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Abstract— This article presents a semisupervised multilabel
fully convolutional network (FCN) for hierarchical object parsing
of images. We consider each object part (e.g., eye and head) as a
class label and learn to assign every image pixel to multiple
coherent part labels. Different from previous methods that
consider part labels as independent classes, our method explicitly
models the internal relationships between object parts, e.g., that
a pixel highly scored for eyes should be highly scored for heads
as well. Such relationships directly reflect the structure of the
semantic space and thus should be respected while learning the
deep representation. We achieve this objective by introducing a
multilabel softmax loss function over both labeled and unlabeled
images and regularizing it with two pairwise ranking constraints.
The first constraint is based on a manifold assumption that image
pixels being visually and spatially close to each other should
be collaboratively classified as the same part label. The other
constraint is used to enforce that no pixel receives significant
scores from more than one label that are semantically conflicting
with each other. The proposed loss function is differentiable with
respect to network parameters and hence can be optimized by
standard stochastic gradient methods. We evaluate the proposed
method on two public image data sets for hierarchical object
parsing and compare it with the alternative parsing methods.
Extensive comparisons showed that our method can achieve state-
of-the-art performance while using 50% less labeled training
samples than the alternatives.

Index Terms— Fully convolutional network (FCN), hierarchical
models, semisupervised learning.
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I. INTRODUCTION

THE goal of this article is to develop an effective approach
capable of segmenting objects, object parts (e.g., head,

torso, and legs), and subparts (e.g., eyes and mouses) in images
and generating a hierarchical representation of objects. The
outcomes of our approach include a pixelwise binary mask
for each entity of the hierarchy, which can be used to assist
in high-level image tasks, e.g., human pose recognition [15]
or human interaction recognition [1], [33]. In the past decade,
the state of object parsing has been rapidly evolving [13],
[14], [18], [37], [39], largely driven by the advances in statis-
tical learning and computer vision. In particular, the recently
developed fully convolutional network (FCN) [27] is capable
of end-to-end learning multilevel feature representations for
semantic image segmentation. Multiple object parsing meth-
ods [9], [31], [43] utilize FCN as basic networks and achieved
encouraging results on multiple object detection benchmarks.
The learning of such deep representations, however, requires
tens of thousands of labeled samples and hence requires
cost-intensive human efforts to prepare training data. The
situation becomes worse while dealing with hierarchical object
parsing, where an image includes tens of part labels. Thus,
there is a demand for developing weakly supervised deep
models for object parsing in practical deployment.

Fig. 1 shows the two exemplar results of the proposed
method for hierarchical object parsing. Given a single image
as the input, our method can segment human region, human
parts (e.g., head), and human subparts (e.g., eyes), as shown
in Fig. 1(b)–(d), respectively. These part labels are not seman-
tically independent with each other during inference because,
for example, a region of noses should be labeled as heads as
well, and a region of hands is part of the region of upper body.
In addition to such coherences, two human part labels might
be exclusive from each other. For example, a region cannot
be classified as heads and torso simultaneously. An effective
hierarchical object parsing algorithm has to respect both coher-
ent and exclusive constraints between image labels, which
has not been systemically studied in the literature of deep
representation learning [4].

In the proposed method, we consider each object part of
the hierarchy as a class label and aim to learn a multilabel
FCN from images. Hierarchical object parsing is essentially a
multilabel image segmentation problem, which aims to assign
each pixel of the input image to multiple part labels, e.g., eye,
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Fig. 1. Hierarchical object parsing. (a) Input images. (b)–(d) Object masks
segmented by the proposed method for 2 labels (human and nonhuman),
6 human part labels, and 31 human subpart labels, respectively.

head, and upper body. While the conventional neural network
methods [27] can be used for multilabel settings, their loss
functions cast image labels to be semantically independent
with each other and ignore their coherent relationships. For
example, an image pixel receiving the label of eye should be
classified as a head as well but not vice versa. In this article,
we propose to develop a multilabel softmax loss for FCN
to encourage compatibilities between the predicated labels
and ground-truth labels while respecting the above coherence
constraints between image labels.

We will learn the proposed model using a small number of
annotated images and a large amount of raw images without
annotations. This semisupervised setting allows our model
to generalize to unseen data samples and avoid potential
overfitting with the training data. Overfitting is a serious issue
for modern neural network techniques [4], which have been
employing an increasingly large set of network parameters
(e.g., with deeper layers or more hidden units). To suppress
the effects of overfitting, in this article, we develop two
regularization terms for the proposed semisupervised model.

