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Abstract—This paper aims to develop a novel cost-effective framework for face identification, which progressively maintains a batch of

classifiers with the increasing face images of different individuals. By naturally combining two recently rising techniques: active learning

(AL) and self-paced learning (SPL), our framework is capable of automatically annotating new instances and incorporating them into

training under weak expert recertification. We first initialize the classifier using a few annotated samples for each individual, and extract

image features using the convolutional neural nets. Then, a number of candidates are selected from the unannotated samples for

classifier updating, in which we apply the current classifiers ranking the samples by the prediction confidence. In particular, our

approach utilizes the high-confidence and low-confidence samples in the self-paced and the active user-query way, respectively.

The neural nets are later fine-tuned based on the updated classifiers. Such heuristic implementation is formulated as solving a concise

active SPL optimization problem, which also advances the SPL development by supplementing a rational dynamic curriculum

constraint. The new model finely accords with the “instructor-student-collaborative” learning mode in human education. The

advantages of this proposed framework are two-folds: i) The required number of annotated samples is significantly decreased while the

comparable performance is guaranteed. A dramatic reduction of user effort is also achieved over other state-of-the-art active learning

techniques. ii) The mixture of SPL and AL effectively improves not only the classifier accuracy compared to existing AL/SPL methods

but also the robustness against noisy data. We evaluate our framework on two challenging datasets, which include hundreds of

persons under diverse conditions, and demonstrate very promising results. Please find the code of this project at: http://hcp.sysu.edu.

cn/projects/aspl/

Index Terms—Cost-effective model, active learning, self-paced learning, incremental processing, face identification
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1 INTRODUCTION

WITH the growth of mobile phones, cameras and social
networks, a large amount of photographs is rapidly cre-

ated, especially those containing person faces. To interact with
these photos, there have been increasing demands of develop-
ing intelligent systems (e.g., content-based personal photo
search and sharing from either his/her mobile albums or
social network) with face recognition techniques [1], [2], [3].
Thanks to several recently proposed pose/expression normal-
ization and alignment-free approaches [4], [5], [6], identifying
face in the wild has achieved remarkable progress. As for the
commercial product, the website “Face.com” once provided
an API (application interface) to automatically detect and

recognize faces in photos. Themain problem in such scenarios
is to identify individuals from images under a relatively
unconstrained environment. Traditionalmethods usually han-
dle this problemby supervised learning [7], while it is typically
expensive and time-consuming to prepare a good set of
labeled samples. Since only a few data are labeled, Semi-
supervised learning [8] may be a good candidate to solve this
problem. But it has been pointed out by [9]: Due to large
amounts of noisy samples and outliers, directly using the unla-
beled datamay significantly reduce learning performance.

This paper targets on the challenge of incrementally
learning a batch of face recognizers with the increasing face
images of different individuals.1 Here we assume that the
person faces can be basically detected and localized by
existing face detectors. However, to build such a system is
quite challenging in the following aspects.

� Person faces have large appearance variations (see
examples in Fig. 1a) caused by diverse views and
expressions as well as facial accessories (e.g., glasses
and hats) and aging. The different lighting condition
is also required to be considered in practice.

� It is possible that only a few labeled samples are
accessible at first, and the changes of personal faces
are rather unpredictable over time, especially under
the current scenarios that there are large amount of
images swarmed into Internet every day.
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� Even though a few user interventions (e.g., labeling
new samples) could be allowed, the user effort is
desired to be kept minimizing over time.

Conventional incremental face recognition methods
such as incremental subspace approaches [10], [11] often
fail on complex and large-scale environments. Their per-
formances could be dropped drastically when the initial
training set of face images is either insufficient or inappro-
priate. In addition, most of existing incremental approa-
ches suffer from noisy samples or outliers in the model
updating. In this work, we propose a novel active
self-paced learning framework (ASPL) to handle the above
difficulties, which absorbs powers of two recently rising
techniques: active learning (AL) [12], [13] and self-paced
learning (SPL) [14], [15], [16]. In particular, our framework
tends to conduct a “Cost-less-Earn-more” working man-
ner: as much as possible pursuing a high performance
while reducing costs.

The basic approach of the AL methods is to progres-
sively select and annotate most informative unlabeled sam-
ples to boost the model, in which user interaction is
allowed. The sample selection criteria is the key in AL,
and it is typically defined according to the classification
uncertainty of samples. Specifically, the samples of low
classification confidence, together with other informative
criteria like diversity, are generally treated as good candi-
dates for model retraining. On the other hand, SPL is a
recently proposed learning regime to mimic the learning
process of humans/animals that gradually incorporates easy
to more complex samples into training [17], [18], where an
easy sample is actual the one of high classification confidence
by the currently trained model. Interestingly, the two cate-
gories of learning methods select samples with the opposite
criteria. This finding inspires us to investigate the connec-
tion between the two learning regimes and the possibility of
making them complementary to each other. Moreover, as
pointed out in [3], [19], learning based features are consid-
ered to be able to exploit information with better discrimi-
native ability for face recognition, compared to the hand-
crafted features. We thus utilize the deep convolutional
neural network (CNN) [20], [21] for feature extraction
instead of using handcraft image features. In sum, we aim
at designing a cost-effective and progressive learning
framework, which is capable of automatically annotating

new instances and incorporating them into training under
weak expert recertification. In the following, we discuss the
advantage of our ASPL framework in two aspects: “Cost-
less” and “Earn-more”.

(I) Cost less: Our framework is capable of building
effective classifiers with less labeled training instances
and less user efforts, compared with other state-of-the-
art algorithms. This property is achieved by combining
the active learning and self-paced learning in the incre-
mental learning process. In certain feature space of model
training as Fig. 1b illustrates, samples of low classification
confidence are scattered and close to the classifier decision
boundary while high confidence samples distribute com-
pactly in the intra-class regions. Our approach takes both cat-
egories of samples into consideration for classifier updating.
The benefit of this strategy includes: i) High-confidence sam-
ples can be automatically labeled and consistently added
intomodel training throughout the learning process in a self-
paced fashion, particularly when the classifier becomes
more and more reliable at later learning iterations. This sig-
nificantly reduce the burden of user annotations and make
the method scalable in large-scale scenarios. ii) The low-con-
fidence samples are selected by allowing active user annota-
tions, making our approach more efficiently pick up
informative samples, more adapt to practical variations and
converge faster, especially in the early learning stage of
training.

(II) Earn more: The mixture of self-paced learning and
active learning effectively improves not only the classifier
accuracy but also the classifier robustness against noisy
samples. From the perspective of AL, extra high-confi-
dence samples are automatically incorporated into the
retraining without cost of human labor in each iteration,
and faster convergence can be thus gained. These intro-
duced high-confidence samples also contribute to sup-
press noisy samples in learning, due to their compactness
and consistency in the feature space. From the SPL per-
spective, allowing active user intervention generates the
reliable and diverse samples that can avoid the learning
been misled by outliers. In addition, utilizing the CNN
facilitates to pursue a higher classification performance
by learning the convolutional filters instead of hand-craft
feature engineering.

