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Abstract— Model drifting is one of the knotty problems that
seriously restricts the accuracy of discriminative trackers in
visual tracking. Most existing works usually focus on improving
the robustness of the target appearance model. However, they
are prone to suffer from model drifting due to the inappropriate
model updates during the tracking-by-detection. In this paper,
we propose a novel update-pacing framework to suppress the
occurrence of model drifting in visual tracking. Specifically,
the proposed framework first initializes an ensemble of trackers,
each of which updates the model in a different update interval.
Once the forward tracking trajectory of each tracker is deter-
mined, the backward trajectory will also be generated by the
current model to measure the difference with the forward
one, and the tracker with the smallest deviation score will be
selected as the most robust tracker for the remaining tracking.
By performing such self-examination on trajectory pairs, the
framework can effectively preserve the temporal context con-
sistency of sequential frames to avoid learning corrupted infor-
mation. To further improve the performance of the proposed
method, a multi-feature extension framework is also proposed to
incorporate multiple features into the ensemble of the trackers.
The extensive experimental results obtained on large-scale object
tracking benchmarks demonstrate that the proposed framework
significantly increases the accuracy and robustness of the under-
lying base trackers, such as DSST, Struck, KCF, and CT, and
achieves superior performance compared with the state-of-the-art
methods without using deep models.

Index Terms— Object tracking, model drifting, trajectory
selection, multi-feature, temporal context.

I. INTRODUCTION

V ISUAL tracking is the task of learning an arbitrary target,
which is generally an unknown object located within a

rectangular bounding box in the first frame, and then predict-
ing the location of the selected target in the subsequent frames.
Although numerous object tracking algorithms have been
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proposed over the past decade [1]–[4], developing a robust and
accurate visual tracker remains a challenging problem because
of variations in appearance and shape, illumination changes,
occlusion, background clutter and abrupt motion, to name a
few. Based on the difference of the underlying state inference
for each video frame, these tracking algorithms can be roughly
classified as filtering-based visual object tracking approaches
and tracking-by-detection methods [5].

The filtering-based visual object tracking approaches exten-
sively use the probabilistic state-space model, which can
be separated into the measurement model and the system
model [6]–[8]. The system model describes the transition of
the state of the target object from one frame to the next frame,
whereas the measurement model provides the approximated
position of the target object given the current information of
the state. Two representative types of filtering-based trackers,
i.e., Kalman filter [9] and particle filter [10], have achieved
positive tracking performance. However, such approaches are
prone to mismatch between the underlying model description
and reality.

Tracking-by-detection is another approach that attempts to
directly approximate the posterior distribution of the target
object state using a discriminative model based on the informa-
tion from the current frame and the tracking results of the last
frames [11]–[14]. In contrast to the filtering-based approaches,
the tracking-by-detection methods do not have the drawback
of mismatch between the underlying model description and
reality. However, such approaches heavily rely on the correct-
ness of the target appearance model; thus, these approaches
suffer from model drifting during inappropriate model updates.
Model drifting originates from the target appearance model
being updated using training samples that contain undesired
background information. As more samples are used for the
update, the accumulated error in the model will cause the
model to appear more similar to the background rather than
the foreground, thus causing the object tracker to drift to the
background.

To address the above issue, various methods have been
developed in recent works. For example, a number of
approaches focus on making improvements to the model
update [15]–[17]. A few strategies consist of maintaining
an additional detector and correcting the tracker’s prediction
when an error occurs [18]–[20]. These methods assume that
the tracker is unaware of drifting occurrence; thus, a dif-
ferent detection has to be deployed to correct the drifted
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bounding box in the case of tracking failure. This tactic
has been proven to provide a significant improvement in the
tracker’s robustness. However, it suffers from the drawback
of needing to design a different algorithm and the increase
in computation for maintaining such a detector. Moreover,
some works employ sophisticated components, i.e., correla-
tion filters, convolutional neural networks, global and local
models, to provide more information to trackers at different
occasions [21]–[24]. Furthermore, quite a few trackers utilize
ensemble post-processing strategies to improve the overall
tracking by selecting the best by the trackers’ bounding
box outputs [13], [25]–[29]. However, the ensemble strategy
cannot improve the tracking performance if the trackers in
the ensemble have a low deviation in the tracking output.
In contrast to the aforementioned methods, we introduce a
novel universal update-pacing tracking framework to alleviate
the model drifting problem via integrating both temporal
context and multi-feature.

