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Abstract

Compared to natural RGB images, data captured
by 3D / depth sensors (e.g., Microsoft Kinect) have
different properties, e.g., less discriminable in ap-
pearance due to lacking color / texture information.
Applying convolutional neural networks (CNNs)
on these depth data would lead to unsatisfying
learning efficiency, i.e., requiring large amounts of
annotated training data for convergence. To ad-
dress this issue, this paper proposes a novel mem-
ory network module, called Convolutional Mem-
ory Block (CMB), which empowers CNNs with
the memory mechanism on handling depth data.
Different from the existing memory networks that
store long / short term dependency from sequen-
tial data, our proposed CMB focuses on modeling
the representative dependency (correlation) among
non-sequential samples. Specifically, our CMB
consists of one internal memory (i.e., a set of fea-
ture maps) and three specific controllers, which en-
able a powerful yet efficient memory manipulation
mechanism. In this way, the internal memory, be-
ing implicitly aggregated from all previous inputted
samples, can learn to store and utilize represen-
tative features among the samples. Furthermore,
we employ our CMB to develop a concise frame-
work for predicting articulated pose from still depth
images. Comprehensive evaluations on three pub-
lic benchmarks demonstrate significant superiority
of our framework over all the compared methods.
More importantly, thanks to the enhanced learning
efficiency, our framework can still achieve satisfy-
ing results using much less training data.

1 Introduction

With the rapid development of inexpensive commodity depth
sensors, depth data representation learning is ubiquitous in
many applications such as robotic systems [McColl et al.,
2011]. Compared to RGB data which provides information
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Figure 1: Detailed architecture of our proposed Convolutional Mem-
ory Block (CMB). The CMB consists of one internal memory
(i.e., a set of feature maps) and three specific convolutional con-
trollers, which can manipulate the internal memory and extract im-
plicit structural representation from the input feature map. Specif-
ically, the old internal memory from the previous training iteration
is loaded by the input and memory controller. Then, the memory
controller fuses its memory representation and the response of the
input controller, and saves the fused representation to be the new
internal memory. After that, the output controller loads the new in-
ternal memory to generate memory representation, which is further
concatenated with the input feature map to be the final output.

about appearance and texture, depth data, reflecting the dis-
tance information between the objects and the sensor, are less
discriminable. Recently, deep convolutional neural networks
(CNNs) have been applied by many methods [Haque er al.,
2016; Wang et al., 2016] for depth data analysis. Due to the
heavy sensor noise of depth data and the huge parameters of
used deep CNNs, these methods require plenty of well anno-
tated samples to train from scratch to achieve the satisfactory
performance. However, collecting and annotating on depth
data is extremely laborious and time-consuming. It will be
beneficial to design a more intelligent network architecture
with better learning efficiency on depth data, i.e., to surpass
the state-of-the-art performance even with less training data.
In this paper, we propose a novel memory network module,
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Figure 2: An overview of the proposed convolutional memory block embedded framework for estimating articulated poses.

called Convolutional Memory Block (CMB), inspired by the
recent work of Neural Turing Machine [Graves et al., 2014].
Considering the special properties of depth data, e.g., low dis-
criminability in appearance due to lacking color / texture in-
formation, we leverage the memory mechanism to enhance
the pattern abstracting of CNNs by reusing their rich implicit
convolutional structures and spatial correlations among the
training samples. Specifically, the proposed CMB consists of
three specific convolutional controllers and one internal mem-
ory (i.e., a set of feature maps) as shown in Figure 1. The
convolutional controller is designed to process the input fea-
ture map from the previous layer and manipulate the internal
memory. Different from ConvLSTM [Shi er al., 2015] and
ConvGRU [Ballas et al., 2016] that require time-series data,
the proposed convolutional controller performs convolution
in a hierarchical organization via several convolutional lay-
ers with batch normalization. This ensures that our proposed
CMB is capable of extracting more abstract information from
non-sequential training samples to augment image-dependent
feature representation. Specifically, our CMB intends to cap-
ture and store the representative dependencies or correlations
among training samples according to specific learning tasks,
and further employ these stored dependencies to enhance the
representation of convolutional layers. In this way, our CMB
encourages the CNN architecture to be lightweight and re-
quire less training data.