In brief, our ASPL framework includes two main
phases. At the initial stage, we first learn a general face
representation using an architecture of convolutional neu-
ral nets, and train a batch of classifiers with a very small
set of annotated samples of different individuals. In the
iteration learning stage, we rank the unlabeled samples
according to how they relate to the current classifiers, and
retrain the classifiers by selecting and annotating samples
in either active user-query or self-paced manners. We can
also make the CNN fine-tuned based on the updated
classifiers.

The key point in designing such an effective interactive
learning system is to make an efficient labor division
between computers and human participants, i.e., we
should possibly feed computable and faithful tasks into
computers, and to possibly arrange labor-saving and
intelligent tasks to humans [22]. The proposed ASPL
framework provides a rational realization to this task by

Fig. 1. Illustration of high- and low-confidence samples in the feature
space. (a) Shows a few face instances of different individuals, and these
instances have large appearance variations. (b) Illustrates how the samples
distribute in the feature space, where samples of high classification
confidence distribute compactly to formseveral clusters and low confidence
samples are scattered and close to the classifier decision boundary.
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automatically distinguishing high-confidence samples,
which can be easily and faithfully recognized by com-
puters in a self-paced way, and low-confidence ones,
which can be discovered by requesting user annotation.

The main contributions of this work are several folds. i) To
the best of our knowledge, our work is the first one to make
a face recognition framework capable of automatically
annotating high-confidence samples and involve them into
training without need of extra human labor in a purely self-
paced manner under weak recertification of active learning.
Especially in that along the learning process, we can achieve
more and more pseudo-labeled samples to facilitate learning
totally for free. Our framework is thus suitable in practical
large-scale scenarios. The proposed framework can be easily
extended to other similar visual recognition tasks. ii)We pro-
vide a concise optimization problem and theoretically
interpret that the proposed ASPL is an rational implementa-
tion for solving this problem. iii) This work also advances
the SPL development, by setting a dynamic curriculum
variation. The new SPL setting better complies with the
“instructor-student-collaborative” learning mode in human
education than previous models. iv) Extensive experiments
on challenging CACD and CASIA-WebFace datasets show
that our approach is capable of achieving competitive or
even better performance under only small fraction of sample
annotations than that under overall labeled data. A dramatic
reduction (> 30 percent) of user interaction is achieved over
other state-of-the-art active learningmethods.

The rest of the paper is organized as follows. Section 2
presents a brief review of related work. Section 3 overview
the pipeline of our framework, followed by a discussion of
model formulation and optimization in Section 4. The
experimental results, comparisons and component analysis
are presented in Section 5. Section 6 concludes the paper.

2 RELATED WORK

In this section, we first present a review for the incremental
face recognition, and then briefly introduce related develop-
ments on active learning and self-paced learning.

Incremental Face Recognition. There are two categories of
methods addressing the problem of identifying faces
with incremental data, namely incremental subspace and
incremental classifier methods. The first category mainly
includes the incremental versions of traditional subspace
learning approaches such as principal component analysis
(PCA) [23] and linear discriminant analysis (LDA) [11].
These approaches map facial features into a subspace, and
keep the eigen representations (i.e., eigen-faces) updated by
incrementally incorporating new samples. And face recog-
nition is commonly accomplished by the nearest neighbor-
based feature matching, which is computational expensive
when a large number of samples are accumulated over
time. On the other hand, the incremental classifier methods
target on updating the prediction boundary with the
learned model parameters and new samples. Exemplars
include the incremental support vector machines (ISVM)
[24] and the online sequential forward neural network [25].
In addition, several attempts have been made to absorb
advantages from both of the two categories of methods. For
example, Ozawa et al., [26] proposed to integrate the

Incremental PCA with the resource allocation network in an
iterative way. Although these mentioned approaches make
remarkable progresses, they suffer from low accuracy com-
pared with those of batch-based state-of-the-art face recog-
nizers, and none of these approaches have been successfully
validated on large-scale datasets (e.g., more than 500 indi-
viduals). And these approaches are basically studied in the
context of fully supervised learning, i.e., both initial and
incremental data are required to be labeled.

Active Learning. This branch of works mainly focus on
actively selecting and annotating the most informative unla-
beled samples, in order to avoid unnecessary and redundant
annotation. The key part of active learning is thus the selection
strategy, i.e., which samples should be presented to the user
for annotation. One of the most common strategies is the cer-
tainty-based selection [27], [28], in which the certainties are
measured according to the predictions on new unlabeled
samples obtained from the initial classifiers. For example,
Lewis et al., [27] proposed to take the most uncertain instance
as the one that has the largest entropy on the conditional dis-
tribution over its predicted labels. Several SVM-based meth-
ods [28] determine the uncertain samples as they are
relatively close to the decision boundary. The sample cer-
tainty was also measured by applying a committee of classi-
fiers in [29]. These certainty-based approaches usually ignore
the large set of unlabeled instances, and are thus sensitive to
outliers. A number of later methods present the information
density measure by exploiting the information of unlabeled
data when selecting samples. For example, the informative
samples are sequentially selected to minimize the generaliza-
tion error of the trained classifier on the unlabeled data, based
on a statistical approach [30] or prior information [31]. In [32],
[33], instances are taken to maximize the increase of mutual
information between the candidate instances and the remain-
ing ones based on Gaussian Process models. The diversity of
the selected instance over the unlabeled data has been also
taken into consideration [34]. Recently, Elhamifar et al., [12]
presented a general framework via convex programming,
which considered both the uncertainty and diversity measure
for sample selection. However, these mentioned active learn-
ing approaches usually emphasize those low-confidence sam-
ples (e.g., uncertain or diverse samples) while ignoring the
other majority of high-confidence samples. To enhance the
discriminative capability, wang et al. [8] proposed a unified
semi-supervised learning framework, which incorporates the
high confidence coding vectors of unlabeled data into training
under the proposed effective iterative algorithm, and dem-
onstrate its effectiveness in dictionary-based classification.
Our work inspires by this work, and also employs the
high-confidence samples to improve both accuracy and
robustness of classifiers.

Self-Paced Learning. Inspired by the cognitive principle of
humans/animals, Bengio et al. [17] initialized the concept
of curriculum learning (CL), in which a model is learned by
gradually including samples into training from easy to
complex. To make it more implementable, Kumar et al. [18]
substantially prompted this learning philosophy by formu-
lating the CL principle as a concise optimization model
named self-paced learning. The SPL model includes a
weighted loss term on all samples and a general SPL regular-
izer imposed on sample weights. By sequentially optimizing
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the model with gradually increasing pace parameter on the
SPL regularizer, more samples can be automatically discov-
ered in a pure self-paced way. Jiang et al. [14], [16], [35] pro-
vided more comprehensive understanding for the learning
insight underlying SPL/CL, and formulated the learning
model as a general optimization problem as:

min
w;v2½0;1�n

Xn
i¼1

viLðw; xi; yiÞ þ fðv;�Þ

s.t. v 2 CC;

(1)

where D ¼ fðxi; yiÞgni¼1 corresponds to the training dataset,
Lðw; xi; yiÞ denotes the loss function which calculates the
cost between the objective label yi and the estimated one, w
represents the model parameter inside the decision function,
v ¼ ½v1; v2; . . . ; vn�T denote the weight variables reflecting the
samples’ importance. � is a parameter for controlling the
learning pace, which is also referred as “pace age”.