In this paper, a novel update-pacing framework based on
the ensemble post-processing strategy is proposed to mitigate
the problem of model drifting that adversely affects discrim-
inative visual trackers during model updates. The framework
cooperates with the existing discriminative trackers to provide
guided updates in proper occasions, utilizing temporal context
and alleviates model corruption resulting from false updates.
To this end, an ensemble of trackers, which are initialized
from a base tracker, is employed in the proposed framework.
These trackers are adaptively updated with different paces,
and a set of forward and backward trajectories are generated
for each of the trackers. Then, the best tracker is selected
based on the robustness score computed using the forward
and backward trajectory pairs. By performing such self-
examination on trajectory pairs, the proposed framework can
effectively leverage the temporal context of sequential frames
to avoid learning corrupted information. Since the framework
leverages the tracking trajectories only, it is universal to
cooperate with the existing trackers. Hence, we go further to
incorporate multiple features, which are essentially multiple
trackers and complementary to each other, into the ensemble
of trackers for achieving higher accuracy and robustness. The
experimental results obtained on the CVPR13 [30], OTB50 [1]
and OTB100 [1] visual tracking datasets demonstrate that
the proposed framework enhances the trackers, which obtains
comparable results with not only each of the base trackers but
also the state-of-the-art trackers.

The main contributions of this work are three-fold. i) We
propose a simple but universal update-pacing tracking frame-
work to mitigate the model drifting problem, which effectively
exploits the temporal context of sequential frames with an
ensemble of trackers to avoid learning corrupted information.
ii) A multi-feature extension of the framework is further
developed, which allows our approach to leverage multiple
complementary features in the ensemble of trackers to further
improve performance. iii) The proposed framework can be
implemented in most of the trackers that can be decomposed
into tracking and updating components, regardless of the
trackers’ nature.

The remainder of this paper is organized as follows.
Section 2 presents a summary of the works related to our
research. In Section 3, we provide a detailed description
of the proposed method. The experiment setup and detailed
qualitative and quantitative results are discussed in Section 4.
Conclusions are drawn in Section 5.

II. RELATED WORK

A considerable amount of research has addressed the chal-
lenge of visual tracking. However, we present only a few
methods that are closely related to this work, namely, dis-
criminative trackers, correlation filter trackers, and ensemble
post-processing in the following.

A. Discriminative Trackers

Discriminative approaches consist of training a classifier
online or offline and predicting whether image patches are
the target, separating them from the background, while the
image patches come from a different part of a frame, gen-
erally surrounding the location of the target in the previous
frame. For example, Hare et al. [31] proposed a structured
SVM classifier to mitigate the effect of mis-labeling samples.
In [32], multiple instance learning was used to avoid the error-
prone, hard-labeling process. Another discriminative method
proposed by Kalal et al. [33] employed a set of structural con-
straints to guide the sampling process of a boosting classifier.
In [34], a discriminative reverse sparse representation model
with weighted multitask learning was designed for tracking.
A recent study formulated the tracking process as a ranking
problem [35] by using the PageRank algorithm, which is a
well-known webpage ranking algorithm by Google. Moreover,
others attempted to use a hash algorithm with locality sensitive
histograms [36] and complementary learner [37] for visual
tracking. In contrast to the existing discriminative trackers,
we develop an ensemble of trackers with paced updates and a
trajectory selection strategy to reduce the risk of model drifting
in this work.

B. Correlation Filter Trackers

Correlation filters have recently become increasingly
popular due to the development of many highly accurate
trackers [24], [38]–[45]. The interest in the correlation filter
originated from the MOSSE tracker [40], which is a high-
speed tracker that is robust to variations in lighting, scale, pose,
and non-rigid deformation. Subsequent research extended the
correlation filter from a single-channel to multi-channel [39]
and proposed learning the invariance-discriminative power
spectra of various features using a multi-kernel correlation
filter [41]. In [42], three sparsity-related loss functions were
designed to further promote the robustness of the correlation
filter learning. Simultaneously, the MOCA tracker utilized
MC-HOG features and a saliency proposal to mitigate the
problem of model drifting [43]. The Staple tracker combined
the correlation filter-based approach using the HOG features
with the traditional ridge regression framework and com-
plementary cues to achieve both fast and accurate tracking
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performance [24]. Later, an adaptively weighted correlation
filter method was developed that used more reliable informa-
tion during the model update to improve the tracking perfor-
mance [44]. Moreover, Liu et al. [45] proposed a structural
correlation filter method that introduced a part-based tracking
strategy into the correlation filter tracker to handle partial
occlusions, preserve the object structure and to capture outlier
parts. In the recently proposed trackers, a novel formulation
for training a continuous convolution filter was introduced
to enable the efficient integration of multi-resolution deep
feature maps [38], [46] proposed the LGCF tracker with
local-global correlation filter and the tracker ECO [47] using
a combination of factorized convolution operator, compact
generative model and effective update strategy achieved the
state-of-the-art performance on a publicly available benchmark
dataset. Recent works show a tendency to shift from cor-
relation filter-based trackers towards convolutional/recurrent
neural network based trackers [48], [49] or a combination
of both [46], [47], [50]–[52]. In this work, we extend the
correlation filter-based tracker using a novel generic update-
pacing framework.