Since articulated (e.g., human body or hand) pose estima-
tion is one of the most dominant applications in depth data
representation learning, we develop a simple yet effective
articulated pose estimation framework to validate the effec-
tiveness of our CMB by applying it to enhance the convo-
lutional layers. Recently, highly accurate and real-time per-
formance on human pose estimation from depth data has been
achieved by deep learning based methods [Haque et al., 2016;
Wang et al., 2016]. Nevertheless, all methods borrow CNN
architectures from RGB data analysis. None of them consid-
ers how to improve the learning efficiency in the perspective
of handling depth images. Motivated by the design principles
from stacked hourglass [Newell et al., 2016], our developed
framework has a lightweight hourglass-like architecture, as il-
lustrated in Figure 2. Our CMB contributes to collaboratively
regress the heat map of each joint by providing the cached
representative feature maps, which are aggregated from pre-
vious inputted samples.

The main contributions of this work are summarized as
follows: (i) we propose a novel Convolutional Memory Block
(CMB) to promote the representation and learning efficiency
of convolutional layers for handling depth data; (ii) we ap-

ply our CMB to develop a simple yet effective framework for
articulated pose estimation from depth images. Extensive ex-
periments on three public benchmarks not only demonstrate
the superiority of our framework over all the compared meth-
ods, but also prove our framework can obtain comparable per-
formance with much less training data.

2 Related Work

Neural Networks with Memory. To model the temporal dy-
namics and dependency, Recurrent Neural Networks (RNNs),
particularly Long Short-Term Memory (LSTM) [Hochre-
iter and Schmidhuber, 1997] and Gated Recurrent Unit
(GRU) [Cho er al., 2014], have been proposed and achieved
the remarkable performance on many vision tasks (e.g., se-
mantic parsing [Liang er al., 2016]). More recently, the
Convolutional Long Short-Term Memory model (ConvL-
STM) [Shi et al., 2015] and Convolutional Gated Recurrent
Unit (ConvGRU) [Ballas et al., 2016] have been proposed
to consider the correlations among neighboring pixels in the
spatial domain by enabling convolutional operations among
its gates, hidden states and memory cells.

Besides above-mentioned models, various memory mecha-
nisms have been proposed to enable neural networks to model
sequential data by explicitly remembering variables and data
over long timescales. The existing memory network models
can be divided into content-based addressing and location-
based addressing according to their accessing memory man-
ners. The location-based addressing (e.g., [Graves er al.,
2014]) leverages a module so-called controller to receive in-
put data and further store or retrieve valuable information
from an external memory via the looked up address, while the
content-based addressing (e.g., [Graves et al., 2016]) focuses
on reading from or writing to the memory to obtain the rel-
evant memory cells or representations instead. Specifically,
Neural Turing Machines [Graves et al., 2014] was first pro-
posed to use an external memory to solve some algorithmic
problems via location addressing. [Na er al., 2017] proposed
to design the read network and the write network that consist
of multiple convolutional layers.

Articulated Pose Estimation from Depth Data. Re-
cently, several works [Shotton et al., 2011; 2013; Jung et al.,
2015] have achieved promising performances on articulated
pose estimation such as human and hand pose estimation.
[Shotton er al., 2011] designed an intermediate body parts
representation that maps the difficult pose estimation prob-
lem into a simpler per-pixel classification problem. [Jung et
al., 2015] proposed to introduce a regression tree to estimate
human poses by applying a supervised gradient descent and



MCMC like random sampler in the form of Markov random
walks. More recently, improved performances have also been
achieved by deep learning based methods [Haque et al., 2016;
Wang et al., 2016]. Specifically, [Haque et al., 2016] pre-
sented a viewpoint invariant model by combining CNN and
RNN with a top-down error feedback mechanism to self-
correct previous pose estimates in an end-to-end manner.
[Wang er al., 2016] proposed an inference embedded multi-
task learning framework, which is implemented with a deep
architecture of neural networks with two cascaded tasks.