In the model, fðv;�Þ corresponds to a self-paced regular-
izer. Jiang et al. abstracted three necessary conditions it
should be satisfy [14], [16]: (1) fðv;�Þ is convex with respect
to v 2 ½0; 1�; (2) The optimal weight of each sample should
be monotonically decreasing with respect to its correspond-
ing loss; and (3) The optimal weight of each sample should
be monotonically decreasing with respect to the pace
parameter �.

In this axiomic definition, Condition 2 indicates that the
model inclines to select easy samples (with smaller errors)
in favor of complex samples (with larger errors). Condition
3 states that when the model “age” � gets larger, it embarks
on incorporating more, probably complex, samples to train
a “mature” model. The convexity in Condition 1 further
ensures that the model can find good solutions.

C is the so called curriculum region that encodes the infor-
mation of predetermined curriculums. Its axiomic definition
contains two conditions [14]: (1) It should be nonempty and
convex; and (2) If xi is ranking before xj in curriculum (more
important for the problem), the expectation

R
C vi dv should

be larger than
R
C vj dv. Condition 1 ensures the soundness for

the calculation of this specific constraint, and Condition 2
indicates that samples to be learned earlier is supposed to
have larger expected values. This constraint weakly implies a
prior learning sequence of samples, where the expected value
for the favored samples should be larger.

The SPL model (1) finely simulates the learning process
of human education. Specifically, it builds an “instructor-
student collaborative” paradigm, which on one hand uti-
lizes prior knowledge provided by instructors as a guidance
for curriculum designing (encoded by the curriculum con-
straint), and on the other hand leaves certain freedom to stu-
dents to ameliorate the actual curriculum according to their
learning pace (encoded by the self-paced regularizer). Such
a model not only includes all previous SPL/CL methods as
its special cases, but also provides a general guild line to
extend a rational SPL implementation scheme against cer-
tain learning task. Based on this framework, multiple SPL
variations have been recently proposed, like SPaR [16],
SPLD [15], SPMF [35] and SPCL [14].

The SPL related strategies have also been recently
attempted in a series of applications, such as specific-class
segmentation learning [36], visual

Complementarity Between AL and SPL. It is interesting that
the function of SPL is very complementary to that of AL.
The SPL methods emphasize easy samples in learning,
which correspond to the high-confidence intra-class sam-
ples, while AL inclines to pick up the most uncertain and
informative samples for the learning task, which are always
located in low-confidence area near classification bound-
aries. SPL is capable of easily attaining large amount of faith-
ful pseudo-labeled samples with less requirement of human
labors (by reranking technique [16]. We will introduce
details in Section 4), while tends to underestimate the roles
of those most informative ones intrinsically configuring the
classification boundaries; on the contrary, AL inclines to get
informative samples, while needmore human labors toman-
ually annotate these sampleswithmore carefully annotation.
We thus expect to effectivelymix these two learning schemes
to help incremental learning both improve the efficiency
with less human labors (i.e., Cost Less) and achieve better
accuracy and robustness of the learned classifier against
noisy samples (i.e., Earn More). This constructs the basic
motivation of our ASPL framework for face identification
under large-scale scenarios.

3 FRAMEWORK OVERVIEW

In this section, we illustrate how our ASPL model works. As
illustrated in Fig. 2, the main stages in our framework pipe-
line include: CNN pretraining for face representation, clas-
sifier updating, high-confidence sample pseudo-labeling in
a self-paced fashion, low-confidence sample annotating by
active users, and CNN fine-tuning.

CNN Pretraining: Before running the ASPL framework,
we need to pretrain a CNN for feature extraction based on a
pre-given face dataset. These images are extra selected with-
out overlapping to all our experimental data. Since
several public available CNN architectures [37], [38] have
achieved remarkable success on visual recognition, our
framework supports to directly employ these architectures
and their pretrained model as initialized parameters. In our
all experiments, AlexNet [37] is utilized. Given the extra
selected of annotated samples, we further fine-tune the
CNN for learning discriminative feature representation.

Initialization: At the beginning, we randomly select few
images for each individual, extract feature representation
for them by pretrained CNN, and manually annotate labels
to them as the starting point.

Classifier Updating: In our ASPL framework, we use one-
vs-all linear SVM as our classifier updating strategies. In the
beginning, only a small part of samples are labeled, and we
train an initial a classifier for every individual using these
samples. As the framework gets mature, samples manually
annotated by the AL and pseudo-labeled by the SPL are
growing, we adopt them to retrain the classifiers.

High-Confidence Sample Pseudo-Labeling: We rank the unla-
beled samples by their important weights via the current
classifiers, e.g., using the classification prediction hinge loss,
and then assign pseudo-labels to the top-ranked samples of
high confidences. This step can be automatically imple-
mented by our system.

Low-Confidence Sample Annotating: Based on certain AL
criterion obtained under the current classifiers, rank all
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unlabeled samples, select those top-ranked ones (most
informative and generally with low-confidence) from the
unlabeled samples, and then manually annotate these sam-
ples by active users.

CNN Fine-Tuning: After several steps of the interaction,
we make the neural nets fine-tuned by the backward propa-
gation algorithm. All self-labeled samples by the SPL and
manually annotated ones by the AL are added into the net-
work, we utilize the softmax loss to optimize the CNN
parameters via stochastic gradient decent approach.

4 FORMULATION AND OPTIMIZATION

In this section we will discuss the formulation of our
proposed framework, and also provide a theoretical inter-
pretation of its entire pipeline from the perspective of opti-
mization. In specific, we can theoretically justify that the
entire pipeline of this framework finely accords with a solv-
ing process for an active self-paced learning optimization
model. Such a theoretical understanding will help deliver
more insightful understanding on the intrinsic mechanism
underlying the ASPL system.

4.1 Active Self-Paced Learning

In the context of face identification, suppose that we have n
facial photos which are taken from m subjects. Denote
the training samples as D ¼ fxigni¼1 � Rd, where xi is the
d-dimensional feature representation for the ith sample. We
have m classifiers for recognizing each sample by the one-
versus-all strategy.

Learned knowledge from data will be utilized to amelio-
rate our model after a period of pace increasing. Corre-
spondingly, we denote the label set of xi as yi ¼ fyðjÞi 2
f�1; 1ggmj¼1, where y

ðjÞ
i corresponds to the label of xi for the

jth subject. That is, if y
ðjÞ
i ¼ 1, this means that xi is catego-

rized as a face from the jth subject.
On our problem setting, we should give two necessary

remarks. One is that in our investigated face identification
problems, almost all data have not been labeled before our
system running. Only very small amount of samples are
annotated as the initialization. That is, most of fyigni¼1 are
unknown and needed to be completed in the learning pro-
cess. In our system, a minority of them is manually anno-
tated by the active users and a majority is pseudo-labeled in

a self-paced manner. The other remark is that the data
fxigni¼1 might possibly been inputted into the system in an
incremental way. This means that the data scale might be
consistently growing.