C. Ensemble Post-Processing

The ensemble post-processing strategy is the utilization
of multiple trackers to provide a more stable tracking out-
come [25], [53]. This strategy implemented based on the idea
that the performance of a single tracker can be very volatile,
and therefore, tracking stability can increase by determining
the tracking output based on the results of multiple track-
ers. Many trackers that employ the ensemble post-processing
framework are related to our work. For example, in [28],
Santner et al. developed a model update strategy for dis-
criminative trackers. This approach combined three trackers,
a simple template model, an optical flow-based mean shift
tracker and an online random forest in a cascade, to obtain
a more stable update result. Later, Bailer et al. [54] used
a fusion approach with the merit that it only required the
frame-based tracking results in the form of the target object’s
bounding box as input. The method was based on the concept
of attention, i.e., the result that maximized the attraction of
all the trackers was chosen to be the final tracking result.
Moreover, [55] aimed to aggregate the results of the trackers
using a crowdsourcing setting. It formulated the tracking
problem as the inference of an unknown target trajectory
jointly with a hidden reliability measure for each object tracker
using a factorial hidden Markov model. Zhang et al. [13]
used entropy minimization to selectively update the target
model and utilized tracker restoration to correct model drifting.
Recently, Lee et al. [27] proposed a multi-hypothesis trajectory
analysis (MTA) approach to use an ensemble of the Struck
trackers with different features to address the model drifting
problem. The MTA framework used geometric similarity,
the cyclic weight, and the appearance similarity from the
forward and backward trajectories to decide the robustness of
a tracker. This method achieved a positive result when tested
on a publicly available benchmark.

The work proposed in this paper is similar to the MTA
framework in the process of generating the forward and
backward trajectories and the computation of the robustness
score for determining the best tracker. However, the proposed
framework makes an innovative change in the initiation of
trackers based on a predefined interval with paced updates. The
extension of the proposed framework to multi-feature outper-
forms the MTA framework by a significant margin. Moreover,
the framework is an extension of the previous work (Multiple
Trajectories of Single Tracker, MTS) by Hu et al. [26].
In addition to [26], further experiments for MTS are presented
on the impact of tracker number and interval. Moreover, more
base trackers, i.e. DSST [56] and CT [57], are integrated into
MTS to demonstrate its advantage. Furthermore, we propose
a novel Multiple Trajectories of Multiple Trackers (MTM)
algorithm to exploit different types of base trackers while
utilizing temporal context simultaneously.

III. THE MULTI-TRAJECTORY UPDATE-PACING

TRACKING FRAMEWORK

In this section, we present a detailed description of our
update-pacing tracking framework that takes advantage of
paced update and trajectory selection to learn temporal context
to alleviate model drifting.

A. Overview of the Framework

The proposed framework is based on the observation that
the degradation of the target model occurs randomly along the
video as the target object changes its appearance, which could
be either temporary or permanent. In the former situation,
aggressive model updates are undesirable since such adaptive-
ness to temporary changes could cause the tracker to drift away
from the true target if excessive background noise appears in
the bounding box or the target resumes its former appearance
in the following frames. However, in the latter situation, model
updates are encouraged because a conservative update strategy
cannot promptly reflect the appearance changes on the true
target and will also lead to drifting to the background.

A simple solution to this problem is to guide the model
update process by suppressing updates upon the detection
of a temporary appearance change and encouraging updates
upon the detection of a permanent change. However, such an
approach generally requires defining threshold values, while
it is difficult for a tracker to define such values automatically.
To address this issue, we develop a novel framework that uses
paced update and trajectory comparison rather than a threshold
to guide the tracker to avoid updating in the undesired period
with negative information, while updating in the appropriate
occasion.

1) Paced Update: Prior to the start of the tracking process,
an ensemble E of n trackers is first initialized,

E = {�1, �2, �3, ..., �n} (1)

where �i denotes the i -th tracker, which is a copy of the base
tracker �base. Although each of the n trackers begins as an
identical copy of the base tracker �base, they will run and
behave independently in the tracking process.
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Fig. 1. Paced update: n is set to 5 in this figure. The resulting number of
trackers is 5 and the total length of the sequence is 5τ . τ denotes the length
of each interval.

After initialization, all the trackers begin to track forward
from the first frame and have different paces in their updates.
The video sequence is separated into sub-sequences of pre-
defined length τ , which is also the length of each tracking
interval. Assume that the tracking process starts at frame t ;
then, at frame t + τ , the ensemble completes tracking and
updates in the first interval [t, t + τ ]. In the second interval
[t + τ, t + 2τ ], all the trackers will continue tracking and
be updated except �1. In other words, �1 will continue
tracking but not be updated in this interval. In a similar
manner, only the trackers �3, �4, ..., �n will be updated in
interval [t + 2τ, t + 3τ ], and only the trackers �4, �5, ..., �n

will be updated in interval [t + 3τ, t + 4τ ]. Briefly, after every
interval τ , one of the trackers will stop updating permanently.
This process continues until reaching the last tracker �n in the
ensemble. The last tracker �n will always update throughout
the entire interval [t, t + nτ ].