The advanced network architectures [Wei et al., 2016;
Newell et al., 2016; Grinciunaite et al., 2016] for estimat-
ing human poses from RGB images have also been proposed.
[Wei et al., 2016] provided a sequential human pose pre-
diction framework for learning rich implicit spatial models.
[Newell et al., 2016] proposed to design network architec-
ture by processing features across all scales and consolidate
them to best capture the various spatial relationships associ-
ated with the body. However, directly applying these archi-
tectures to the depth data is unfeasible due to the different
challenges and requirements between the RGB data and the
depth data. For instance, the depth images usually include
heavy sensor noises and preserve coarse appearance details.

3 Convolutional Memory Blocks

As illustrated in Figure 1, our proposed Convolutional Mem-
ory Block (CMB) consists of one internal memory (a set of
feature maps) and three convolutional controllers for facili-
tating the internal memory manipulation. The internal mem-
ory is designed to store the learned implicit image-dependent
structural features, and is denoted as M € RemX/mXwm
where ¢, h,,, Wy, are the capacity, height, width of the fea-
ture map, respectively. Different from the widely used neural
controllers [Weston et al., 2015; Park et al., 2017] which use
full connections to perform input-to-state and state-to-state
transitions, our proposed convolutional controller leverages
the convolution operator to process the input feature map
from the previous neural layer, and further manipulates the
internal memory in both the training and testing phase. Fig-
ure 1 also illustrates three specific convolutional controllers in
our proposed CMB, i.e., input controller, memory controller
and output controller.

Inspired by the design principles from [Szegedy et al.,
2015], our proposed convolutional controllers share the same
elaborately crafted structure, which leverages a hierarchical
organization of convolutional layers rather than a simple con-
volutional layer as ConvLSTM [Shi et al., 2015] and Con-
vGRU [Ballas et al., 2016]. This ensures that the convo-
lutional controller is able to extract rich and high-level im-
plicit structural features. As illustrated in Figure 3, each con-
troller first concatenates both the input feature map and in-
ternal memory, and further employs a single 3x3 convolu-
tional layer, Batch Normalization (BN) layer, Rectified Lin-
ear Units (ReLLU), 1x1 convolutional layer and another BN
layer to obtain the intermediate feature map. For ease of im-
plementation, the channel number and stride of all the con-
volutional layers are the same. As reported by [Zhang et al.,
2018], the 1 x 1 convolutional layer is imposed to help the in-
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Figure 3: Detailed illustration of our convolutional controller.

formation flow across different channels of the feature map.
For the convenience of the formulation, we simply denote the
operations with the convolutional controller as the function
®(-). Note that, to simplify the further calculation, the out-
put response of each convolutional kernels all share the same
size with the input feature map. For each specific convolution
controller, the intermediate feature map is further processed
individually. In the following, we will introduce these three
specific convolutional controllers in the training and testing
phase formally.

3.1 Input Controller

Given the incoming feature map x € R°*"*%_the input con-
troller, denoted as C/(+), performs three operations in the ¢-th
training mini-batch. Firstly, it concatenates x and the old in-
ternal memory M;_; from the previous (¢ — 1)-th training it-
eration, and further extracts the internal feature representation
via w;. Finally, it passes the internal feature representation to
the memory controller. The whole process can be formulated
as follows:

Cr(x) = ¢p(x ® Mr—1;wWi), o

where @ denotes the concatenate operation. The function
¢(-) denotes the operations (i.e., passing through 3x3 convo-
lutional layer, BN, ReLU, 1x1 convolutional layer, BN and
ReLU) illustrated in Figure 3, where w; is the corresponding
parameter set.