1) Manifold Regularization: We introduce a pixelwise man-
ifold assumption over both the labeled and unlabeled
images, in order to enforce a smoothness constraint:
image pixels that are visually and spatially close to
each other are coherent in the semantic space. We thus
propose to learn a manifold [3], [50] for representing
all pixels so as to preserve their relative spatial relation-
ships. A classical method, for example, is the Laplacian
embedding [2]. Similar ideas have also been exploited
by traditional semisupervised methods and most recently
are integrated with deep leaning representations [44].
In this article, we generalize this methodology to learn
an FCN for hierarchal object parsing.

2) Exclusive Constraints: We introduce a set of exclusive
constraints to regularize the FCN network: image pixels
with significant scores from a class (e.g., head) will
not be scored significantly for another exclusive class
(e.g., torso). In multilabel settings, there are multiple
exclusive label lists and the labels in each list should be
exclusively assigned to an image pixel.

We integrate the above-mentioned two types of constraints
to define a unified multilabel loss function. This function is
differentiable with respect to network parameters and hence
can be optimized by standard stochastic gradient methods [27].
Our approach can take advantage of both labeled and unlabeled
images, providing a simple yet effective way to formulating
hierarchical object parsing in semisupervised settings.

We evaluate the proposed method on two public image data
sets and compare it to the alternative object parsing methods.
Experiments with comparisons showed that our method can
closely match the performance of fully supervised systems
while using only 50% (or less) labeled images. Empirical
analysis also validated the effectiveness of the proposed
multilabel loss function and regularization terms. Note that
we pretrain the proposed method on generic images with
classification labels (e.g., ImageNet), without accessing to
pixelwise image labels.

The three contributions of this article include: 1) an effective
multilabel FCN model for hierarchical object parsing that can
be trained over both labeled and unlabeled images; 2) a set
of regularization terms, including manifold constraints and
exclusive constraints, which are applicable to other image
tasks; and 3) a weakly supervised image parsing system that
can achieve state-of-the-art performance while using a small
number of fully annotated images.

II. RELATIONSHIPS TO PREVIOUS WORKS

The proposed research is closely related to four research
streams in computer vision and machine learning.

Object part detection has been extensively studied in com-
puter vision literature. The successful deformable part-based
model (DPM) [13], [37] and poselet model [5] can effec-
tively represent geometric relationships between object parts in
2-D and 3-D but are restricted to their shallow representations
while dealing with object instances with large variances.
Chen et al. [8] introduced rich contextual part relationships to
boost system robustness. Girshick et al. [14] reformulated the
DPM model using convolution neural networks to favor end-
to-end learning of deep features. Song et al. [37] proposed to
discriminatively train a hierarchical graphical model to allow
fined-grained object detection. Wang et al. [43] proposed to
jointly segment objects and object parts through learning a
two-stream FCN in order to exploit the compositional relation-
ships between part labels. While achieving impressive results,
these algorithms did not explicitly formulate cooperative rela-
tionships between object parts. For example, an image pixel
classified as head should be recognized as upper body as well,
not vice versa, or that a pixel should not be simultaneously
assigned to upper body and lower body. In this article, we will
introduce a multilabel loss function to explicitly formulate
such coherence and exclusive constraints and use them to
guide the learning of deep features.

Semisupervised methods [50] can be used to train machine
learning models using a small number of labeled data. It has
made use of embedding techniques [29], which aim to solve a
lower dimensional data representation while preserving pair-
wise distances in the original feature space. Most embedding
algorithms utilize the structure assumption: points within the
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same structure (or a manifold) are likely to have the same label
and use unlabeled data to discover this structure. Successful
approaches include cluster kernels [23], label propagation [30],
Lap support vector machine (SVM) [48], multidimensional
scaling method (MDSCAL) [22], or isometric feature map-
ping (ISOMAP) [38]. Weston et al. [44] employed these
embedding methods as regularization terms to learn deep
multilayer neural networks and achieved promising results.
Similarly, this article presents a multilabel convolutional net-
work to learn deep features for hierarchical object parsing.
Our method explicitly enforces both manifold assumption
and coherence/exclusiveness constraints between labels and
showed promising results in reducing the necessary amount
of labeled data to achieve the same level of performance.