Fig. 1 presents a graphical description of this update
process. Ensemble E can be considered to cover all the
possibilities of updating during these intervals. The trajectories
are yielded by �i , from the frame t to t + nτ in the current
interval, rewritten as from frame t1 to t2, which is denoted by

−−−→
X i

t1:t2 = {
−→
xi

t1,
−−→
xi

t1+1,
−−→
xi

t1+2, ...,
−→
xi

t2} (2)

where
−→
xi

t is prediction of �i at frame t .
After the ensemble of trackers has arrived at frame t2,

the trackers in E will track backward in [t2, t1] starting with
the final predicted location at t2 as the initial ground-truth
bounding box. From frame t2 through frame t1, the backward
trajectories are calculated for each tracker, denoted as

←−−−
X i

t1:t2 = {
←−
xi

t2,
←−−
xi

t2−1,
←−−
xi

t2−2, ...,
←−
xi

t1} (3)

where
←−
xi

t is the bounding box predicted backward by �i at

frame t and
←−
xi

t2 =
−→
xi

t1 . Updating is enabled in the entire process
of backward tracking to allow the trackers to behave like
ordinary trackers initialized with different bounding boxes. If a
tracker correctly locates the target when tracking forward, then
the produced forward and backward trajectories are supposed

to be equal, i.e., −→xt =←−xt . A deviation from equality signals
inconsistency in the tracking trajectories offers information on
the robustness of the trackers.

2) Trajectory Selection: A total of n pairs of forward and
backward trajectories from the interval [t1, t2] are obtained for
each tracker �i in the ensemble E. Trajectory analysis on the
trajectory pairs is the key to quantify the performance of each
tracker. To this end, the method in [27] is employed as the
criterion to measure the robustness of each tracker.

The first step of the analysis is checking cyclicity. As shown
in Fig. 2, both the Trajectory Pair 1 and Trajectory Pair 2
display cyclicity in Fig. 2(a) and Fig. 2(b) correspondingly,
as indicated by the success of the tracker in recovering the
target during backward tracking, reaching the initial location
of the forward trajectory to form a cycle. An example of
acyclicity is given by Trajectory Pair 3 in Fig. 2(c), where
the tracker is unable to reach the initial location through
backward tracking. Trackers with non-cyclic trajectories indi-
cate tracking failure and are immediately discarded, whereas
those producing cyclic trajectories are accepted for further
examination.

The two accepted trajectory pairs are measured by the
distances between their forward and backward trajectories.
A larger gap between the forward and backward trajectories
indicates higher inconsistency of the corresponding tracker,
which could be attributed to a drastic but temporary change
in target appearance. As shown in Fig. 2(a), the backward
trajectory matches the forward trajectory more accurately due
to the significantly smaller distance between −→xt and ←−xt ,
compared to the distance between the forward trajectory and
backward trajectory in Fig. 2(b), suggesting that Trajectory
Pair 1 is more reliable.

Geometric and appearance similarities between forward
and backward trajectories are taken into account for a more
accurate comparison. At frame t , they are defined as

ζt = ex p

(
−

∥∥−→xt −←−xt
∥∥2

σ 2
1

)
(4)

φt = ex p

(
−

∥∥K · (P(←−xt )− Q))
∥∥2

4whσ 2
2

)
(5)

where K is a Gaussian weight mask, “·” is the pixel-wise
weight multiplication, P(x) is the image patch of the bounding
box x, Q is the compared image patch given by the ground-
truth object image in the first frame, and w and h are the width
and height of the bounding box respectively.

Finally, the robustness score ψ can be obtained by combin-
ing (4) and (5), which has been defined in (6)

ψ t1:t2 = χ

t2∑
t=t1

ζtφt (6)

where χ is the trajectory weight. Cyclic trajectories will be
set to a large trajectory weight, e.g., 106, to make their score
substantially larger than their non-cyclic counterparts.
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Fig. 2. Selection of trajectories: three different cases illustrating the difference between cyclic and non-cyclic trajectory pairs and the degree of matching
among cyclic trajectory pairs. (a) Cyclic trajectory pair with low distance from each other. (b) Cyclic trajectory pair with high distance from each other.
(c) Acyclic trajectory pair.

Algorithm 1 Multi-Trajectory Update-Pacing Framework
Input: frames {It }, t ∈ [1, T ], tracker number n, interval τ ,

base tracker �base, initial bbox b1.
Output: bounding box predictions {bt}, t ∈ [2, T ].
1: t ← 1
2: while t < T do
3: Initialize {�1, �2, ..., �n} from �base.
4: E ← {�1, �2, ..., �n}.
5: t1 ← t, t2 ← min(t + nτ, T )
6: for each τi ∈ E do
7: τi tracks forward and backward in interval [t1, t2]
8: through Paced Update and obtain

9: the trajectory pair
←−−
X i

t1:t2 &
−−→
X i

t1:t2 .
10: end for
11: Select the best trajectory {−−→X∗t1:t2} through Trajectory

12: Selection with pairs
←−−
X i

t1:t2 &
−−→
X i

t1:t2, i ∈ 1, 2, ..., n.

13: Select �∗ that generates {−−→X∗t1:t2}.
14: [bt1, bt2] ← {

−−→
X∗t1:t2}

15: �base ← �∗
16: t ← t2 + 1
17: end while

B. Implementation

An abstract of the main flow of the proposed multi-
trajectory update-pacing framework is presented in the
pseudocode in Algorithm 1. The pipeline of the proposed
framework is provided below.