3.2 Memory Controller

Motivated by the recent memory network [Santoro er al.,
2016], our designed memory controller enables to flexibly
write / read complex and abstract information into the inter-
nal memory. Specifically, given the incoming feature map z
and the output of C'7(z), the memory controller C(-) trans-
forms the old memory M;_; into M; to make it more rep-
resentative and general for some intended future use in two
steps. Firstly, it generate the memory representation C); ()
for = by using the internal memory M;_; (updated in the pre-
vious mini-batch) with the similarity between x and M;_ as
weights. Formally, we have:

Cu(z) = qi)(a; &) (Clip[%m](%) * x);wm), 2)

where “*” implies the Hadamard product and w,, denotes the
corresponding parameter set of the memory controller. The
operation clip(; . (M;_1/x)*z, inspired from [loffe, 2017],
denotes only fetching the memory that is similar to x under
the empirically constraint of r, i.e., too big or too small value
inside M;_1 /2 will be set as % and r, respectively. Intuitively,



this operation is feasible since not all the memory items are
beneficial for the current input feature map x. Those items
from the internal memory that have small distances to x may
be informative to enhance z. Note that, we set r=1 in the
beginning to disable the contribution of M;_; since the in-
ternal memory may not contain much valuable information.
In the middle of the training (e.g., 10000 training iteration),
we change r into 3 in all experiments to extract some relevant
information from M;_;. Once obtained the memory repre-
sentation Cs () and C;(x) for the input x, we calculate the
new internal memory M; as:

M; = Cu(z) + Cr(z). 3

3.3 Output Controller
Given the new internal memory M¢, the output controller, de-

noted as Co(+), outputs the new memory representation for
the input feature map as:

Co(z) = ¢(x ® My;w,), 4)

where w,, is the parameter set for the other operations inside
the output controller. Finally, the memory representation Co
is concatenated with the input feature map x and passed to the
next neural layer, while the updated internal memory M, will
be further optimized after performing backward propagation
for the next training iteration.

3.4 Training and Testing Details

Since all above-mentioned formulations are differentiable,
we can directly employ the standard back propagation algo-
rithm [LeCun et al., 1990] to fine-tune the CMB parameters
in the training phase. Note that, the internal memory map
is randomly initialized at the start of the training and then is
uninterruptedly updated without resetting to zero.

In the testing phase, we fix all the parameters inside our
CMB, which has been well optimized during the training.
Note that, since we expect our CMB to learn to store the in-
formative / representative patterns among samples, the data
for both training and testing are randomly shuffled to encour-
age the internal memory to cache task-specific features via a
fully data-driven manner.

3.5 Comparing CMB to ConvLSTM / ConvGRU

Our CMB is entirely different from the ConvLSTM and Con-
vGRU, although it seems similar to them. The detailed dis-
similarities are listed as follows: (i) Memory Mechanism.
Similar to the LSTM, the ConvLSTM employs the memory
cells and hidden states to describe the hidden representation
for general-purpose sequence modeling. Therefore, the Con-
vLSTM requires sequential inputs to obtain a reliable hid-
den representation during the training and testing phase. The
ConvGRU also faces the same issue. Whereas, the internal
memory of our proposed CMB adapts to no-sequential in-
puts by directly fusing with the feature representation of the
under-processing sample. Thus, our CMB can be used to
store the representative spatial correlations among samples
for training; (ii) Output Generation. Unlike the ConvLSTM
and ConvGRU that consider the updated hidden states as the
final output, our CMB directly leverages the newly updated

Layer Index 1 2 3 4 5
Layer Name convl_1| convl.2 max 1 CMBI1 conv2_1
Channel(kernel-stride)| 32(3-1) | 32(3-1) 32(2-2) 32 64(3-1)
Layer Index 6 7 8 9 10
Layer Name max2 CMB2 conv3_1 conv3_2 max3
Channel(kernel-stride) | 64(2-2) 64 128(3-1) | 128(3-1) | 128(2-2)
Layer Index 11 12 13 14 15
Layer Name CMB3 | conv4_1 conv4_2 neareast |concatenate
upsampling| conv3_2
Channel(kernel-stride)| 128 256(3-1) | 256(3-1) 256 384
Layer Index 16 17 18 19 20
Layer Name conv5 | neareast |concatenate| convo conv?
upsampling| conv2_1
Channel(kernel-stride) |128(3-1) 128 196 64(3-1) K(1-1)

Table 1: Details of the proposed articulated pose estimation frame-
work. The scalar K is set according to the number of body joints.

internal memory to process the input feature map to generate
outputs. Moreover, our CMB naturally concatenates the out-
put representation and the input feature map to form a resid-
ual representation as [He et al., 2016]. This ensures that all
the information can be passed directly through the CMB, i.e.,
our CMB can provide additional feature map enhancement
without corrupting the input feature map.