FCNs [27] and its variants [7], [31] have been widely
used to predict pixelwise labels and have shown compelling
quality and efficiency on multiple data sets [26], [46]. An FCN
takes an image as the input and performs sliding-window-
based classification at each pixel in a local receptive field.
The network can be trained end-to-end given the pixelwise
semantic region labels. Pinheiro and Collobert [35] utilize an
FCN to predict object segmentation masks, given an input
image. To detect object instances, Dai et al. [9] presented
an instance-sensitive FCN to generate categorywise instance
score maps. All the above-mentioned models are trained with
full supervisions to predict a single label for each pixel but
are not suitable for hierarchical object parsing. In this article,
we introduce a multilabel FCN in the semisupervised setting,
which is a novel technique in the catalog of hierarchical
parsing methods.

Weakly supervised image segmentation methods in the
literature include two major categories. The first category uses
image-level labels and automatically reasons segment-label
correspondences during training [28], [40]. Popular techniques
include the expectation-maximization algorithm [11], [31],
probabilistic generative models [41], multiinstance methods
[32], [34], and latent SVM [24]. The second category [6],
[16], [25], [45], [49] uses bounding boxes around objects
(e.g., humans and animals), instead of pixelwise image
labels, to train image segmentation models. Box inputs
are also used as weak supervisions to guide interactive
image segmentation [36]. Kumar et al. [24], Xu et al. [47],
and Papandreou et al. [31] exploited both image labels and
bounding boxes as weak supervisions. In this article, we focus
on the semisupervised image segmentation problem for which
a large number of training images are completely unlabeled
and aim to learn to hierarchically segment objects in the
multilabel setting. We propose to augment the popular FCN
model with both traditional semisupervised regularizations
and multilabel exclusive constraints in order to guide the
training of deep features.

III. SEMISUPERVISED MULTILABEL FCN FOR

HIERARCHAL OBJECT PARSING

In this section, we present a learning-based hierarchi-
cal object parsing algorithm built on top of the expressive
FCNs [27]. We focus on methods for training the FCN
parameters from both annotated and unannotated images.

Fig. 2. Hierarchy of human parts used in this article. There are a total
of 31 human parts forming a treelike structure.

A. Notations

We denote by C the total number of object parts and
subparts. These parts form a hierarchy as graphically shown
in Fig. 2. We denote by D = Dl ∪Du the set of training images,
including labeled images Dl and unlabeled images Du . Let
x ∈ D denote a training image. For a labeled image x ∈ Dl ,
we denote by y the segmentation map. Let xi denote the image
pixel at location i , and yi ∈ {1, . . . , C} denote its pixelwise
semantic label. We assume that the number of unlabeled
samples in Du is much larger than that of the labeled samples
in Dl . We denote the outputs of the convolutional network by
f (·), which can be considered as a scoring function of the
image x .

The rest of this section is organized as follows.
In Section III-B, we formulate the problem of hierarchi-
cal object parsing as a multilabel classification problem.
In Section III-C, we introduce how to extend the proposed
formula to the semisupervised setting. In Section III-D,
we present a set of regularizations to the proposed semisuper-
vised model. In Section III-E, we specify the unified formula
used in this article. In Section III-F, we elaborate on the
implementation of the proposed algorithm.

B. Multilabel FCN With Unidirectionally
Coherent Constraints

In our approach for hierarchical object parsing, we adopted
the FCN proposed in [27] as the basic network architecture
and investigate ways to specify effective loss functions in the
multilabel setting. Our method considers multiple part labels
that form a treelike structure, as shown in Fig. 2, and enforces
the following coherence constrains: for any image pixel xi ,
the prediction score for label A should be at least equal to the
score for any offspring labels of A. These pairwise coherence
constraints are unidirectional and should be satisfied during
the learning of deep features.