1) Prior to tracking, the number of trackers n and the
interval length τ need to be specified. The set of trackers
E = {�1, �2, �3, ..., �n} will be initialized based on the con-
figuration.

2) According to the configuration, an interval has a length
of τ , and the total interval has a length of nτ . The trackers
run in parallel after initialization. When each interval finishes,
a tracker within the ensemble E is selected without replace-
ment, updating is disabled on this tracker until the total interval
nτ is reached (Section III.A.1).

3) When the total interval nτ is reached, the forward trajec-
tories are obtained for each tracker, and we track backward to
compute the backward trajectories. The similarity of the two

trajectories is evaluated using the trajectory selection criterion
(Section III.A.2) to find the best tracking solution.

4) All the trackers will be reinitialized on the current
location predicted by the best tracker.

5) Steps (2)–(4) are repeated until the end of the video.
It is a general belief that when multiple trackers are initial-

ized in the tracking process, the tracking speed will decrease
proportional to the number of trackers. However, the imple-
mentation of the proposed framework only maintains a running
tracker in the ensemble while cloning and saving a snapshot
at every interval. This strategy decreases the computation
because only one tracker is needed to track and update, and the
others just track during the entire process. Moreover, since the
proposed framework evaluates the robustness of the trackers
only through their trajectories, it is possible to implement it on
most of the existing trackers as long as there is an independent
update process, regardless of the trackers’ nature. Hence, this
can be regarded as a universal framework for cooperation
among the trackers.

C. Extension to Multi-Feature

A visual tracking framework that used forward and back-
ward trajectories with an ensemble of trackers was first pro-
posed in MTA [27]. MTA initialized three Struck trackers
separately with the following features: a 192-dimensional
Haar-like feature, a 768-dimensional CIELAB color histogram
and an illumination-invariant feature, and it achieved positive
performance.

The framework proposed in this paper can also be extended
to multi-feature in a formulation similar to MTA. In the
extended multi-feature framework, rather than initializing only
multiple trackers according to the intervals with paced updates,
we also utilize three trackers with different feature represen-
tations. HOG feature with 32 bins is adopted as the basic
feature. In addition to the HOG feature, a LAB colorspace
feature is employed to extract the local color information of the
target object. To increase the robustness, a histogram of local
intensity on the brightness channel with a transformed channel
applying a non-parametric local rank transformation [58] is
also adopted. Moreover, the locally assembled binary fea-
ture [59] is included in the set of features to further enhance
performance.
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Fig. 3. Multi-feature extension: In the case where τ = 5, 5 trackers are
initialized for each feature prior to the start of a tracking interval. There
are 15 trackers in total in the ensemble E . Trackers that have overlap less
than 80% overlap with the best solution at the end of the interval will be
reinitialized.

In the multi-feature framework, the hyper-parameter is no
longer confined to the number of trackers n and the length
of intervals τ . Rather, there is an additional hyper-parameter
that dictates the features employed by different trackers. Prior
to the start of tracking, an ensemble of trackers with different
features and different update paces are initialized for track-
ing. For instance, five trackers and three features imply the
initialization of fifteen trackers. Similar to that with a single
feature, the forward and backward tracking trajectories of the
trackers are compared using the criteria mentioned in part A
for obtaining the best tracking output. A graphic description is
presented in Fig. 3. The extended framework will be tested and
compared with the MTA framework, and the results from the
following section demonstrate that our extended framework
outperforms MTA by a significant margin.

The implementation of the multi-feature framework requires
some modification to the pipeline in Section III.B. First, it is
necessary to further specify the different features employed
by the trackers in Step 1. A set of trackers will be initialized
for each feature. Second, in Step 4, if a tracker generates
a solution with an overlap of more than 0.8 with the best
tracking solution, then the tracker will not be reinitialized.
This is in contrast to the single-feature framework in which
all trackers will be initialized. This implementation method is
adopted because it has been shown to increase the tracking
performance.

IV. EXPERIMENTS AND RESULTS

A. Dataset and Evaluation Metrics

The proposed framework with a single feature is named
MTS, whereas that with multiple features is named MTM.

The proposed method is implemented in C++. The source
code will be made available on https://github.
com/huzexi. The framework is evaluated on the bench-
marks CVPR13 [30], OTB50 [1] and OTB100 [1], which
consist of testing sequences in different challenging con-
ditions, namely, IV(illumination variation), SV(scale varia-
tion), OCC(occlusion), DEF(deformation), MB(motion blur),
FM(fast motion), IPR(in-plane rotation), OPR(out-of-plane
rotation), OV(out-of-view), BC(background clutters) and
LR(low resolution). The performance criteria are given by the
precision rate (PR) measured as the area under the curve of the
precision plot and the success rate (SR) measured as the area
under the curve of the success plot. PR is an indicator of the
accuracy of a tracker, and SR is an indicator of the robustness.
For each image sequence, the tracked target is annotated with
the bounding box in the first frame, and the ground-truth data
are used to compute the precision.