Via the proposed mechanism of combining SPL and AL,
our proposedASPLmodel can adaptively handle bothmanu-
ally annotated and pseudo-labeled samples, and still progres-
sively fit the consistently growing unlabeled data in such an
incrementalmanner. TheASPL is formulated as follows:

min
fw;b;v;yi2f�1;1gm;i =2 V��g

Xm
j¼1

1

2
kwðjÞk22

þC � L�wðjÞ; bðjÞ;D; yðjÞ; vðjÞ
�þ f

�
vðjÞ;�j

�
s:t: v 2 CC��;

(2)

where w ¼fwðjÞgmj¼1 � Rd and b ¼ fbðjÞgmj¼1 � R represent
the weight and bias parameters of the decision functions for
all m classifiers. CðC > 0Þ is the standard regularization
parameter trading off the loss function and the margin,
and we set C ¼ 1 in our experiments. v ¼ f½vðjÞ1 ; v

ðjÞ
2 ; . . . ;

vðjÞn �Tgmj¼1 denotes the weight variables reflecting the training
samples’ importance, and �j is a parameter (i.e., the pace
age) for controlling the learning pace of the jth classifier.
f vðjÞ;�j

� �
is the self-paced regularizer controlling the learn-

ing scheme. We denote the index collection of all currently
active annotated samples as V�� ¼ [m

j¼1fV�jg, where V�j cor-
responds to the set of the jth subject with the pace age �j.
Here V�� is introduced as a constraint on yi. CC

�� ¼ \n
i¼1fC��

i g
composes of the curriculum constraint of the model at the
m classifiers’ pace age �� ¼ f�jgmj¼1. In particular, we specify
two alternative types of the curriculum constraint for each
sample xi, as:

� C��
i ¼ ½0; 1� is for the pseudo-labeled sample, i.e.,

i =2 V��. Then, its importance weights with respect
to all the classifiers fvðjÞi gmj¼1 need to be learned in the
SPL optimization.

� C��
i ¼ f1g is for the sample annotated by the AL pro-

cess, i.e., 9j s:t: i 2 V�j . Thus, its importance
weights are deterministically set during the model
training, i.e., v

ðjÞ
i ¼ 1.

Each type of the curriculums will be detailedly inter-
preted in Section 2. Note that different from the previous

Fig. 2. Illustration of our proposed cost-effective framework. The pipeline includes stages of CNN and model initialization; classifier updating; high-
confidence sample labeling by the SPL, low-confidence sample annotating by AL and CNN fine-tuning, where the arrows represent the workflow.
The images highlighted by blue in the left panel represent the initially selected samples.
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SPL settings, this curriculum C��
i can be dynamically

changed with respect to all the pace ages �� of m classifiers.
This conducts the superiority of our model, as we discuss in
the end of this section.

We then define the loss function L
�
wðjÞ; bðjÞ;D; yðjÞ; vðjÞ

�
on x as:

L
�
wðjÞ; bðjÞ;D; yðjÞ; vðjÞ

�
¼
Xn
i¼1

v
ðjÞ
i l
�
wðjÞ; bðjÞ; xi; y

ðjÞ
i

�

¼
Xn
i¼1

v
ðjÞ
i

�
1� y

ðjÞ
i ðwðjÞTxi þ bðjÞÞ�þ

s.t.
Xm
j¼1

jyðjÞi þ 1j � 2; y
ðjÞ
i 2 f�1; 1g; i =2 V�;

(3)

where ð1� y
ðjÞ
i ðwðjÞTxi þ bðjÞÞÞþ is the hinge loss of xi in the

jth classifier. The cost term corresponds to the summarized
loss of all classifiers, and the constraint term only allows
two kinds of feasible solutions: i) for any i, there exists
y
ðjÞ
i ¼ 1while for all other y

ðkÞ
i ¼ �1 for all k 6¼ j; ii) y

ðjÞ
i ¼ �1

for all j ¼ 1; 2; . . . ;m (i.e., background or an unknown per-
son class). These samples xi will be added into the unknown
sample set U . It is easy to see that such constraint complies
with real cases where a sample should be categorized into
one pre-specified subject or not classified into any of the
current subjects.

Referring to the known alternative search strategy, we
can then solve this optimization problem. Specifically,
the algorithm is designed by alternatively updating the
classifier parameters w;b via one-vs-all SVM, the sample
importance weights v via the SPL, the pseudo-label y via
reranking. Along with gradually increasing pace parameter
��, the optimization updates: i) the curriculum constraint CC��

via AL and ii) the feature representation via CNN fine-tun-
ing. In the following we introduce the details of these opti-
mization steps, and give their physical interpretations. The
correspondence of this algorithm to the practical implemen-
tation of the ASPL system will also be discussed in the end.

Initialization. As introduced in the framework, we initial-
ize our system running by using pre-trained CNN to extract
feature representations of all samples fxigni¼1. Set an initial
m classifiers’ pace parameter set �� ¼ f�jgmj¼1. Initialize the
curriculum constraint CC�� with currently user annotated
samples V�� and corresponding fyðjÞgmj¼1 and v.

Classifier Updating. This step aims to update the classifier
parameters fwðjÞ; bðjÞgmj¼1 by one-vs-all SVM. Fixing
ffxigni¼1; v; fyigni¼1;CC

��g, the original ASPL model Eqn. (2)
can be simplified into the following form:

min
w;b

Xm
j¼1

1

2
kwðjÞk22 þ C

Xn
i¼1

v
ðjÞ
i l
�
wðjÞ; bðjÞ; xi; y

ðjÞ
i

�
;

which can be equivalently reformulated as solving the fol-
lowing independent sub-optimization problems for each
classifier j ¼ 1; 2; . . . ;m:

min
wðjÞ;bðjÞ

1

2
kwðjÞk22 þ C

Xn
i¼1

v
ðjÞ
i l
�
wðjÞ; bðjÞ; xi; y

ðjÞ
i

�
: (4)

This is a standard one-vs-all SVM model with weights by
taking one-class sample as positive while all others as nega-
tive. Specifically, when the weights v

ðjÞ
i are only of values

f0; 1g, it corresponds to a simplified SVMmodel under sam-
pled instances with v

ðjÞ
i ¼ 1; otherwise when vji sets values

from ½0; 1�, it corresponds to the weighted SVM model. And
both of them can be readily solved by many off-the-shelf
efficient solvers. Thus, this step can be interpreted as imple-
menting one-vs-all SVM over instances manually annotated
from the AL and self-annotated from the SPL.

