðx0Þi, the pro-
posed kernelized SCF model can be extended to learn the
nonlinear decision function:

fðxÞ ¼ w>cðxÞ þ b ¼
X
i

aiKðx; xiÞ þ b; (26)

where cðxÞ stands for the nonlinear feature mapping
implicitly determined by the kernel function Kðx; x0Þ, and
aa ¼ ½a1;a2; . . . ;an2 �> is the coefficient vector to be learned.

Denote by K the kernel matrix with Kij ¼ Kðxi; xjÞ. As
noted in [24], for some kernel functions (e.g., Gaussian RBF
and polynomial) which are permutation invariant, the ker-
nel matrix K is circulant. Let kxx be the first row of the circu-
lant matrix K. Therefore, the matrix-vector multiplication
Kaa can be efficiently computed via DFT:

Kaa ¼ F�1ðk̂xx � âaÞ; (27)

and we have,

kwk2 ¼ aa>Kaa ¼ aa>F�1ðk̂xx � âaÞ: (28)

Based on (27) and (28), the proposed kernelized SCF model
is formulated as

min
aa;b;e;yiði2VuÞ

aa>F�1ðk̂xx � âaÞ

þ Cky � ðF�1ðk̂xx � âaÞ þ b1Þ � 1� ek22
s.t. e 	 0:

(29)

We use the alternating optimization algorithm by itera-
tively solving e, faa; bg, and yiði 2 VuÞ. The solution of the
subproblems with e and yiði 2 VuÞ are similar to those in
the SCF model. By fixing e, the subproblem on faa; bg can be
reformulated as:

min
aa;b

aa>Kaaþ CkKaaþ b1� qk22; (30)

where q ¼ yþ y � e. Similar to [37], by considering the circu-
lant property ofKwe define the centered kernelmatrixKc as:

Kc ¼ K� �k11>; (31)

where �k is the mean of kxx. Let kxx
c denote the first row of the

circulant matrix Kc. The closed-form solution is given by the
following lemma:

Lemma 2. The solutions to the faa; bg in (30) are:

âa� ¼ q̂c

k̂xx
c þ 1

C

; b ¼ �q; (32)

where �q is the mean of q, and qc ¼ q� �q1.

The proof of Lemma 2 is given in Appendix A.2. For
image features with L channels, the complexity to compute
kernel matrix is OðLn2 lognÞ. After that, the learning pro-
cess only requires element-wise operations, one DFT and
one IDFT per iteration, and the complexity is Oðn2 lognÞ.
Thus, the proposed KSCF model leverages rich features
from the nonlinear filters without increasing computational
load significantly.

4 PERFORMANCE EVALUATION

We use the benchmark dataset and protocols [41] to evalu-
ate the proposed SCF algorithms. We evaluate several var-
iants of the proposed method, e.g., SCF, MSCF, KSCF, and
SKSCF, to analyze the effect of feature representations and
kernel functions. Similar to [12], we also implement a scale-
adaptive KSCF (SKSCF) method. The tracking results and
source code will be available at https://github.com/
wuxiaohe/SCF.

4.1 Experimental Setup

Datasets and Evaluated Tracking Methods. To assess the per-
formance of the proposed methods, experiments are carried
out on a benchmark dataset [41] of 50 challenging image
sequences annotated with 11 attributes. For the first frame
of each sequence, the bounding box of the target object is
provided for fair comparisons. For comprehensive compari-
sons, we evaluate the baseline SCF, multi-channel SCF, ker-
nelized SCF and scale-adaptive KSCF methods. The SCF
and MSCF methods are designed in the linear space with
raw pixels, and multi-channel features based on HOG [11]
as well as color names (CN) [13], respectively. The KSCF
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and SKSCF algorithms are evaluated by using the Gaussian
kernel on multi-channel feature representations. Further-
more, we compare the proposed trackers with the other
trackers based on correlation filters (e.g., MOSSE [8],
CSK [23], KCF [24], DCF [24], STC [43] and CN [13]), exist-
ing SVM based trackers (e.g., Struck [21] and MEEM [42]),
and other state-of-the-art methods (e.g., TGPR [15],
SCM [45], TLD [28], L1APG [5], MIL [3], ASLA [27] and
CT [44]).

Evaluation Protocols. We use the one-pass evaluation
(OPE) protocol [41] which reports the precision and success
plots based on the position error and bounding box overlap
metrics with respect to the ground truth object locations.
For precision plots, the distance precision at a threshold
of 20 pixels (DP) is reported. For success plots, the area
under the curve (AUC) is computed. In addition, the frames
per second (FPS) that each method is able to process is
discussed.