B. Experiment on MTS

In this experiment, four commonly recognized outstanding
trackers are incorporated into MTS, which are Struck [31],
DSST [56], CT [57] and KCF [39], as selected from the
existing representative trackers. The experiment will perform
a one-pass evaluation (OPE) and the integrated trackers will
be compared with the original trackers. For the proposed MTS
framework with Struck, DSST, CT and KCF, the number of
trackers n are set to 7, 5, 17, 10 and the length of interval τ are
set to 10, 25, 5, 25, respectively. All of the hyperparameters
of trackers remain the same in the three datasets.

The goal of this experiment is to test the performance
change in the base tracker after adopting the MTS framework.
The precision plots and the success plots of the tested trackers
are presented in Fig. 4. Detailed reports on the experiment
in different challenges are presented in Table I, Table II on
CVPR13, Table III, Table IV on OTB50, Table V, Table VI
on OTB100, and some tracking screenshots are presented
in Fig. 5.

As shown in these tables, the tracking performance
has significantly improved for most of the datasets. For
CVPR13 dataset, MTS has improved the overall tracking
performance by at least 1.07% and 0.17% and up to 13.11%
and 12.61% for precision and success, respectively. Sim-
ilar improvement can also be observed in OTB50 and
OTB100 datasets. For the challenging conditions of occlusion,
out-of-plane rotation and out-of-view, MTS results in a large
and consistent increase for most testing algorithms.

Fig. 5(a) presents some examples illustrating how the
proposed MTS framework improves the tracking accuracy
and robustness of the underlying Struck tracker. The green
bounding box is the result of MTS+Struck, while the red
bounding box is the result of Struck. The screenshots from
the benchmark videos Liquor and Jogging show that our
MTS framework is able to recover from heavy occlusion on
the target object, i.e., the target bottle is covered by a similar
object in the video Liquor , and the person is occluded by
the lamp post in the video Jogging. The explanation for
this success is that the original Struck tracker is updated with
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Fig. 4. Precision and success plots of our MTS framework on the CVPR13 [30], OTB50 [1] and OTB100 [1] benchmarks.

TABLE I

COMPARISON OF THE PR/SR SCORES OBTAINED WITH THE OPE METHOD UNDER THE CVPR13 BENCHMARK. NUMBERS

IN PARENTHESIS IN THE FIRST COLUMN REFER TO THE NUMBER OF SEQUENCES WITH THE
CORRESPONDING CHALLENGE. THE HIGHEST SCORES ARE SET BOLD IN EVERY TEST

TABLE II

COMPARISON OF THE PERCENTAGE CHANGE IN PR/SR SCORES WITH OR WITHOUT MTS UNDER THE CVPR13 BENCHMARK

false information during occlusion and can therefore no longer
recover the true target in the following frames. Meanwhile,
the proposed MTS framework, which utilizes multiple trackers

with paced updates, is able to prevent drifting by selecting
the uncontaminated tracker. A similar situation applies to the
other videos, which experience temporary target lost due to
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TABLE III

COMPARISON OF THE PR/SR SCORES OBTAINED WITH THE OPE METHOD UNDER THE OTB50 BENCHMARK. NUMBERS
IN PARENTHESIS IN THE FIRST COLUMN REFER TO THE NUMBER OF SEQUENCES WITH THE

CORRESPONDING CHALLENGE. THE HIGHEST SCORES ARE SET BOLD IN EVERY TEST

TABLE IV

COMPARISON OF THE PERCENTAGE CHANGE IN PR/SR SCORES WITH OR WITHOUT MTS UNDER THE OTB50 BENCHMARK

TABLE V

COMPARISON OF THE PR/SR SCORES OBTAINED WITH THE OPE METHOD UNDER THE OTB100 BENCHMARK. NUMBERS IN PARENTHESIS

IN THE FIRST COLUMN REFER TO THE NUMBER OF SEQUENCES WITH THE CORRESPONDING CHALLENGE.
THE HIGHEST SCORES ARE SET BOLD IN EVERY TEST

fast motion, i.e., Shaking and Trelli s. Some improvement
can also be observed in the video Singer1 with significant
illumination variation. Since the Struck tracker is originally
poor in adapting to scale variation, the main improvement is
in accuracy in terms of precision rather than robustness in
terms of overlap ratio.

As shown in Fig. 5(b), in contrast to the Struck tracker,
the KCF tracker not only gains accuracy under the proposed
MTS framework, but also substantially improves the robust-
ness. The green bounding box is the result of MTS+KCF,
while the red bounding box is the result of KCF. In videos
such as Basketball and Liquor , there is a tendency for
the KCF tracker to classify the background area in the
image as a part of the target. However, KCF under the

MTS framework does not have such problem. The enlarge-
ment of the bounding box to the surroundings is most
likely a consequence of the background information update
in the target template. The problem is avoided by the pro-
posed method since the determination for the best tracker
includes the criteria of appearance similarity indicated by
equation (5) in addition to geometric similarity indicated by
equation (4). For similar trajectory pairs, the one with a better
fitting bounding box within the interval will be selected as
the best tracker. Similar to Struck, KCF+MTS outperforms
KCF in situations such as heavy occlusion, i.e., Basketball,
Coke and Liquor , and fast motion, i.e., Freeman1.
It also performs well under poor illumination in the video
Cardark.
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Fig. 5. Tracking screenshots of (a) MTS+Struck vs Struck, and (b) MTS+KCF vs KCF. The sequences are as follows: (a) liquor, jogging, shaking, singer1 and
Trellis; (b) basketball, cardark, coke, freeman1 and liquor.