4 CNN with Convolutional Memory Blocks

To clarify the effectiveness of the proposed CMB, we have
developed a concise yet powerful framework for articulated
pose estimation by embedding the CMB into an hourglass-
shape network (see Figure 2), which is inspired by designing
principles of the architecture in [Newell et al., 2016]. Re-
garding the articulated pose estimation as a problem of deep
regression as [Tompson et al., 2014], our developed frame-
work takes a depth image as input, and outputs a dense heat
map for each joint (e.g., the body part of human). Note that,
the heat map denotes a per-pixel likelihood of being the joint.
The coordinates of maximum value of the predicted heat map
will be treated as the center position of the target body joint.
As illustrated in Table 1, our framework is stacked by ten
convolutional layers, three max-pooling layers and two con-
catenate layers to form an hourglass shape as [Newell et al.,
2016]. The kernel size of all the convolutional layers are set
to 3x3 with a stride of 1, and three max-pooling layer are
set to have 2x2 with a stride of 2. The detailed parameters
for our framework can be found in Table 1. It is obvious that
our framework contains two downsampling-upsampling steps
(resulting in three different scales of feature maps, which are
denoted in different colors) to capture the various spatial re-
lationships associated with the pose from the depth image.
Therefore, We impose three individual CMBs (i.e., no param-
eters are shared) to enhance these three kinds of feature maps.

S Experiments

Dataset Description. We have evaluated the estimation per-
formance of our framework on the newly created Kinect2 Hu-
man Pose Dataset (K2HPD) [Wang et al., 2016], which in-
cludes about 100K clean depth images with various human
poses under three challenging scenarios. We have also used
the Invariant-Top View Dataset (ITOP) dataset [Haque er al.,



Method |PHR | CPM | SH |IEML | Ours
PDJ (0.05) | 26.8 | 30.0 [41.0| 43.2 | 58.8
PDJ (0.10) | 70.3 | 58.5 | 73.7 | 64.1 | 89.0
PDJ (0.15) | 84.7 | 87.8 | 84.6| 83.1 | 94.8
PDJ (0.20) | 91.3 | 93.6 [89.0| 91.0 | 97.1

Average | 68.3 | 67.5|72.1] 71.6 | 84.9

Table 2: Detailed comparison of the estimation accuracy on the
K2HPD benchmark using the PDJ metric.

Method | 3DCNN | PHR | CPM | SH | Ours
Head 48.6 8321699 [81.6|92.9
Neck 509 [833]|71.8|87.3|97.2

Shoulders 526 |[824|71.1 862|952
Elbows 455 |71.2 657 |77.9|90.4

Hands 42.1 [ 657|659 |73.4|86.7
Writs 42.6 |63.4] 633|725 86.0
Torso 54.6 | 80.8|70.4 |855|96.6
Hips 55.0 739668 |81.293.5
Knees 50.1 | 827|748 |86.9|92.0
Feet 454 | 81.4 | 72.7 |91.3|94.3

Upper Body | 47.0 | 742 | 678 | 79.7| 91.3
Lower Body | 515 [79.3| 709 |86.0|93.9
Full Body | 489 |763|69.1 [82.3]92.4

Table 3: Detailed comparison of the estimation accuracy on the
K2HPD benchmark using the PCKh@0.5 metric.