Parameter Settings. The experiments are carried out on a
desktop computer with an Intel Xeon 2 core 3.30 GHz CPU
and 32 GB RAM. The proposed SCF-based trackers involve
a few model parameters, i.e., trade-off parameter C, scale
parameter a and shape parameter b of confidence maps,
and lower and upper thresholds (ul, uu) in (8). The KSCF
method has one extra parameter s for the Gaussian RBF ker-
nel function, and the SKSCF scheme has two other parame-
ters: number of scales S and scale factor a. For online
tracking, the model is updated by linear interpolation with
the adaption rate r [23], [24].

In all experiments, the model parameters are fixed for
each SCF-based tracker. For all SCF-based trackers, the
trade-off C and shape parameter b are fixed to 104 and 1.5,
respectively. We empirically find that the optimal setting
for the thresholds (ul, uu) in (8) may be affected by the intro-
duction of multi-channel features, kernel function, and scale
estimation. Thus, we set (ul, uu) to ð0:3; 0:7Þ for SCF, ð0:4; 0:9Þ
for MSCF, ð0:5; 0:6Þ for KSCF and ð0:3; 0:6Þ for SKSCF. We
choose the number of scales S ¼ 21 and scale factor a ¼ 1:04
for SKSCF. The adaption rate r is set to 0.075 for raw pixel
features, and 0.025 for multi-channel features, respectively.
The kernel parameter s is set to 0.2 for KSCF, and 0.5 for
SKSCF. The orientations and cell size are set to 9 and 4 for
HOG features.

4.2 Evaluation on SCF-Based Trackers

In this section, we first evaluate the effect of feature repre-
sentations and kernel functions, and then compare four var-
iants of the SCF-based trackers, i.e., SCF, MSCF, KSCF, and
SKSCF, in terms of both accuracy and efficiency. The results
of the corresponding CF-based trackers are also reported
for all SCF-based methods.

We consider three typical feature representations, i.e.,
raw pixels, HOG features [11], and color names (CN) [13].
The results of the MSCF and KSCF methods are listed in
Tables 1 and 2. The result for each feature representation is
optimal by varying the parameters b 2 f0:5; 1; 1:5; 2g,
r 2 f0:02; 0:04; 0:075g, ul 2 f0:3; 0:4; 0:5g and uu 2 f0:6; 0:7;
0:8; 0:9g. These parameters are then fixed for all the follow-
ing experiments. The Gaussian RBF kernel width s is set to
0.2 for KSCF, and 0.5 for SKSCF.

The OPE plots of MSCF with linear DCF [24] and KSCF
with nonlinear KCF [24] are shown in Figs. 3 and 4. Com-
pared with raw pixels and CN features, the method with
HOG representation significantly improves the tracking
performance in terms of mean DP and mean AUC. For
MSCF, the implementation using CN and HOG features
outperforms raw pixels by 1.4% and 13.5% in terms of
mean DP. For KSCF, the tracker using CN and HOG fea-
tures outperforms raw pixels by 3.7% and 14.9% in terms
of mean DP. The MSCF tracker with the combination of
CN and HOG is further improved to 80.6% in terms of
DP. Similarly, the performance of the KSCF method is
improved to 85.0% in terms of DP with the use of CN
and HOG features. Compared with the DCF [24] and
KCF [24] methods, the proposed MSCF and KSCF
algorithms achieve higher DP and AUC values for each
feature representation. Tables 1 and 2 show that both
KSCF and MSCF perform in real-time even using the

TABLE 1
Results of MSCF and DCF [24] (MSCF/DCF) with

Different Feature Representations

Features Raw pixels CN HOG HOG þ CN

Mean DP (%) 64.9/44.4 66.3/48.0 78.4/71.9 80.6/76.2
Mean AUC (%) 44.6/31.2 44.9/34.8 53.7/50.1 55.5/53.2
Mean FPS (s) 76/278 62/210 64/292 54/151

TABLE 2
Results of KSCF and KCF [24] (KSCF/KCF) with Different

Feature Representations

Features Raw pixels CN HOG HOG þ CN

Mean DP (%) 64.4/55.3 68.1/57.3 79.3/73.2 85.0/75.8
Mean AUC (%) 45.3/40.0 46.9/41.8 53.2/50.7 57.5/53.0
Mean FPS (s) 40/154 37/120 44/172 35/102

Fig. 3. OPE plots of the MSCF and DCF [24] with different feature repre-
sentations. The AUC values are shown next to the legends.

Fig. 4. OPE plots of the KSCF and KCF [24] methods with different fea-
ture representations.
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representation based on HOG and CN features. Note that
DCF and KCF [24] are based on the RLS model. The
results indicate that SVM with squared hinge loss per-
forms much better than RLS in visual tracking.