C. Parameter Variation

The previous experiment has illustrated how the proposed
MTS framework improves the tracking accuracy and robust-
ness of the base trackers. However, the determination of para-
meters such as the number of trackers n and the tracking speed
is not explained. In this experiment, the MTS framework with
KCF as the base tracker is tested under the OTB100 dataset
on different combination of parameters, i.e., the number of
trackers n and the length of the tracking intervals τ . The
parameters are selected using grid search, with some additional
combinations. The impact of the variation in parameters on
the tracking accuracy and robustness will be discussed in this
section.

Table VII presents the relationship between the number
of trackers and the length of the tracking intervals with the
tracking accuracy, robustness and speed measured in terms of
precision, overlap and frames per second (FPS), respectively.
As shown in this table, our proposed framework tends to
produce better results when the tracking interval is set to be
longer. A longer length of the interval can likely provide more
information for evaluating the quality of the trajectory, thereby
providing higher tracking performance. Moreover, it is easily
observed that the number of trackers is inversely related to

the tracking speed due to the increase in computation cost as
more trackers are initialized and updated. The reduction in
speed is not linear and can be explained by the optimization
in the implementation of the multi-tracker framework.

The best combination of parameters is 10 trackers
and 25 frame intervals, with the results of 0.733 in precision
and 0.550 in overlap. However, such high performance can
only be achieved in 13.6 FPS, which is far from real time.
With a slight reduction in tracking performance, we can
obtain 0.717 in precision and 0.541 in overlap with 22.98 FPS
when tracker number is 4 and interval is 20, which is close
to real time. Moreover, most other parameter configurations
reach a precision level higher than 0.686 and overlap higher
than 0.510, compared to the original KCF tracker. The results
indicate that the proposed MTS framework can have positive
performance guarantee.

D. Experiment on MTM

A similar experiment is conducted on the proposed MTM
tracker, which is the multi-feature variation of the proposed
MTS tracker. The features described in Section III. C will be
used in this experiment.
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TABLE VI

COMPARISON OF THE PERCENTAGE CHANGE IN PR/SR SCORES WITH OR WITHOUT MTS UNDER THE OTB100 BENCHMARK

TABLE VII

TRACKING RESULTS ON OTB100 WITH DIFFERENT NUMBERS OF

TRACKERS AND INTERVAL RANGES

All hyperparameters remain the same in the three evaluation
datasets, CVPR13 [30], OTB50 [1] and OTB100 [1], of which
tracker number is 10 and interval is 20. MTM will be com-
pared with several trackers, including the base trackers, e.g.
DSST [56], KCF [39], Struck [31], and the recently proposed
trackers, i.e. MEEM [13], LCT [19], KCFDP [60], Staple [24],
TGPR [61] and MTA [27]. It is worth mentioning that MEEM
and MTA are based on the idea of maintaining an ensemble
of model snapshots, which have the same mechanism as
ours. LCT, KCFDP and Staple, similar to ours, are based
on the idea of exploiting an extra component to assist the
correlation filter tracker. The precision plots and success plots
are presented in Fig. 6, and some tracking screenshots are
presented in Fig. 7.

As shown in Fig. 6, the proposed MTM algorithm
separately achieves 0.852, 0.712, 0.781 in precision
and 0.625, 0.522, 0.585 in overlap on three datasets,
which are significantly higher than the results of most other

TABLE VIII

FEATURE ANALYSIS: MTM/MTS TRACKERS AND THEIR

CORRESPONDING FEATURE REPRESENTATIONS

trackers. Even though MTM is not the best performing tracker
in precision on OTB100, it is within 1% margin compared
to the performance of the best tracker. The superiority of our
MTM method should be attributed to the highly adjustability
of multiple features in the ensemble of trackers. Moreover,
Fig. 7 shows that the MTM performs well on videos with
illumination variation and background clutter. The result
can be attributed to the adoption of the histogram of local
intensity, which enhances the robustness of the tracker to
illumination variation, and the LAB colorspace features for
color representation, which provides a positive appearance
model of the target object.

E. Ablation Analysis on Different Feature Combinations

As shown in the previous subsection, the multi-feature
property of the MTM framework has significantly increased
the tracking performance. This subsection presents further
ablation analysis on the impact of adopting different features
on tracking performance under the OTB100 dataset [1].