We augment the multilabel softmax loss [17], which can be
used for single-label predictions as well, with extra regulariza-
tions in order to enforce the proposed unidirectional coherence
constrains. Let fi (k) denote the kth output layer of the FCN
Network, which is the activation value for an image pixel xi

and class k, and f̂i (k) denotes the corresponding probability,
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obtained as

f̂i (k) = exp[ fi (k)]
∑C

l=1 exp [ fi (l)]
. (1)

Let f̂i = [ f̂i (k)], k = 1, 2, . . . assembles the probability of
xi belonging to every label. Let yi denote a C-dimensional
label vector, whose kth component is 1 if xi belongs to
the class k; 0, otherwise. We normalize yi so that its sum
is unit 1 and use it as the ground-truth probability. Thus,
given a set of labeled images, we aim to learn a FCN so
as to minimize the Kullback–Leibler (KL) divergence from
the prediction probability f̂i to ground-truth probability yi .
Such a loss function is also regularized by the between-label
coherence constraints. Let P(k) denote the set of offspring
labels of the label k. We define the loss function over labeled
images as follows:

J (x, y) =
n∑

i=1

K L( f̂i‖yi ) (2)

s.t. ∀l ∈ P(k), f̂i (k) > f̂i (l) (3)

k ∈ [1, C] (4)

where KL( f̂i‖yi ) = ∑
k f̂i (k) log( f̂i (k)/yi (k)). Equation (2)

is a constrained logarithm function and can be optimized
using the standard gradient method [21]. This supervised
method requires a large amount of labeled data, which is
cost-intensive to prepare. In Section III-C, we will introduce
a semisupervised variant to take advantages of large-scale
unlabeled images.

C. Manifold Regularization

We adopt (2) to the semisupervised setting in order to learn
a multilabel classifier capable of generalizing to unseen testing
images. Being similar to most semisupervised methods [50],
we assume that the number of labeled samples is much smaller
than that of unlabeled samples, and that pixelwise features
of the same image are drawn from one or multiple manifold
subspaces. We employ a Laplacian graph [48] to impose the
above manifold regularizations. Let Wij denote the similarity
between the image pixels xi and x j . We define the Laplacian
matrix by L = W − D, where Dii = ∑

j Wi j is diagonal. Let
fi denote the predicated label vector for the image pixel i
and F = [ fi ] denote the predicated label matrix. Thus,
we introduce the following regularization term:

U(x) =
∑

i

∑

j

Wi j ‖ fi − f j ‖2 (5)

= tr(FT L F) (6)

s.t. FT DF = 1, FT D1 = 0 (7)

where tr(·) represents the trace of a matrix, 1 indicates a
full-one matrix, and the two constraints are used to avoid trivial
solutions [50].

D. Integrating Mutually Exclusive Constraints

In the proposed multilabel setting, an image pixel might be
assigned to multiple coherent labels, e.g., head and nose. In the

meantime, for example, the labels of head and torso should
be exclusively assigned to an image pixel. Such exclusive
constraints are mutually effective for part labels and should
be satisfied during the training of deep features. Therefore,
we regularize the proposed FCN model with the following
constraint: if an image pixel xi receives a relatively large score
for a part label k, it is less likely for xi to receive significant
scores for and only for the part labels that are exclusive
from the label k. Fig. 2 graphically shows the decomposition
relationships between part labels. The exclusive labels of a part
(e.g., arm) include the parts of the same level in the hierarchy
(e.g., head) and their offspring parts (e.g., eye and nose).

To enforce the above exclusive constraints, we impose
additional regularizations terms over network activities f (·).
Let C(k) denote the exclusive labels for the label k. For each
label k and image pixel xi , we utilize an unified function to
accumulate the output activities for the labels in C(k), denoted
as p̂(xi ; k). We normalize p̂(xi; k) so that its sum is unit 1.
Being similar to [17], we specify a loss regularization over
both labeled and unlabeled images, which aims to minimizes
the entropy of the distribution p̂(xi ; k)

�(x) = −
C∑

k=1

∑

l∈C(k)

p̂l(xi ; k) log p̂l(xi ; k). (8)

Minimizing the above entropy will encourage sparsity over
the distribution p̂(xi ; k) and thus directly encode the proposed
exclusive constraints.

E. Unified Formula: Semisupervised Multilabel FCN

We define a unified loss function to integrate the objectives
in (2), (5), and (8)

L(D) =
∑

x∈Dl

λlJ (x, y) +
∑

x∈D

[λuU(x) + λe�(x)] (9)

where λl , λu , and λe are constants and their sum is 1. Among
these terms, J (x) is the multilabel supervised loss, U is the
manifold regularization term, and �(x) is the regularization
term with exclusive constraints. These objectives are defined
over both labeled and unlabeled samples.