Furthermore, we evaluate the effects of kernel func-
tions on KSCF using HOG and CN features, including
linear kernel Klðxi; xjÞ ¼ x>i xj, polynomial kernel Kpðxi;
xjÞ ¼ ðx>i xj þ 1Þd, and Gaussian RBF kernel Kgðxi; xjÞ ¼
expð� 1

2s2
kxi � xjk2Þ. For Kpðxi; xjÞ, the degree d is set as

2. For Kgðxi; xjÞ, the kernel parameter s is set as 0.2.
Table 3 shows the results of KSCF with different kernels.
Clearly the KSCF method with a nonlinear kernel out-
performs the one with a linear kernel in terms of mean
DP and mean AUC, and the one with Gaussian RBF ker-
nel achieves the best performance.

We implement the SKSCF method by extending KSCF
with the Gaussian RBF kernel, and compare four variants
of the SCF-based trackers, i.e., SCF, MSCF, KSCF, and
SKSCF. Table 4 shows the results of four SCF-based
trackers, where the SKSCF method performs best, fol-
lowed by the KSCF approach. On the other hand, the
KSCF method is more efficient than the SKSCF approach.
In the following experiments, we compare both KSCF
and SKSCF methods with the other schemes based on
correlation filters, SVMs, and other state-of-the-art track-
ing approaches.

4.3 Comparisons with CF-Based Trackers

We use the tracking benchmark dataset [41] to evaluate the
proposed SCF-based algorithm against existing CF-based
methods including MOSSE [8], CSK [23], KCF [24],
DCF [24], STC [43], CN [13], DSST [12] and SAMF [31]. For
fairness, we also report the results of DCF and KCF based
on HOG+CN features.

Classic Correlation Filters. Fig. 5 shows the OPE plots of
these trackers. The SCF, MOSSE [8], CSK [23] and
STC [43] methods operate on raw pixels in the linear
space. We note that the MOSSE method adopts the ridge
regression function while the SCF algorithm uses the
max-margin model. Although the CSK and STC methods
operate on raw pixels, the CSK method is a kernelized
CF-based tracker and the STC approach is a scale-adap-
tive tracking method. Overall, the SCF algorithm per-
forms favorably against these CF-based methods based
on regression and nonlinear kernels.

Multi-Channel Correlation Filters. The MSCF, CN [13], and
DCF [24] methods are based on correlation filters using
multi-channel features. The DCF method is based on HOG
features and the CN approach is operated on color attrib-
utes, while the MSCF scheme uses the combination of HOG
and color representations. Fig. 5 shows that the MSCF
method performs well among these three trackers based on
correlation filters.

Kernelized Correlation Filters. The KSCF method is com-
pared with the corresponding kernelized KCF [24] and
CSK [23] trackers. The CSK and KCF methods are based on
raw pixels and HOG features, respectively. As shown in
Table 4 and Fig. 6, the KSCF method based on HOG and
CN features performs favorably against the KCF and CSK
approaches.

Scale-Adaptive Correlation Filters. The KSCF and SKSCF
are evaluated against three scale-adaptive trackers:
STC [43], DSST [12] and SAMF [31]. We note that the

TABLE 3
Results of KSCF with Different Kernels

Kernels Linear Polynomial Gaussian

Mean DP (%) 82.0 84.2 85.0
Mean AUC (%) 56.2 57.1 57.5
Mean FPS (s) 94 55 35

TABLE 4
Performance of Tracking Methods Based on Correlation Filters: Top Three Results Are Shown in Red, Blue and Orange

Algorithms SKSCF KSCF MSCF SCF
KCF

(HOG+CN)
DCF

(HOG+CN)
SAMF
[31]

DSST
[12]

KCF
[24]

DCF
[24]

CN
[13]

STC
[43]

CSK
[23]

MOSSE
[8]

Mean DP (%) 87.4 85.0 80.6 62.8 75.8 76.2 77.1 74.8 73.2 71.9 63.7 58.6 55.8 44.4
Mean AUC (%) 62.3 57.5 55.5 48.9 53.0 53.2 56.5 56.3 50.7 50.1 44.9 37.4 40.6 31.3
Mean FPS (s) 8 35 54 76 102 151 14 30 172 292 79 557 151 421

Fig. 5. OPE plots of the SCF methods (i.e., SCF, MSCF, KSCF, and
SKSCF) and other CF-based trackers (i.e., MOSSE [8], CSK [23], DCF
[24], KCF [24], STC [43], CN [13], DSST [12] and SAMF [31]).