High-Confidence Sample Labeling. This step aims to assign
pseudo-labels y and corresponding important weights v to
the top-ranked samples of high confidences.

We start by employing the SPL to rank the unlabeled
samples according to their importance weights v. Under
fixed fw;b; fxigni¼1; fyigni¼1;CC

��g, our ASPL model in
Eqn. (2) can be simplified to optimize v as:

min
v2 0;1½ �

Xm
j¼1

C
Xn
i¼1

v
ðjÞ
i l
�
wðjÞ; bðjÞ; xi; y

ðjÞ
i

�þ f
�
vðjÞ;�j

�
;

s:t: v 2 CC��:

(5)

This problem then degenerates to a standard SPL prob-
lem as in Eqn. (1). Since both the self-paced regularizer
fðvðjÞ;�jÞ and the curriculum constraint CC�� is convex (with
respect to v), various existing convex optimization techni-
ques, like the gradient-based or interior-point methods, can
be used for solving it. Note that we have multiple choices
for the self-paced regularizer, as those built in [15], [16]. All
of them comply with three axiomic conditions required for
a self-paced regularizer, as defined in Section 2.

Based on the second axiomatic condition for self-paced
regularizer, any of the above fðvðjÞ;�jÞ inclines to conduct
larger weights on high-confidence (i.e., easy) samples with
less loss values while vice versa, which evidently facilitates
the model with the “learning from easy to hard” insight. In
all our experiments, we utilize the linear soft weighting reg-
ularizer due to its relatively easy implementation and well
adaptability to complex scenarios. This regularizer penal-
izes the sample weights linearly in terms of the loss. Specifi-
cally, we have

fðvðjÞ; �jÞ ¼ �j
1

2
kvðjÞk22 �

Xn
i¼1

v
ðjÞ
i

 !
; (6)

where �j > 0. Eqn. (6) is convex with respect to vðjÞ, and we
can thus search for its global optimum by computing the
partial gradient equals. Considering v

ðjÞ
i 2 ½0; 1�, we deduce

the analytical solution for the linear soft weighting, as,

v
ðjÞ
i ¼ � C‘ij

�j
þ 1; C‘ij < �j

0; otherwise,

(
(7)

where ‘ij ¼ l wðjÞ; bðjÞ; xi; y
ðjÞ
i

� �
is the loss of xi in the jth clas-

sifier. Note that the deducing way to Eqn. (7) is similar with
in [16], but our resulting solution is different since our
ASPL model in Eqn. (2) is new.

After obtaining the weight v for all unlabeled samples
(i =2 V�) according to the optimized vðjÞ in a descending
order. Then we consider the samples with larger important
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weight than others are high confidences. We form these
samples into high-confidence sample set S and assign them
pseudo-labels: Fixing {w;b; fxigni¼1;CC

��; v}, we optimize yi
of Eqn. (2) which corresponds to solve:

min
yi2f�1;1gm;i2S

Xn
i¼1

Xm
j¼1

v
ðjÞ
i ‘ij

s.t.;
Xm
j¼1

jyðjÞi þ 1j � 2:

(8)

where vi is fixed and can be treated as constant. When xi
belongs to a certain person class, Eqn. (8) has an optimum,
which can be exactly extracted by the Theorem 1. The proof
is specified in the supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2652459.

Denote those js that satisfy wðjÞTxi þ bðjÞ 6¼ 0 and
v
ðjÞ
i 2 ð0; 1� as a set M and set all y

ðjÞ
i ¼ �1 for others in

default.2 The solution of Eqn. (8) for y
ðjÞ
i ; j 2 M can be

obtained by the following theorem.

Theorem 1.

a) If 8j 2 M, wðjÞTxi þ bðjÞ < 0, Eqn. (8) has a solu-
tion:

y
ðjÞ
i ¼ �1; j ¼ 1; . . . ;m;

b) When 8j 2 M except j ¼ j�,wðjÞTxi þ bðjÞ < 0, i.e.,
v
ðj�Þ
i ‘ij� > 0, then Eqn. (8) has a solution:

y
ðjÞ
i ¼ �1; j 6¼ j�

1; j ¼ j� ;
�

c) Otherwise, Eqn. (8) has a solution:

y
ðjÞ
i ¼ �1; j 6¼ j�

1; j ¼ j� ;
�

where

j� ¼ arg min
1�j�m

v
ðjÞ
i

�
‘ij �

�
1þ ðwðjÞTxi þ bðjÞÞ�þ�: (9)

Actually, only those high-confidence samples with posi-
tive weights, as calculated in the last updating step for v,
are meaningful for the solution. This implies the physical
interpretation for this optimization step: we iteratively find
the high-confidence samples based on the current classifier,
and then enforce pseudo-labels yi on those top-ranked
high-confidence ones (i 2 S). This is exactly the mechanism
underlying a reranking technique [16].

The above optimization process can be understood as the
self-learning manner of a student. The student tends to pick
up most high-confident samples, which imply easier aspects
and faithful knowledge underlying data, to learn, under the
regularization of the pre-designed curriculumCC��. Such reg-
ularization inclines to rectify his/her learning process so as
to avoid him/her stuck into a unexpected overfitting point.

Low-Confidence Sample Annotating. After pseudo-labeling
high-confidence samples in such a self-paced uncertainty
modeling, we employ AL fashion to update the curriculum
constraint C� in the model by supplementing more informa-
tive curriculums based onhuman knowledge. TheALprocess
aims to select most low-confidence unlabeled samples and to
annotate them as either positive or negative by requesting
user annotation. Our selection criteria are based on the classi-
cal uncertainty-based strategy [27], [28]. Specifically, given
the current classifiers, we randomly collected a number of
randomly unlabeled samples, which are usually located in
low-confidence area near the classification boundaries.

1) Annotated Sample Verifying: Considering the user
annotation may contain outliers (incorrectly anno-
tated samples), we introduce a verification step to
correct the wrongly annotated samples. Assuming
that labeled samples with lower prediction scores
from the current classifiers have higher probability
of being incorrectly labeled, we propose to ask the
active user to verify their annotations on these sam-
ples. Specifically, in this step we first employ the cur-
rent classifiers to obtain the prediction scores of all
the annotated samples. Then we re-rank them and
select Top-L ones with lowest prediction scores and
ask the user to verify these selected samples, i.e.,
double-checking them. We can set L as a small num-
ber (L = 5 in our experiments), since we do believe
the chance of human making mistakes is low. In
sum, we improve the robustness of the AL process
by further validating Top-L most uncertain samples
with the user. In this way, we can reduce the effects
of accumulated human annotation errors and enable
the classifier to be trained in a robust manner.

2) Low-Confidence Definition: When we utilize the cur-
rent classifiers (m classifiers for discriminating m
object categories) to predict the label of unlabeled
samples, those predicted as more than two positive
labels (i.e., predicted as the corresponding object cat-
egory) actually represent these samples making the
current classifiers ambiguous. We thus adopt them
as so called “low-confident” samples and require
active user to manually annotate them. Actually, in
this step, other “low-confidence” criterion can be uti-
lized. We employed this simple strategy just due to
its intuitive rationality and efficiency.