2016], which contains large amount of real-world depth im-
ages from two different camera viewpoints by 20 actors per-
forming 15 sequences each. Moreover, we have conducted
the experiment on the hand-depth image dataset [Xu and
Cheng, 2013] named ASTAR, which consists of 870 depth
images of captured by a time-of-flight camera with a data-
glove. For a fair comparison on these benchmarks, we follow
the same training and testing setting as their officially defined.
Compared Methods. For human pose estimation on
the ITOP benchmark, we have compared our framework
with Random Forest (RF) [Shotton et al., 2013], Random
Tree Walk (RTW) [Jung et al., 2015], Tterative Error Feed-
back (IEF) [Carreira et al., 2016], and Viewpoint Invariant
(VD) [Haque et al., 2016]. On the K2HPD benchmark, we can
compare our framework with Inference Embedded Multi-task
Learning (IEML) [Wang e al., 2016]. In order to justify the
advancement of our framework on depth-based human pose
estimation, we have also considered the RGB-based human
pose estimation approaches. We have made a quantitative
comparison with five RGB-based state-of-the-art methods,
i.e., 3DCNN [Grinciunaite et al., 2016], Part Heat-map Re-
gression (PHR) [Bulat and Tzimiropoulos, 2016], Convolu-
tional Pose Machines (CPM) [Wei et al., 2016], and Stacked
Hourglass (SH) [Newell ef al., 2016]. To directly apply the
state-of-the-art RGB-based network architectures to handle
the depth data (having a single channel), we need to reduce
the input channel of these networks from 3 to 1 and train them
from scratch on the above-mentioned benchmarks.
Evaluation Metric. To measure the accuracy of predict-
ing human body joints, we employ the popular Percent of
Detected Joints (PDJ) metric [Toshev and Szegedy, 20141,
Percentage of Correct Key points (PCKh@0.5), and 10cm-
rule [Haque et al., 2016] as the evaluation criteria. Specifi-
cally, the PDJ metric considers a body joint is correctly esti-
mated only if the distance between the predicted and the true

Method RF RTW 1IEF VI Ours
Head 63.8 97.8 96.2 | 98.1 97.0
Neck 86.4 95.8 852 | 975 98.5

Shoulders 83.3 94.1 772 | 96.5 | 75.1

Elbows 73.2 779 454 | 733 64.7
Hands 51.3 70.5 309 | 68.7 85.0
Torso 65.0 93.8 847 | 85.6 | 94.5
Hips 50.8 80.3 835 | 72.0 | 884
Knees 65.7 68.8 81.8 | 69.0 | 84.2
Feet 61.3 68.4 80.9 | 60.8 | 829

Upper Body 70.7 84.8 61.0 84.0 80.6
Lower Body | 59.3 725 82.1 67.3 86.5
Full Body 65.8 80.5 71.0 | 774 | 83.4

Table 4: Comparison of the estimation accuracy on the ITOP (front-
view) using the 10cm-rule metric.

Method |PHR |CPM | SH |IEML | Ours
Time 62 | 72 | 56 40 14
Model Size | 570 | 525 | 418 - 58
Complexity | 63.1 | 85.0 | 30.7 - 54

Table 5: Comparison of the average running time (milliseconds per
image), model size (MB) and model complexity (GFLOPs) on the
K2HPD benchmark. Note that, ‘-* denotes the result is not available.

CPM SH Ours

Groundtruth

Figure 4: Qualitative comparison between our framework and the
compared state-of-the-art methods on the K2HPD benchmark. The
estimated joints are directly shown in the images. It is obvious that
our framework can obtain much more accurate estimations than the
compared methods. Best viewed in color.

joint position is within a certain fraction of the torso diame-
ter. The PCKh@0.5 metric recognizes the estimated joint po-
sition as correct if its distance to the ground truth joint in the
image space is within 50% of the head segment length (i.e.,
the distance between the head and neck joints). The 10cm-
rule metric identifies the correct prediction when the distance
between the predict joint and the ground truth joint is less
than 10cm in the 3D world coordinate defined by Kinect.

Implement Details. All our experiments are carried out on
a desktop with Intel 3.4 GHz CPU and NVIDIA GTX-980Ti
GPU. In order to reduce overfitting, we employ the image
horizontal-flipping and rotating strategy to augment the train-
ing data. As for the training process, we train our model from
scratch by Adam optimizer [Kendall and Cipolla, 2016] with
the batch size of 16 and the initial learning rate of 0.00025,
£1=0.9, £2=0.999. An exponential learning rate decay is ap-
plied with a decay rate of 0.95 every 1000 training iterations.