TABLE 5
Comparison of KSCF, SKSCF, and the State-of-the-Art Trackers (Top Three Are Shown in Red, Blue and Orange)

Algorithms SKSCF KSCF
MEEM
[42]

KCF
[24]

TGPR
[15]

SCM
[45]

TLD
[28]

ASLA
[27]

L1APG
[5]

MIL
[3]

CT
[44]

Mean DP (%) 87.4 85.0 83.3 73.2 71.8 65.2 60.6 54.5 49.4 48.8 41.5
Mean AUC (%) 62.3 57.5 57.2 50.7 51.1 50.1 43.4 44.2 38.6 36.9 30.8
Mean FPS (s) 8 35 10 172 0.5 1 22 8 3 28 39
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DSST [12] and SAMF [31] methods have been shown to
perform best and second best trackers in the recent track-
ing benchmark evaluation [29]. Both KSCF and SKSCF
trackers perform significantly better than the STC
method. In addition, the KSCF and SKSCF methods also
significantly outperform the DSST and SAMF approaches
by a large margin. Fig. 7 shows the OPE plots on all the
sequences with the attribute of scale variation where the
KSCF method performs favorably against the DSST and
SAMF trackers. Overall, the KSCF algorithm performs
favorably in terms of accuracy and speed.

4.4 Comparisons with SVM-Based Trackers

We evaluate the proposed KSCF and SKSCF with two
state-of-the-art SVM-based methods, i.e., Struck [21] and
MEEM [42], based on the structured and ensemble learn-
ing. Table 6 and Fig. 8 show that both KSCF and SKSCF
algorithms perform favorably against the MEEM and
Struck methods in all aspects. As shown in Fig. 6, the
KSCF algorithm can track target objects more precisely

than other methods in the Singer2, Coke, Suv and Tiger2
sequences. The results show that dense sampling can be
efficiently used with SVMs for effective visual tracking.
Fig. 6 shows that the KSCF algorithm can track the
objects more precisely in all challenging sequences,
while the other trackers tend to drift away from the
target objects.

4.5 Comparisons with State-of-the-Art Trackers

We evaluate the KSCF algorithm with the other state-of-the-
art trackers, including MEEM [42], KCF [24], TGPR [15],
SCM [45], TLD [28], L1APG [5], MIL [3], ASLA [27] and CT
[44]. Fig. 10 shows the OPE plots, and Table 5 presents the

Fig. 6. Screenshots of tracking results on 8 challenging benchmark sequences. For the sake of clarity, we only show the results of six trackers, i.e.,
KSCF, KCF [24], MEEM [42], TGPR [15], Struck [21] and SCM [45].

Fig. 7. OPE plots of the KSCF, SKSCF, DSST [12] and SAMF [31] meth-
ods on sequences with large scale variation.

Fig. 8. OPE plots of the KSCF, SKSCF and other SVM-based trackers,
including MEEM [42] and Struck [21].

TABLE 6
Comparison of SVM-Based Trackers

Algorithms SKSCF KSCF MEEM [42] Struck [21]

Mean DP (%) 87.4 85.0 83.3 67.4
Mean AUC (%) 62.3 57.5 57.2 48.6
Mean FPS (s) 8 35 10 10
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mean DP, AUC and FPS. Overall, the proposed KSCF and
SKSCF algorithms perform favorably against the state-of-
the-art methods including the TLD, SCM, TGPR and MEEM
schemes.

The sequences in the benchmark dataset [41] are anno-
tated with 11 challenging attributes for visual tracking,
including illumination variation (IV), scale variation (SV),
occlusion (OCC), deformation (DEF), motion blur (MB), fast
motion (FM), in-plane rotation (IPR), out-of-plane rotation
(OPR), out-of-view (OV), background clutter (BC), and low
resolution (LR). Table 7 shows the performance of the
SKSCF, KSCF and state-of-the-art methods in terms of preci-
sion and success rate with respect to each challenging attrib-
utes. Fig. 9 shows the statistics of precision and success rate
of the leading trackers (i.e., SKSCF, KSCF, MEEM, KCF and
TGPR) with respect to the attributes. We note that MEEM
[42] adopts the multiple experts framework to deal with
model drift, and performs slightly better than KSCF for
attributes FM, LR, OV and SV. Overall, the KSCF algorithm
are among the top 3 trackers for any attribute, and the

SKSCF algorithm performs best in both metrics for all but
one attribute.

5 CONCLUSIONS

We propose an effective and efficient approach to learn sup-
port correlation filters for real-time visual tracking. By refor-
mulating the SVM model with circulant data matrix as
training input, we present a DFT based alternating optimiza-
tion algorithm to learn support correlation filters efficiently.
In addition, we develop the MSCF, KSCF, and SKSCF track-
ers to exploit multidimensional features, kernelized classi-
fiers, and scale-adaptive schemes. Experiments on a large
benchmark dataset show that the proposedKSCF and SKSCF
algorithms perform favorably against the state-of-the-art
trackingmethods in terms of accuracy and speed. Our future
work includes developing optimization algorithms to solve
SVM with hinge loss, evaluating the effect of classification
models on SCF-based tracking, and applying SVMs with cir-
culant training data matrix to other vision tasks such as
object detection and localization.