After users perform manual annotation, we update the
C� by additionally incorporating those newly annotated
sample set f into the current curriculum C�. For each anno-
tated sample, our AL process includes the following two
operations: i) Set its curriculum constraint, i.e., fC�

i gi2f ¼
f1g; ii) Update its labels fyigi2f and add its index into the
set of currently annotated samples V�. Such specified cur-
riculum still complies with the axiomic conditions for the

2. v
ðjÞ
i ¼ 0 actually implies that the ith sample is with low-confidence

to be annotated as the jth class, and thus it is natural to pseudo-label it
as a negative sample for the jth class. wTxþ b ¼ 0 implies that a sample
is located in the classification boundary of the jth class, and thus it is
also a low-confidence j-class sample and thus we directly annotate it as
negative. Actually, for these samples, pseudo-label them as positive or
negative will not affect the value of the objective function of Eqn. (8).
We tend to annotate these low-confidence samples as negative since
due to the constraint of Eqn. (8) (at most one positive class one sample
is allowed to be annotated), this will not influence selecting a more
rational positive class for each sample.

LIN ET AL.: ACTIVE SELF-PACED LEARNING FOR COST-EFFECTIVE AND PROGRESSIVE FACE IDENTIFICATION 13

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2652459
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2652459


curriculum constraint as defined in [14]. For those anno-
tated samples, the correspondingC�

i ¼ f1gwith expectation
value 1 over the whole set, while for others C�

i ¼ ½0; 1� with
expectation value 1=2. Thus the more informative samples
still have a larger expectation than the others. Also, it is
easy to see C� is non-empty and convex. It thus complies
traditional curriculum understanding.

New Class Handling. After the AL process, if active user
annotates the selected unlabeled samples with u unseen
person classes, new classifiers for these unseen classes are
needed to be initialized without affecting the existed classi-
fiers. Moreover, there is another difficulty that the samples
of the new class are not enough for classifier training.
Thanks to the proposed ASPL framework, we can employ
the following four steps to address above mentioned issues.

1) For each of these new class samples, search all the
unlabeled samples and pick out its K-nearest neigh-
bors from the unseen class set U in the feature space;

2) Require active user to annotate these selected neigh-
bors to enrich the positive samples for these new per-
son classes;

3) Initialize and update fwðjÞ; bðjÞ; vðjÞ; yðjÞ; �jgmþu
j¼mþ1 for

these new person classes according to above men-
tioned iteration process of {initialization, classifier
updating, high-confidence sample labeling, low-confidence
sample annotating}.

This step corresponds to the instructor’s role in human
education, which aims to guide a student to involve more
informative curriculums in learning. Different from the pre-
vious fixed curriculum setting in SPL throughout the learn-
ing process, here the curriculum is dynamically updated
based on the self-paced learned knowledge of the model.
Such an improvement better simulates the general learning
process of a good student. With the learned knowledge of a
student increasing, his/her instructor should vary the cur-
riculum settings imposed on him from more in the early
stage to less in later. This learning manner evidently should
conduct a better learning effect which can well adapt the
personal information of the student.

Feature Representation Updating. After several of the SPL
and AL updating iterations of {w;b; fyigni¼1; v;CC

��}, we now
aim to update the feature representation fxigni¼1 through
finetuning the pretrained CNN by inputting all manually
labeled samples from the AL and self-annotated ones from
the SPL. These samples tend to deliver data knowledge into
the network and improve the representation of the training
samples. A better feature representation is thus expected to
be extracted from this ameliorated CNN.

This learning process simulates the updating of the
knowledge structure of a human brain after a period of
domain learning. Such updating tends to facilitate a person
grasp more effective features to represent newly coming
samples from certain domain and make him/her with a bet-
ter learning performance. In our experiments, we generally
conduct the CNN feature fine-tuning after around 50
rounds of the SPL and AL updating, and the learning rate is
set as 0.001 for all layers.

Pace Parameter Updating. We utilize a heuristic strategy to
update pace parameters f�jgmj¼1 for m classifiers in our
implementation.

After multiple iterations of the ASPL, we specifically set
the pace parameter �j for each individual classifier, and uti-
lize a heuristic strategy in our implementation for parame-
ter updating. For the tth iteration, we compute the pace
parameter for optimizing Eqn. (2) by:

�t
j ¼

�0; t ¼ 0

�
ðt�1Þ
j þ a � htj; 1 � t � t

�
ðt�1Þ
j ; t > t;

8><
>: (10)

where htj is the average accuracy of the jth classifier in the
current iteration, and a is a parameter which controls the
pace increasing rate. In our experiments, we empirically set
f�0;ag ¼ f0:2; 0:08g. Note that the pace parameters ��
should be stopped when all training samples are with
v ¼ f1g. Thus, we introduce an empirical threshold t con-
straining that �� is only updated in early iterations, i.e., t � t.
t is set as 12 in our experiments.

The entire algorithm can then be summarized into Algo-
rithm 1. It is easy to see that this solving strategy for the ASPL
model finely accordswith the pipeline of our framework.

Algorithm 1. The Sketch of ASPL Framework

Input: Input dataset fxigni¼1

Output:Model parametersw, b
1: Use pre-trained CNN to extract feature representations of

fxigni¼1. Initialize multiple annotated samples into the cur-
riculum CC�� and corresponding fyigni¼1 and v. Set an initial
pace parameter �� ¼ f�0gm.
while not converged do

2: Updatew;b by one-vs-all SVM
3: Update v by the SPL via Eqn. (7)
4: Pseudo-label high-confidence samples fyigi2S by the

reranking via Eqn. (8)
5: Update the unclear class set U
6: Verify the annotated samples by AL.
7: Update low-confidence samples fyi;C�

i gi2f by the AL
if u unseen classes have labeled,
Handle u new classes via the steps in Section 4.1
Go to the step 2

end if
8: In every T iterations:

� Update fxigni¼1 through fine-tuning CNN
� Update �� according to Eqn. (10)

9: end while
10: return w;b;

Convergence Discussion. As illustrated in Algorithm 1, the
ASPL algorithm alternatively updates variables including:
the classifier parameters w, b (by weighted SVM),
the pseudo-labels y (closed-form solution by Theorem
1), the importance weight v (by SPL), and low-confidence
sample annotations f (by AL). For the first three parameters,
these updates are calculated by a global optimum obtained
from a sub-problem of the originalmodel, and thus the objec-
tive function can be guaranteed to be decreased. However,
just as other existing AL techniques, human efforts are
involved in the loop of the AL stage, and thus the objective
function cannot be guaranteed to be monotonically
decreased in this step. However, just as shows in Section 5,
as the learning processing, the model tends to be more and
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more mature, and the labor of AL tends to be less and less in
the later learning stage. Thus with gradually less involve-
ment of the AL calculation in our algorithm, the monotonic
decrease of the objective function in iteration tends to be
promised, and thus our algorithm tends to be convergent.