5.1 Results and Comparisons

Table 2 demonstrates the comparison results under both the
PDJ and PCKh@0.5 on the K2HPD benchmark. As one can
see from Table 2, our framework significantly outperforms
all the compared state-of-the-art methods under every nor-
malized precision threshold. This validates that our frame-
work is more suitable for estimating human poses from depth
data, compared with those state-of-the-art methods for RGB
data. The similar significant performance gain can also be ob-
served in Table 3. Specifically, our framework has obtained
the highest accuracy on all types of body joints. Some visual
comparison results are shown in Figure 4.

The comparison results on the ITOP dataset (front-view)
are illustrated in Table 4. As shown, it is obvious that our
framework dramatically surpasses all the compared methods
on the estimation accuracy of full body by a clear margin,
and is significantly superior to others. Note that, since the
prediction of our framework is 2D, we build upon the heat
map layer by two fully connected layers with 1024 neurons
to regress 3D predictions.

To further evaluate our framework on the small-scale data,
we have conducted the 3D hand pose estimation experi-
ment on the ASTAR benchmark, which only provides 435
images for training. The median/mean joint error is re-
garded as evaluation metric, and obtained after submitting
the estimated hand pose coordinates to the official evalua-
tion server. The median/mean joint errors of our framework
is 10.02/11.42mm, and is nearly 100% better than the current
state-of-the-art method [Xu et al., 2015], which only achieves
21.1/22.7 mm. This validates that our framework is general
to the small-scale hand pose estimation task.

To verify the contribution of our CMB to make network
lightweight, we further quantitatively perform real-time anal-
ysis of our framework and the compared approaches (except
for 3DCNN, which requires sequential data) on the K2HPD
dataset. As demonstrated in Table 5, our method runs about
70fps, and performs about 4 times faster than the best of the
compared approaches. The reason is that the model size of
our method is only 58MB with the complexity 5.4GFLOPS,
nearly 10, 6 and 5 times smaller than the compared PHR,
CPM and SH, respectively. This demonstrates that the supe-
rior performance of our framework, thanks to the employed
lightweight architecture with moderate parameters.

5.2 Component Analysis

To perform the detailed component analysis of our frame-
work, we have conducted the following experiment on the
K2HPD benchmark to validate the contributions of the intro-
duced CMB. Specifically, we have discarded all the CMBs
inside our proposed framework, and directly employ the con-
volutional layers to estimate human poses. This variant ver-
sion of our framework reflects the pure performance of the
fully convolutional networks, and is denoted as “Ours w/o
CMB”. We have also conducted two variants of our frame-
work by replacing the convolutional memory block with Con-
vLSTM [Shi et al., 2015] and ConvGRU [Ballas et al., 20161,
and denote them as “Ours w/ ConvLSTM” and “Ours w/ Con-
vGRU”, respectively. Note that, these two variants require se-
quential data for training and testing, i.e., the action sequence

Method |Ours w/o| Ours w/ Ours w/ | Ours w/ |Ours w/|Ours w/| Ours
CMB |ConvGRU |ConvLSTM |Sequence| Half | Double
Head 91.9 94.3 91.2 97.2 97.2 97.7 929
Neck 95.4 92.7 95.3 97.1 96.9 97.9 |97.2
Shoulders 92.7 91.1 92.8 95.2 94.9 96.0 |95.2
Elbows 84.6 85.6 86.3 90.7 90.8 90.9 [90.4
Hands 81.5 80.1 823 86.7 86.7 87.1 |86.7
Writs 79.9 80.6 81.8 85.8 85.8 87.0 |86.0
Torso 89.2 923 92.8 96.0 95.6 97.0 |96.6
Hips 74.3 86.3 85.2 92.3 91.8 93.8 |93.5
Knees 80.8 78.4 85.2 91.5 90.5 90.2 [92.0
Feet 90.2 87.0 90.9 93.9 93.7 93.7 |94.3
Upper Body | 87.4 87.0 88.1 91.7 91.6 92.3 |91.3
Lower Body| 82.7 85.6 88.0 93.3 92.7 93.5 939
Full Body 85.4 86.4 88.1 92.3 92.1 92.8 924