Fig. 9. Precision and success metrics of four top-performing trackers for
the 11 attributes.

Fig. 10. OPE plots of the KSCF, SKSCF and other state-of-the art track-
ers, including MEEM [42], TGPR [15], KCF [24], SCM [45], TLD [28],
ASLA [27], L1APG [5], MIL [3] and CT [44].

TABLE 7
Precision (Top) and Success Rate (Bottom) of the Evaluated Trackers (Top Three Are Shown in Red, Blue and Orange)

Attributes FM BC MB DEF IV IPR LR OCC OPR OV SV

Precision

SKSCF 0.779 0.859 0.802 0.893 0.841 0.810 0.596 0.872 0.857 0.800 0.809
KSCF 0.680 0.825 0.761 0.854 0.805 0.816 0.555 0.852 0.836 0.697 0.768

MEEM [42] 0.745 0.802 0.721 0.856 0.771 0.796 0.529 0.801 0.840 0.726 0.795
TGPR [15] 0.579 0.763 0.570 0.760 0.695 0.683 0.567 0.668 0.693 0.535 0.637
KCF [24] 0.564 0.752 0.599 0.747 0.687 0.692 0.379 0.735 0.718 0.589 0.680
SCM [45] 0.346 0.578 0.358 0.589 0.613 0.613 0.305 0.646 0.621 0.429 0.672
TLD [28] 0.557 0.428 0.523 0.495 0.540 0.588 0.349 0.556 0.593 0.576 0.606
ASLA [27] 0.255 0.496 0.283 0.473 0.529 0.521 0.156 0.479 0.535 0.333 0.552
L1APG [5] 0.367 0.425 0.379 0.398 0.341 0.524 0.460 0.475 0.490 0.329 0.472
MIL [3] 0.415 0.456 0.381 0.493 0.359 0.465 0.171 0.448 0.484 0.393 0.471
CT [44] 0.330 0.339 0.314 0.463 0.365 0.361 0.152 0.429 0.405 0.336 0.448

Attributes FM BC MB DEF IV IPR LR OCC OPR OV SV

Success

SKSCF 0.729 0.795 0.757 0.863 0.743 0.720 0.542 0.788 0.757 0.808 0.682
KSCF 0.629 0.741 0.689 0.779 0.649 0.690 0.389 0.696 0.697 0.705 0.540

MEEM [42] 0.706 0.747 0.692 0.711 0.653 0.648 0.470 0.694 0.694 0.742 0.594
TGPR [15] 0.542 0.713 0.570 0.711 0.632 0.601 0.501 0.592 0.603 0.546 0.505
KCF [24] 0.516 0.669 0.539 0.668 0.534 0.575 0.358 0.593 0.587 0.589 0.477
SCM [45] 0.348 0.550 0.358 0.566 0.586 0.574 0.308 0.602 0.576 0.449 0.635
TLD [28] 0.475 0.388 0.485 0.434 0.461 0.477 0.327 0.455 0.489 0.516 0.494
ASLA [27] 0.261 0.468 0.284 0.485 0.514 0.496 0.163 0.469 0.509 0.359 0.544
L1APG [5] 0.359 0.404 0.363 0.398 0.298 0.445 0.458 0.437 0.423 0.341 0.407
MIL [3] 0.353 0.414 0.261 0.440 0.300 0.339 0.157 0.378 0.369 0.416 0.335
CT [44] 0.327 0.323 0.262 0.420 0.308 0.290 0.143 0.360 0.325 0.405 0.342
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APPENDIX A
PROOF

A.1 Solution to the fw; bg Subproblem
Proof. The subproblem on fw; bg can be rewritten as

min
w;b

fðw; bÞ ¼ wk k2 þ CkX>wþ b1� qk22
n o

: (33)

The optimal solution of b satisfies the following condition

@fðw; bÞ
@b

¼ 2C 1>X>wþ bn2 � 1>q
� � ¼ 0

) b ¼ 1

n2
1>q� 1>X>w
� �

:

(34)

Let X ¼ Xc þ �x11>. Note that Xc is a centralized matrix

and has X>c 1 ¼ 0 as well as Xc1 ¼ 0. Thus we have

1>X>w ¼ 1>X>c wþ �x1>11>w ¼ n2 �x1>w and

b ¼ �q � �x1>w: (35)

By substituting X>w ¼ X>c wþ �x11>w and (35) into (33),
we have

min
w
kwk2 þ CkX>c w� qck22: (36)

Similar to (34), the optimal solution of w satisfies the fol-
lowing condition,

@fðw; bÞ
@w

¼ 2wþ 2CXc X>c w� qc

� � ¼ 0

) w ¼ XcX
>
c þ

1

C
I

� 	�1
Xcqc:

(37)

Since Xc is a circulant matrix, we have

ŵ ¼ x̂�c � q̂c

x̂�c � x̂c þ 1
C

: (38)

From (37), we have

1>w ¼ 1>Xcqc � C1>XcX
>
c w; (39)

As 1>Xc ¼ 0>, we have 1>w ¼ 0. The closed-form solu-
tion to b can be rewritten as

b ¼ �q: (40)

tu

A.2 Solution to the faa; bg Subproblem
Proof. Let gðaa; bÞ ¼ aa>Kaaþ CkKaaþ b1� qk22. The optimal

solution to b satisfies the following condition:

@gðaa; bÞ
@b

¼ 2C 1>Kaaþ bn2 � 1>q
� � ¼ 0

) b ¼ �q � 1

n2
1>Kaa:

(41)

Note that K ¼ Kc þ �k11> and 1>Kc ¼ 0>. We have

b ¼ �q � �k1>a ¼ �q � n2 �k�a: (42)

By substituting (31) and (42) into (30), we have

min
aa

aa>Kcaaþ �kaa>11>aaþ CkKcaa� qck22: (43)

Let �a be the mean of aa. We have aac ¼ aa� �a1 and (43)
becomes

min
aac;�a

aa>c Kcaac þ n4 �k�a2 þ CkKcaac � qck22: (44)

From (44), the optimal solution to �a should be �a ¼ 0.
Based on kernel ridge regression [33], the optimal solu-
tion to aac (i.e., aa) can be obtained by

âa ¼ âac ¼ q̂c

k̂xx
c þ 1

C

: (45)

By substituting �a ¼ 0 into (42), the solution to b becomes,

b ¼ �q: (46)

tu
APPENDIX B
CONVERGENCE ANALYSIS

B.1 Optimality Conditions

In the spatial domain, the SCF model can be expressed as:

ðw; b; eÞ ¼ arg min
w;b;e

wk k2 þ Cky�ðX>wþ b1Þ � 1 � ek22;
s.t. e 	 0

(47)

Defining the augmented vector ~x ¼ x>; 1½ �> with x 2 Rn, we
compute the augmented weight vector ~w ¼ w>; b½ �>. The
above problem can then be reformulated as:

ð ~w; eÞ ¼ arg min
~w;e

~w>~I ~wþ Ck~X> ~w � y � y � ek22;
s.t. e 	 0

(48)

where ~X ¼ X>; 1

 �>

and ~I ¼ I 0
0> 0

� 

. We introduce an indi-

cator function dðeiÞ ¼ þ1 ; if ei < 0
0 ; if ei 	 0

�
and the subdiffer-

ential [34] of dðeiÞ is:

@dðeiÞ ¼
0; if ei > 0

ð�1; 0Þ; if ei ¼ 0

f(undefined); if ei < 0:

8><
>: (49)

As the loss function (48) is convex, ð ~w�; e�Þ is a solution if
and only if the subdifferential of the loss at ð ~w�; e�Þ contains
zero [10]. Thus, the optimality conditions are:

~I ~wþ C~Xð~X> ~w� y� y � eÞ ¼ 0

ei þ 1� yi~x
>
i ~w ¼ 0; if ei > 0;

yi~x
>
i ~w� 1 
 0; if ei ¼ 0;

(
(50)

where ~xi is the ith training sample. With � ¼ 1
C, we have:

det �~Iþ ~X~X
>� �
¼ det

�Iþ XX>
P

i xiP
i x
>
i n2

" # !

¼ n2 det XX> þ �I� 1

n2

X
i

xi
X
i

x>i

 !

¼ n2 det XcX
>
c þ �I

� �
;

(51)
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where Xc ¼ x1 � �x; . . . ; xn � �x½ � with �x ¼ 1
n

P
i xi. Thus the

matrix ð�~Iþ ~X~X
>Þ is invertible. For simplicity, let M ¼

~Iþ C~X~X
>
, from (50) and above equation, we have

~w ¼ CM�1 ~X yþ y � eð Þ; (52)

ðCy �M�1 ~Xðyþ y � eÞ � 1Þi
¼ ei; if ei > 0;

< 0; if ei ¼ 0;

�
(53)

Based on the optimality conditions in (50), we define

r1 ¼ ~I ~wþ C~Xð~X> ~w� y� y � eÞ;
r2ðiÞ ¼ ei þ 1� yi~x

>
i ~w 8ei > 0;

r3ðiÞ ¼ yi~x
>
i ~w� 1 8ei 
 0;

8><
>: (54)

and use the stopping criterion:

max r1k k1;max
ei > 0

r2ðiÞk k;max
ei¼0

r3ðiÞk k
� �


 �; (55)

where � > 0 is a predefined threshold.