The aim of this experiment is to show the performance of
each feature representation under different challenging condi-
tions and to prove that the combination of multiple features
can achieve better tracking performance than utilizing a single
feature alone. To this end, we separate the proposed feature
representations from Section III.C into groups of two and
compare with the proposed MTM tracker that uses different
features and the MTS tracker that uses only one of the features.

The three features are HOG, intensity and LAB. The con-
figurations of the tested trackers are presented in Table VIII.
The number of trackers n and the tracking interval τ are set
to be 10 and 20 respectively. Holding these two parameters

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 23,2020 at 10:13:59 UTC from IEEE Xplore.  Restrictions apply. 



1088 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 4, APRIL 2020

Fig. 6. Precision and success plots of our proposed MTM tracker on the CVPR13 [30], OTB50 [1] and OTB100 [1] benchmarks.

Fig. 7. Tracking screenshots of original KCF (red), MTM (green) and MTA (blue). The sequences are basketball, david3 on Column (a) and liquor, shaking
on Column (b).

Fig. 8. Precision and success plots of our proposed MTM tracker with different feature combinations under OTB100 [1].

constant enables us to evaluate the tracker performance due to
the adoption of different feature combinations. Note that when
the number of features in the MTM tracker is 1, the tracker is

essentially MTS. In addition, the MTS_1 tracker is the same
as the MTS+KCF tracker because the original KCF tracker
uses HOG as the only feature.
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TABLE IX

THE PR/SR SCORES OF THE 3 MTS TRACKERS ON THE OTB100 DATASET USING OPE. THE FIRST COLUMN PRESENTS THE CHALLENGE
CATEGORY WITH THE NUMBER OF VIDEOS IN THE PARENTHESIS. THE BEST PERFORMANCE SCORES

IN EACH CHALLENGE ARE RECORDED IN BOLD

TABLE X

THE PR/SR SCORES OF THE 3 MTM TRACKERS WITH 2 FEATURES AND 1 MTM TRACKER WITH 3 FEATURES ON THE OTB100 DATASET
USING OPE. THE FIRST COLUMN PRESENTS THE CHALLENGE CATEGORY WITH THE NUMBER OF VIDEOS IN THE

PARENTHESIS. THE BEST PERFORMANCE SCORES IN EACH CHALLENGE ARE RECORDED IN BOLD

TABLE XI

THE PERCENTAGE CHANGE OF THE PR/SR SCORES OF THE 3 MTM TRACKERS WITH 2 FEATURES AGAINST 1 MTM TRACKER WITH
3 FEATURES ON THE OTB100 DATASET USING OPE. THE HIGHEST VALUES IN EACH CHALLENGE ARE RECORDED IN BOLD

Fig. 8 displays the precision plots and the success plots
of all seven trackers described in Table VIII. As shown in
this figure, all trackers that utilize two feature representations
perform better than those with only one feature representa-
tion. The trackers with one feature have a precision range
of 0.699 to 0.722 and a success range of 0.541 to 0.547,
whereas the trackers with two features have a precision range
of 0.749 to 0.772 and a success range of 0.572 to 0.584.
A further increase in performance can be observed when all
features are used, providing a precision of 0.781 and 0.585.
It can be observed that under the proposed MTM framework,
higher tracking performance can be achieved by combining
different feature components.

In addition to the above comparison, Table IX and Table X
display the performances of the seven trackers on different
challenges. As shown in Table IX, MTS_2 performs well
in scale variation and fast motion, MTS_3 performs well in
handling out of view and low resolution, and MTS_1 per-
forms well in occlusion, deformation, in-plane rotation and
background clutter. Moreover, it can be observed that the gap
between the MTS_3 and MTS_1 trackers is very large in
motion blur and fast motion, suggesting that a further increase
in performance could be achieved by utilizing both features.

Table XI shows that percentage increases in performance
after adopting additional feature. It can be observed that the
overall contribution of each feature is more or less similar,
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i.e., 1% to 4% increase in precision and 1% to 2% increase
in overlap. However, if we examine the performance in each
challenge, it can be observed that each feature contributes to
different areas. For example, the intensity feature contributes
the most to improve tracking performance in occlusion, fast
motion and motion blur. The LAB feature works best in occlu-
sion and background clutter since color information preserves
well under these challenges. The HOG feature has the best
performance under occlusion, motion blur, fast motion and
in-plane rotation, which is mainly due to the ability of the
HOG feature to capture structural information of the target.
Therefore, HOG can compensate for the poor performance of
the intensity-based feature during an appearance change, while
the other features can help classify the target position during
a structural change.

V. CONCLUSION

This paper has proposed a novel universal update-pacing
framework by initializing multiple trackers with different
update paces to mitigate the problem of model drifting during
tracking. This novel tracking framework utilizes the temporal
information provided by the trajectories of the trackers during
a predefined interval to select the best tracker from the ensem-
ble. The experimental results demonstrate that it is capable
of largely increasing the accuracy and robustness of the base
tracker under the optimal parameter settings of tracker number
and interval length. Experiments using different parameter
settings confirm that this framework is able to run in real time
while retaining a positive performance gain. The extension
of the framework to multi-feature can further enhance the
performance of the base tracker.
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