4.2 Relationship with Other SPL/AL Models

It is easy to see that the proposed ASPL model extends the
previous AL/SPL models and includes all of them as spe-
cial cases. When we fix the curriculum and feature represen-
tations and only update other parameters, it degenerates to
the traditional SPL models by rationally setting the self-
paced regularizer. When we fix the SPL parameters, feature
representations and do not involve pseudo-labels in learn-
ing, the model degenerates the a general AL learning
regime. The amelioration to both SPL and AL is expected to
bring benefits to both regimes. On one hand, introducing
more high-confidence samples in the self-paced fashion is
helpful to reduce the burden of user annotations, particu-
larly when the classifier becomes reliable at later learning
iterations. On the other hand, the low confidence samples
selected by active user annotations tends to make our
approach workable with less initial labeled samples than
existing self-paced learning algorithms. All these benefits
are comprehensively substantiated by our experiments.

5 EXPERIMENTS

In this section, we first introduce the datasets and imple-
mentation setting, and then discuss the experimental results
and comparisons with other existing approaches.

5.1 Datasets and Setting

We adopt two public datasets in our experiments, the Cross-
Age Celebrity Dataset (CACD) [39] and CASIA-WebFace-
Sub dataset [40].

CACD is a large-scale and challenging dataset for evalu-
ating face recognition and retrieval, and it contains a batch
of images of 2,000 celebrities collected from Internet, which
are varying in age, pose, illumination, and occlusion. And
only a subset of 200 celebrities are manually annotated by
Chen et al. [39]. For better convincing evaluation, we aug-
ment this subset by extra labeling 300 individuals and
obtain a set of 56,138 images in total.

CASIA-WebFace dataset [40] is a large scale face recogni-
tion dataset with 10,575 subjects/persons and 494,414
images. CASIA-WebFace is extremely challenging for its
images are all collected from Internet with different view
points and light illumination under different scenes.
Though the total person/subject number of CASIA-Web-
Face dataset is very large, the sample number for each per-
son, varying from 3 to 804, is heavily unbalanced. For those
persons who has very few samples (say below 100), the
experiment analysis is not able to be performed. Hence,
we select a subset of the CASIA-WebFace dataset by dis-
carding its persons with less than 100 samples to form
the CASIA-WebFace-Sub dataset. The CASIA-WebFace-
Sub dataset has 181,901 images with 925 persons inside.
The detailed information of above mentioned datasets is
summarized in Table 1.

Experiment Setting. We detect the facial points using the
method proposed in [41] and align the faces based on the eye
locations. The experiments on both of the datasets are con-
ducted as the following steps. We first randomly select
80 percent images of each individual to form the unlabeled
training set, and the rest samples are used for testing, accord-
ing to the setting in the existing active learning method [12].
Then, we randomly annotate n samples of each person in the
training set to initialize the classifier. To get rid of the influ-
ence of randomness, we average the results over 5 times of
execution with different sample selections. All of the experi-
ments are conducted on a common desktop PC with i7
3.4 GHzCPU and aNVIDIA Titan X GPU.

On the two above mentioned datasets, we evaluate the
performance of incremental face identification in two
aspects: the recognition accuracy and user annotation
amount in the incremental learning process. The recognition
accuracy is defined as the rank-one rate for face identifica-
tion. We compare our ASPL framework with several exist-
ing active learning algorithms and baseline methods under
the same setting: i) Convex Programming based Active
Learning (CPAL) [12]: Annotate a few samples in each step
based on prediction uncertainty and sample diversity; ii)
Confidence-based Active Learning via SVMs (CCAL) [28]:
Select only one sample having lowest prediction confidence;
iii) AL_RAND: Randomly select unlabeled samples to be
annotated during the training phase. This method discards
all active learning techniques and can be considered as the
lower bound, and iv) AL_ALL: All unlabeled samples are
annotated for training the classifier. This method can be
regarded as the upper bound (best performance the classi-
fier can achieve). For fair comparison, all of these methods
utilize the same feature representation as ours in the begin-
ning. As the training iteration increase, active user annota-
tion is employed to those selected most informative and
representative samples. Then, CNN fine-tuning is also
exploited to improve the feature extractor for ASPL, CPAL,
CCAL, AL_RAND, AL_ALL.

Details of CNN Implementation. The architecture of Alex-
Net [37] is utilized in our all experiments. Thanks to the
well pre-training, the CNN updating is only implemented
few times during ASPL iteration in all our experiments,
each only containing no more than 5 CNN updating steps.
We generally conducted CNN steps after around 5 rounds
of the SPL and AL updating, and the learning rate is set as
0.001 for all layers. Equal importance is imposed between
the previous training examples and the newly labeled
examples, and CNN is updated using the stochastic gradi-
ent decent methods with the momentum 0.9 and weight
decay 0.0005.

5.2 Experimental Comparisons

The results on the two datasets are reported in Figs. 3a and
3b, respectively, where we can observe how the recognition

TABLE 1
The Summarization of Datasets We Used

Dataset # images # persons # images/person

CACD 56,138 500 79	306
CASIA-WebFace-Sub 181,901 925 100	804
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accuracy changes with increasingly incorporating more
unlabeled samples. In CACD dataset, to achieve the same
recognition accuracy, ASPL model requires few annotation
of the unlabeled data. On the other hand, ASPL outperforms
the competing methods in accuracy when the same amount
annotations. ASPL can still have a superior performance as
the iteration goes on. The similar results and phenomena
can be discovered in CASIA-WebFace-Sub dataset. As one
can see that, ASPL only requires about 40 and 45 percent
annotations to achieve the-state-of-art performance on
CACD and CASIA-WebFace-Sub dataset, respectively.
While the compared methods AL_RAND, CCAL and CPAL
all requires about 81 and 65 percent, respectively. Hence,
our ASPL can performs as well as the AL_ALL with mini-
mal annotations.

Note that the performances of RAND and CCAL are rela-
tively close, and the similar results were reported in [12].
According to the explanation in [12], this comes from the
fact that many samples have low prediction confidences
and distribute not densely in the feature space. Thus, the
randomizing sample selection achieves similar results com-
pared to CCAL.

5.3 Component Analysis

To further analyze how different components contribute to
performance, we implement several variants of our frame-
work: i) ASPL (w/o FT): allowing both active and self-paced
sample selection during learning while disabling the CNN
fine-tuning, i.e., the feature extractor is kept the same as the
iteration goes on for training; ii) ASPL (w/o SPL): discard-
ing high-confidence sample pseudo-labeling via self-paced
learning; iii) ASPL (w/o AL): ignoring low confidence sam-
ples for active user annotation; iv) AL_ALL: fine-tuning the
CNN and train classifiers with all the labels of the training
samples and v) AL_ALL (w/o FT): training classifiers with
all the labels of the training samples without fine-tuning.
Moreover, the full version of our proposed model is
denoted as ASPL, which allows the convolutional nets to be
fine-tuned during the training process. We further evaluate
the ASPL variants in the following aspects.