F. Network Architecture

Fig. 3 graphically illustrates the network architecture of the
proposed semisupervised multilabel FCN. We use the VGG-16
network architecture and employ the atrous algorithm [7]
to generate dense pixelwise predictions. These convolutional
layers are applied on the input image to get a pixelwise score
map for each part label. We pretrain the network on ImageNet
with the cross-entropy loss function [21] and fine-tune the
network weights following the procedure of Long et al. [27].
In particular, we replace the 1000-way ImageNet classifier in
the last layer of VGG-16 with a 32-way one, corresponding
to the 31 human part labels plus background label. On top of
this pretrained network, we replace the last fully connected
layers with two convolution layers [9]: one layer uses 1 × 1
kernels and the other layer uses 3 × 3 kernels to generate
pixelwise predictions. Like Long et al. [27], we upsample
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Fig. 3. Network architecture of the proposed semisupervised multilabel FCN. The loss functions are defined over both labeled and unlabeled data and
include three parts. J : multilabel softmax loss with unidirectional coherence constraints, U : loss over Laplacian graph, and �: loss over mutually exclusive
constraints.

and concatenate the intermediate predictions to get pixelwise
scores and use them to calculate losses over training images.

The proposed loss function (9) is smooth and differentiable
and can be effectively optimized using the standard stochastic
gradient descent algorithm [21]. In particular, we run forward
propagation on the input image, generating pixelwise score
maps. Each image pixel is associated with a score for each of
the 32 labels. It takes a total of 0.18 s to evaluate an image on
a K40 GPU. With pixelwise prediction maps, we use the fully
connected conditional random field (CRF) model [7] to obtain
the final label assignment. This postprocessing step is known
to be effective for smoothing regions and refining region
boundaries. It is noted that learning potential functions for the
CRF models simultaneously can bring extra improvements in
performances [7].

IV. EXPERIMENTS

In this section, we test and evaluate the proposed semi-
supervised method for hierarchical object parsing using pub-
lic image benchmarks and compare it to the other popular
methods.

A. Evaluation Protocols

1) Data Sets: We use two public data sets for object parsing.
The first one is the UCLA Human Part data set, which is a
subset of the UCLA PASCAL Part Challenge [46]. The data
set includes 1716 training images and 1817 testing images.
It provides pixelwise part annotations of 31 human parts,
as shown in Fig. 2. This challenge requires multilevel part
recognitions, which are more challenging than the alternative
benchmarks [21], [26]. The second data set is the PASCAL
Quadrupseds data set [43], which includes images of five
animals, including cat, dog, sheep, cow, and horse. There
are 3120 training images and 294 testing images, annotated
with 4 part labels (including head, body, leg, and tail). Note
that the second data set is provided with two-level of part
annotations: the whole object (level-1) and part labels (level-
2), and the proposed multilabel framework is still applicable.
These two image data sets include a variety of natural object

images, being used to test the generalization capability of the
proposed hierarchical object parsing algorithm.

2) Image Augmentation: Using a sufficient amount of rep-
resentative training images is crucial to the success of deep
learning models. In this article, we resize each training image
so that its longer dimension is 500 pixels and slide a subwin-
dow of 300 by 300 pixels with a step size of 20 pixels. For
each subwindow, we perform 4 additional croppings through
randomly selecting one of the following ways: 1) flipping, with
a probability 0.1; 2) changing color intensity by a random scale
in [0.7, 1.3], with a probability 0.4; and 3) rotating a random
degree between [−5, 5], with a probability 0.5. We cropped
30–70 samples for each image. Similar cropping protocol has
been used in previous works (see [43]).

3) Implementation: To measure the pairwise distance
between image pixels, we extract the histogram of oriented
gradient (HOGs) [10] from local regions centered at individual
pixels and calculate their pairwise Euclidean distance Wij .
In the loss function 9, we set λl , λu , and λe to be 0.6, 0.3,
and 0.1, respectively. We train the semisupervised multilabel
FCN using stochastic gradient descent methods with mini-
batches. Each minibatch contains 30 images. The initial learn-
ing rate is 0.001 and is decreased by a factor of 0.1 after every
2000 iterations. We set the momentum to be 0.9 and the weight
decay to be 0.0005. The initialization model is a modified
VGG-16 network pretrained on ImageNet. Fine-tuning our
network on the first UCLA Human Part data set takes about
30 h on a NVIDIA Telsa K40 GPU. The average inference
time for one image is about 0.3 s. While applying the proposed
method over each of the three data sets, we use the 10 582
images from PASCAL VOC 2012 as unlabeled images. Being
similar to [7], we decouple the deep convolutional neural
network (DCNN) and Dense CRF training stages and learn the
CRF parameters by cross validation to maximize intersection-
over-union (IOU) segmentation accuracy in a held-out set
of 100 fully annotated images. We use 10 mean-field iterations
for dense CRF inference [20].