B.2 Global Convergence

To compute e, we reformulate the subproblem for each
entry:

ẑ ¼ argmin
z

1

2
z� z0k k2 þ dðzÞ; (56)

where dðzÞ ¼ þ1; if z < 0
0; if z 	 0

�
. The solution is given by:

ẑ ¼ gðz0Þ ¼ z0; if z0 	 0;
0; if z0 < 0;

�
(57)

Proposition 1. For any a; b 2 R, we have:

gðaÞ � gðbÞk k2 
 a� bk k2; (58)

where the equality holds only if gðaÞ � gðbÞ ¼ a� b.

Proof.

(1) if a; b 	 0, gðaÞ � gðbÞk k2 ¼ a� bk k2, and we also have
gðaÞ � gðbÞ ¼ a� b.

(2) if a; b < 0, gðaÞ � gðbÞk k2 ¼ 0 
 a� bk k2, where the
equality holds only if a ¼ b.

(3) if ab 
 0, e.g., b 
 0, it is easy to see that, a2 

aj j þ bj jð Þ2.

tu
For simplicity, let U ¼ ~XdiagðyÞ. We have UU> ¼ ~X~X

>

and then we get two symmetric positive definite matrices as
follows:

M ¼ ~Iþ C~X~X
> ¼ ~Iþ CUU>; (59)

T ¼ CU>ð~Iþ CUU>Þ�1U ¼ CU>M�1U; (60)

where rðTÞ 
 1 and rðTÞ is the spectral radius of matrix T
[26]. With the definitions of M and T, the updating rules ~w
and e can be written as:

ekþ1 ¼ gðU> ~wk � 1Þ ¼ gðTð1þ ekÞ � 1Þ ¼ g � hðekÞ; (61)

~wkþ1 ¼ CM�1Uð1þ ekþ1Þ; (62)

Let hðekÞ ¼ Tð1þ ekÞ � 1, we have the following proposition.

Proposition 2. For any e 6¼ ê, the following inequality holds:

hðeÞ � hðêÞk k 
 e� êk k; (63)

and the equality holds if and only if hðeÞ � hðêÞ ¼ e� ê.

Proof. Note that rðTÞ 
 1. From the definition of hðeÞ, we
have:

hðeÞ � hðêÞk k ¼ Tðe� êÞk k 
 rðTÞ e� êk k < e� êk k;
(64)

Denote the eigen-decomposition of T by T ¼ Q>LQ,
where Q is a full rank orthogonal matrix, and L is a diag-

onal matrix with 0 
 �i 
 1. The equality hðeÞ � hðêÞk k ¼
e� êk k can be written as Q>LQðe� êÞ�� �� ¼ e� êk k.

Since Q is full-rank orthogonal, there is e� êk k ¼
Qðe� êÞk k. Thus, we have LQðe� êÞk k ¼ Qðe� êÞk k.
Let L ¼ diagð½�1; . . . ;�n2þ1�Þ and Qðe� êÞ ¼ ½a1; . . . ; an2þ1�.

We have LQðe� êÞk k2 ¼Pi �
2
i a

2
i and Qðe� êÞk k2 ¼P

i a
2
i . As 0 
 �i 
 1, we have �2

i a
2
i 
 a2i . The equalityP

i �
2
i a

2
i ¼

P
i a

2
i holds only if we have �2

i a
2
i ¼ a2i for any

i. That is, for any i, it is required that �i ¼ 1 or ai ¼ 0,
and it is equivalent to �iai ¼ ai. Thus, we have

LQðe� êÞ ¼ Qðe� êÞ. Multiplying both side Q>, we

have Tðe� êÞ ¼ hðeÞ � hðêÞ ¼ e� ê. tu
Definition 1 (Fixed point [17]). Given a linear operator, a

point x� is a fixed point if x� ¼ fðx�Þ. We next provide the fol-
lowing property for fixed points of the operator g � h.

Lemma 3. Given any fixed point ê of g � h, for any e, we have:

g � hðeÞ � g � hðêÞk k < e� êk k; (65)

unless e is a fixed point of g � h.
Proof. From Propositions 1 and 2, it holds:

g � hðeÞ � g � hðêÞk k < hðeÞ � hðêÞk k < e� êk k; (66)

unless g � hðeÞ � g � hðêÞ ¼ hðeÞ � hðêÞ ¼ e� ê. Thus if
g � hðêÞ ¼ ê, we have g � hðeÞ ¼ e. tu

Theorem 1 (Global convergence). The sequence ð ~wk; ekÞ� �
generated by our algorithm from any starting point ð ~w0; e0Þ
converges to a solution ð ~w�; e�Þ of the optimization problem.