Contribution of Different ASPL Components. Using
AL_ALL and AL_ALL (w/o FT) as the baselines, we gradu-
ally add the AL, SPL and fine-tuning components to ASPL.
These experiments are executed on the CASIA-Webface
dataset. Fig. 4 illustrates the accuracy obtained using ASPL,
ASPL (w/o FT), ASPL (w/o AL) and ASPL (w/o SPL). One

can observe that any of the three components is useful in
improving the recognition accuracy. Especially, the addi-
tional SPL component can significantly improve the recog-
nition accuracy and reduce the number of annotation
samples by automatically exploiting the majority of high-
confidence samples for feature learning.

We also observe that the CNN feature fine-tuning can
dramatically improve the recognition accuracy in the early
steps. This is mainly because the information gain (i.e., indi-
vidual appearance diversity) deceases with progressively
introducing new samples to the neural nets.

Analysis on Initial Samples. In SPL [18], classifier is first
trained using the initial samples. With the current classifier,
easy samples are preferred to be selected in the early train-
ing steps, and thus it is expected that the performance of
SPL heavily relies on the initial samples. Fortunately, by
incorporating with active learning, ASPL can evidently alle-
viate this problem. To verify this, we compare the perfor-
mance of ASPL and SPL on 20 randomly selected
individuals of CASIA-Webface-Sub dataset. The result is
shown in Fig. 5. Given the same initialized feature represen-
tations, we also conduct the experiments to analyze the per-
formance vs different initial portions to be handled by AL
on this dataset. The results are illustrated in Fig. 6.

As one can see from Fig. 5, with different initial samples,
ASPL reaches similar/stable results as the training contin-
ues, while SPL still varies a lot. This result indicates that the
AL component is effective in handling the poor initialization.
Fig. 6 illustrates that though poor performance is obtained at
the beginning, the performance of our model increases

Fig. 3. Results on (a) CACD and (b) CASIA-WebFace-Sub datasets. The vertical axes represent the recognition accuracy and the horizontal axes
represent the percentage of annotated samples of the whole set.

Fig. 4. Accuracies with the increase of annotated samples of different
variants of our framework, using CASIA-Webface-Sub dataset.
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during the training process. In summary, our model is insen-
sitive to the diversity and quantity of initial samples.

Performance with New Classes. To justify the effectiveness
of our ASPL for handling unseen new classes, we conduct
the following experiment on the CASIA-WebFace-Sub data-
set: We compare the performance of incrementally giving
some classes (our ASPL) and directly giving all person clas-
ses. Specifically, given all person classes, we initialize all the
classifiers at the beginning of the training and optimize
them without handling unseen new classes. We denote this
variant as ASPL (ALL). The experimental result is illus-
trated in Table 2 and shows that our proposed ASPL can
handle unseen new classes effectively without substantially
performance drop or even with slightly better performance,
compared with the all classes given version ASPL (ALL).

Annotation Required for Large Scale Dataset. To demon-
strate that our ASPL can be adopted under large scale sce-
nario, we analyze the training phase of ASPL on the large
scale CASIA-WebFace-Sub dataset. As illustrated in Fig. 7,
the x-axis denotes the number of training iterations and the

y-axis denotes the amount of required user annotation. The
curve in Fig. 7 demonstrates that our proposed ASPL model
requires relatively larger annotations when the training iter-
ation number is small. As the training continues, the
amount required annotations began to be reduced due to
the gradually mature model incrementally ameliorated in
the learning process. This observation indicates that the bur-
den of user annotations would be indeed relieved when the
classifier becomes reliable at the later learning stage of the
proposed ASPL method. Moreover, as illustrated in Table 3,
with the increase of user annotations over time, ASPL can
automatically assign more reliable pseudo-labels to the
unlabeled samples selected in the self-paced way.

Robustness Analysis. We further analyze the robustness of
ASPL when noisy images are deliberately included in two
experiments. (i) Ex-1: a (a ¼ 0%; 10%; 30%; 50%) noisy
images are added to the initial samples for each individual.
(ii) Ex-2: noise-free initials are used, but b (b ¼ 0%;
10%; 30%; 50%) importers are deliberately annotated during
the training process. These experiments are conducted on
the CASIA-Webface-Sub dataset. To validate the effective-
ness of the proposed annotated sample verifying step, we
disable the verifying step and denote these modification as
“Noise w/o VF”.

Fig. 8a shows the result of Ex-1, where ASPL is initialized
with different number of noisy images. In early steps of the
iteration, noisy data have huge adverse effect on test accu-
racy. Along with the increase of iteration number, the genu-
ine data gradually dominate the results. Fig. 8b illustrates
the result of Ex-2, where noisy images are added to the
labeled training set the 2th step of iteration. We can see that
a sharp decline in the recognition accuracy. However, with
the evolving of ASPL training, similar accuracy as com-
pared with that got on the original clean data can be
obtained when the number of iterations increases. As one
can comparing “Noise (10/30/50 percent)” with “Noise
(10/30/50 percent) w/o VF” from Fig. 8a, with the verifying

Fig. 5. The accuracy and standard deviation of ASPL and SPL on the
CASIA-Webface-Sub dataset.

Fig. 6. The comparison of different number of initial samples and the fur-
ther required annotation ported of the AL process on the CASIA-Web-
face-Sub dataset. For fair comparison, these methods share the same
feature representation as initialization.

TABLE 2
The Performance Comparison of Whether

Handling Unseen New Classes or Not on the
CASIA-WebFace-Sub Dataset

# Class Number 300 600 925

ASPL (ALL) 88.3% 81.0% 76.0%
ASPL 88.3% 81.6% 76.0%

ASPL (ALL) Denotes the ASPL Version of no Unseen Classes

Fig. 7. The comparison of different number of initial samples and the fur-
ther required annotation ported of the AL process on the CASIA-Web-
Face-Sub dataset.

TABLE 3
The Error Rates of the Pseudo-Labels Assigned

by SPL on High-Confidence Samples

# iteration 5 10 15 20 25

ASPL (w/o FT) 8.2% 6.9% 5.1% 5.0% 4.9%
ASPL 4.5% 4.1% 3.4% 3.3% 3.3%
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step, ASPL can recover from noisy images in a slightly fast
way. This justifies the effectiveness of the proposed anno-
tated sample verifying step.

6 CONCLUSIONS

In this paper, we have introduced, first, an effective frame-
work to solve incremental face identification, which build
classifiers by progressively annotating and selecting unla-
beled samples in an active self-paced way, and second, a
theoretical interpretation of the proposed framework pipe-
line from the perspective of optimization. Third, we evalu-
ate our approach on challenging scenarios and show very
promising results.

In the future, we will extend the system to support sev-
eral video-based vision applications, which require large
amount of user annotations. The proposed framework pro-
vides a rational realization to this task by automatically dis-
tinguishing high-confidence samples, which can be easily
and faithfully recognized by computers in a self-paced way,
and low-confidence ones, which can be discovered by
requesting user annotation.
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