4) Baselines: We compare our algorithm with three state-
of-the-art methods for part segmentation, including two
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TABLE I

PART PARSING RESULTS (IOU) ON THE UCLA HUMAN PART CHALLENGE [46]. THE PROPOSED SEMISUPERVISED METHOD OUR-I, OUR-II,
AND OUR-III USED 30%, 50%, AND 100% ANNOTATED TRAINING SAMPLES, RESPECTIVELY. THE METHOD OUR-IV USES

100% ANNOTATED IMAGES BUT DOES NOT EMPLOY THE EXCLUSIVE CONSTRAINTS BETWEEN LABELS.
THE OTHER BASELINE METHODS USE ALL THE TRAINING SAMPLES

TABLE II

PART PARSING RESULTS (IOU) ON THE QUADRUPEDS DATA SET. THE
PROPOSED SEMISUPERVISED METHOD OUR-I, OUR-II, AND OUR-III

USED 30%, 50%, AND 100% ANNOTATED TRAINING IMAGES,
RESPECTIVELY. THE OTHER BASELINE METHODS USED

ALL THE LABELED TRAINING IMAGES. THE METHOD
OUR-IV USES 100% ANNOTATED IMAGES BUT

DOES NOT EMPLOY THE EXCLUSIVE

CONSTRAINTS BETWEEN LABELS

popular supervised methods: the deep hypercolumn (HC)
method [19] and the joint object and part segmentation method
by Wang et al. [43]. Both methods require fully annotated
training images. We also compare to the weakly supervised
method by Papandreou et al. [31], which can automatically
infer pixelwise segmentation maps using an electromagnetic
(EM) method. We implemented and trained their models
following the suggested configurations/procedures.

5) Evaluation Metrics: We evaluate the results of various
object parsing methods using IOU, i.e., IOU between pixelwise
predictions and ground-truth labels. The proposed method
might generate multiple label predictions for every pixel. In the
evaluation, we consider each part/subpart as a separate class
and compute IOU for each class. We calculate the mean IOU
across images and average over all labels.

B. Results on the UCLA Human Part Data Set [46]

We apply the proposed semisupervised method over the
UCLA Human Part data set and evaluate it in both inductive
and transductive settings. The former studies how well the
learned model works on unseen examples, while the latter
studies how the learning procedure discovers labels for the
unlabeled training samples [50].

Table I reports the quantitative comparisons of all methods
in the inductive setting. We learn the proposed model from
both labeled and unlabeled data and test the learned model
over unseen testing samples. Among the 31 part labels, we did

not include the results for the six subparts of head (e.g., ear,
eye, mouse, brow, nose, and hair) since their instances are
very rare. We evaluated three variants of the proposed method:
Our-I, Our-II, and Our-III, which used 30%, 50%, and 100%
labeled training samples, respectively. The three baseline
methods used 100% labeled training samples for fair com-
parisons since the three implementations of our method access
extra unlabeled images. The semisupervised method [31] used
all the unlabeled images. We implement another variant of the
proposed method, denoted as Our-IV, which does not utilize
exclusive label constraints. We set λu = 0.4 and λe = 0
for Our-IV. We use these variants to analyze the effects of
individual components of the proposed method.

From the comparisons of various labeling algorithms,
we can draw the following observations.

1) The proposed method can achieve equivalent perfor-
mance to the three fully supervised object parsing meth-
ods while only using 50% or less labeled images. With
only 30% labeled training images, the proposed Our-I
(IOU: 51.4%) can still outperform the methods [19]
(IOU: 48.3%) and [43] (IOU: 50.2%), which is an
encouraging result considering it is cost-intensive to
collect hierarchical part annotations. Our semisupervised
method, however, still needs a descent amount of super-
visions to be properly trained. Note that our method is
different from one-short learning algorithms [12], [42]
that work on one or a few labeled training samples.