Proof. First we prove that ek converges to a fixed point.
Note that g � h is non-expansive, thus the sequence fekg
lies in a compact region and ek converges to one limit
point e� at least. We assume e� ¼ lim

j!1
ekj and let ê be any

fixed point of g � h with ê ¼ g � hðêÞ. Then the following
formula is established:

ek � ê
�� �� ¼ g � hðek�1Þ � g � hðêÞ�� �� 
 ek�1 � ê

�� ��; (67)
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Based on above, we get the limit as below:

lim
k!1

ek � ê
�� �� ¼ lim

j!1
ekj � ê
�� �� ¼ e� � êk k; (68)

which shows that more than one of all limit points of fekg
have an equal distance to ê. Because of the continuity of
g � h, we have:

g � hðe�Þ ¼ lim
j!1

g � hðekjÞ ¼ lim
j!1

ekjþ1: (69)

Thus, g � hðe�Þ is also a limit point of sequence fekg and it
must have an equal distance to ê:

e� � êk k ¼ g � hðe�Þ � êk k ¼ g � hðe�Þ � g � hðêÞk k: (70)

According to Lemma 3, we know g � hðe�Þ ¼ e�. Since ê
is any fixed point of g � h, with the continuity of g � hðe�Þ,
the convergence: lim

k!1
ek ¼ e� is obtained. We next show

that e� satisfies the optimization condition in (53). With

the definition of T, g and h, we have:

g � hðeÞ ¼ gðTð1þ eÞ � 1Þ

¼ gðCU>ð~Iþ CUU>Þ�1Uð1þ eÞ�1Þ ¼ ei; if ei > 0

< 0; if ei ¼ 0;

�
(71)

which can be written as e ¼ g � hðeÞ. Considering
g � hðe�Þ ¼ e�, the solution e� satisfies the optimization
conditions and the proposed algorithm converges to the
global optimum. tu

B.3 Q-Linear Convergence Rate

Theorem 2 (Convergence rate). The sequence ð ~wk; ekÞ� �
generated by our algorithm satisfies the following three
conditions:

(1) ekþ1 � e�
�� �� 
 ffiffiffiffiffiffiffiffiffiffiffiffi

rðT2Þ
q

ek � e�
�� ��,

(2) U>ð ~wkþ1 � ~w�Þ�� �� 
 ffiffiffiffiffiffiffiffiffiffiffiffi
rðT2Þ

q
U>ð ~wk � ~w�Þ�� ��,

(3) ~wkþ1 � ~w�
�� ��

M

 ffiffiffiffiffiffiffiffiffiffi

rðTÞp
~wk � ~w�
�� ��

M
.

Proof. Note that g � h is non-expansive, according to Propo-
sition 1, we have:

~wkþ1 � ~w� ¼ CM�1U ekþ1 � e�
� �

; (72)

ekþ1�e��� ��2 ¼ g � hðekÞ � g � hðe�Þ�� ��2 
 U>ð ~wk � ~w�Þ�� ��2
(73)

Under the definition of T, there is: U>ð ~wk � ~w�Þ�� ��2 ¼
Tðek � e�Þ�� ��2, and thus

ekþ1 � e�
�� ��2 
 Tðek � e�Þ�� ��2; (74)

Consequently, we have:

ekþ1 � e�
�� ��2 
 ek � e�

� �>
T2
� �

ek � e�
� � 
 rðT2Þ ek � e�

�� ��2:
(75)

By reformulating above, condition 1 can be satisfied:

ekþ1 � e�
�� �� 
 ffiffiffiffiffiffiffiffiffiffiffiffi

rðT2Þ
q

ek � e�
�� ��: (76)

Multiplying ~X
>
on both sides of (72), and combining with

(73), we obtain:

U> ~wkþ1 � ~w�
� ��� ��2 ¼ Tðekþ1 � e�Þ�� ��2
 rðT2Þ ekþ1 � e�

�� ��2

 rðT2Þ U> ~wk � ~w�

� ��� ��2;
(77)

which can be reformulated as:

U>ð ~wkþ1 � ~w�Þ�� �� 
 ffiffiffiffiffiffiffiffiffiffiffiffi
rðT2Þ

q
U>ð ~wk � ~w�Þ�� ��; (78)

and satisfies condition 2. From (72), we have:

~wkþ1 � ~w�
�� ��2

M
¼ ekþ1 � e�
� �>

T ekþ1� e�
� � 
 rðTÞ ekþ1 � e�

�� ��2:
(79)

Combining (73) and the definition ofM, we have:

~wkþ1 � ~w�
�� ��

M



ffiffiffiffiffiffiffiffi
rðTÞ

p
U>ð ~wk � ~w�Þ�� ��
 ffiffiffiffiffiffiffiffi

rðTÞ
p

~wk � ~w�
�� ��

M
: (80)

Thus, condition 3 holds and ~wk converges to ~w� q-line-
arly [1]. tu
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