2) With additional use of unlabeled images the semisu-
pervised methods Our-III and [31] can achieve equiv-
alent performance as the fully supervised methods. This
observation is consistent with the previous works [31]
and demonstrates the great potential of semisupervised
methods in conjunction with advanced deep learning
techniques.

3) The comparisons between Our-IV and Our-III demon-
strated the advantages of the proposed exclusive con-
straints. In particular, our method obtained about
3% improvements while additionally employing such
constraints.

Fig. 4 visualizes the exemplar results of transductive infer-
ence using the proposed method Our-I. For each unlabeled
training image, we run forward propagation over the learned
network to get labelwise prediction maps and employ the
densely connected CRF method [7] to obtain final labels.
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Fig. 4. Exemplar results of transductive learning. Column 1 shows the input images. Columns 2–4 show the predicted maps for binary labels (human and
others), five part labels (torso, head, neck, arm, and leg), and the other subpart labels, respectively.

Fig. 5. Exemplar results of part parsing. Column 1: input images. Column 2: results by [19]. Column 3: results by [43]. Column 4: results by the proposed
method (Our-I). Column 5: ground-truth label map. Color codes are randomly generated to highlight the segmented regions.

For each image in the first column, we visualize its label
map using three figures for clarity. Column 1: human and

background, Column 2: torso, head, neck, arm, and leg, and
Column 3: other part labels. Note that we change the color
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codes used in different columns to highlight the semantic
regions obtained. These images include many challenges to
existing state of object parsing, including occlusions (row
1), complex interactions (row 2), lighting changes (row 3),
and scale change (row 4). With the proposed constraints, our
method achieved promising results considering that only a
small number of labeled images are used for training.

C. Results on the Quadrupeds Data Set [43]

We further test and evaluate the proposed method over the
Quadrupeds data set. We used the same baseline methods
as the previous experiment. Table II reports the quantitative
comparisons between all algorithms using IOU metrics.
We first calculate IOU for each label and then average
across part labels to get the categorywise IOU. For every
method, we also average categorywise IOU over all object
categories for comparisons. The comparisons between vari-
ous methods clearly demonstrate the advantages of the pro-
posed method. Notably, with 30% labeled training images,
the proposed method Our-I can achieve much better perfor-
mance (49.6%) than two state-of-the-art methods [19] (38.8%)
and [43] (44.3%). It is also comparable to the semisupervised
method [31] (51.7%), which uses all the labeled training
images. Moreover, we can observe that Our-IV achieved a
decent accuracy (52.0%) while only using multilabel loss and
Laplacian regularization and obtained a much better accu-
racy (56.6%) while additionally using the proposed exclusive
constraints.

Fig. 5 visualizes the results of various human part parsing
methods, including [19], [43], and Our-I. The three exemplar
images include cat, horse, and cow, respectively. We show the
ground-truth label map in the last column for comparisons.
For the image of cat (row-1), [19] is less accurate than the
other two methods since the labeled region of legs includes
many background pixels. For the other two images, only the
proposed method can identify the part of tail. Our method aims
to directly model the coherence and exclusive relationships in
the label space and demonstrates much stronger generalization
capability than the alternatives.

V. CONCLUSION

This article presented a multilabel FCN that can be effec-
tively trained on semisupervised images for hierarchical object
parsing. Our model is capable of explicitly imposing the var-
ious constraints between image labels and taking advantages
of unlabeled images. In particular, we introduced three types
of constraints: 1) pairwise coherences between part labels
and their offspring labels; 2) pixelwise manifold regulariza-
tion; and 3) exclusive constraints between object parts labels.
We formulated these objectives in a unified loss function and
use it to learn deep features in the semisupervised setting. The
proposed model can be end-to-end trained using the standard
stochastic gradient algorithm.

Experiments with comparisons on public image data sets
showed that our method can achieve state-of-the results for
segmenting object parts of varying semantic levels in images.

We empirically showed that: 1) additional use of a large
amount of unlabeled images brought significant improvements
in multilevel part segmentation; 2) our method achieved com-
parable performance while using 50% or less labeled samples
than the alternatives; and 3) the proposed coherence constrains
and exclusive constraints resulted in improved performance,
respectively, and the integration of these two constraints
achieve state-of-the-art performance for semisupervised hier-
archical object parsing.
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