Table 6: Detailed comparison of the estimation accuracy for compo-
nent analysis on the K2HPD benchmark using the PCKh@0.5 met-
ric. The entries with the best values for each row are bold-faced.
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Figure 5: The visualization of the selected input feature maps, its
corresponding memories, and the enhanced results by the memory.
As shown, for each input feature map, several high response regions
belonged to the background are heavily suppressed, while those of
human body are mainly preserved.

for each subject are sequentially fed into the network with-
out shuffling. Given the same sequential data, we have also
trained and tested our framework (denoting as “Ours w/ Se-
quence”. To further analyze the performance of the internal
memory capacity of the CMB, we have modified the feature
map number of the internal memory inside the CMBs. Specif-
ically, the “Ours w/ Half” denotes the variant of Ours that the
feature map number is decreased to half of its original, while
the “Ours w/ Double” denotes the channel number is dou-
bled. The original memory capacity of CMB is the same as
the channel of the input feature map from the previous layer.

Table 6 demonstrates the PCKh@0.5 comparison results.
As one can see from Table 6, there lies a significant perfor-
mance gap between our method and all the competing meth-
ods. This highlights the superiority of our proposed CMB.
Thanks to the proposed CMB, the representation of the con-
volutional layers inside our framework has been significantly
enhanced. Moreover, without requiring sequential training
data, our framework even performs about 6% and 4% bet-
ter than the Ours w/ convGRU and Ours w/ ConvLLSTM, re-
spectively. More importantly, our framework achieves sim-



ilar performance as the Ours w/ Sequence. This proves the
superior performance of our CMB in storing the representa-
tive features for human pose estimation from non-sequential
depth data. As one can see from Table 6, the estimation accu-
racy of our framework slightly increase from 92.1% to 92.8%
as the memory capacity inside the CMB grows from Ours
w/ Half to Ours w/ Double. The reason may be that larger
memory capacity can store richer implicit structural features
for convolutional layer augmentation. However, larger mem-
ory capacity can also bring much more computational cost
(nearly double). Therefore, we employ the current capacity
to achieve a trade-off between the accuracy and efficiency.

Moreover, since the memory map contributes to store the
abstraction patterns for reusing the rich implicit convolutional
structures of CNNss and spatial correlations among the train-
ing samples, we demonstrate that how the internal memory
enhances the input feature maps in Figure 5. It is obvious
that the memory maps can enhance the input feature maps
by suppressing their high response regions of the background
and preserving their human body regions. The reason is that
the background regions can not be well represented by the
internal memory. This demonstrates the effectiveness of our
proposed CMB.

5.3 Evaluation with Insufficient Training Data

To further explore the effectiveness of our framework under
the insufficient training data setting, we have fine-tuned our
framework with different percentages of training data on the
K2HPD benchmark using the PCK@0.5 metric. We have also
compared our framework with Ours w/o CMB to validate the
contribution of the proposed CMB. For a fair comparison, we
have evaluated a variant of our method (denoted as “Ours w/
Convs”) by replacing CMB with convolutional layers in a fair
number of parameters and similar architecture. Specifically,
we directly duplicate the input feature map to replace the in-
ternal memory for each convolutional controller.

The detailed estimation accuracy with standard deviation
of 5 repeated trails using the PCK@0.5 metric is listed in
Figure 6. As the percentage of training data increases, the in-
creased estimation accuracy can be gradually obtained. How-
ever, the accuracy of our framework obtains a steady growth
with small deviation from 10% to 100% of training data,
while that of Ours w/o CMB increases sharply with large de-
viation. Especially, under the 10% training data setting, our
framework performs nearly 11% better than Ours w/o CMB.
Moreover, Ours w/ Convs performs significantly better than
Ours w/o CMB due to the additional introduced convolutional
parameters. However, our framework still consistently out-
performs Ours w/ Convs by clear margins when the percent-
age of used training data is small. This comprehensively val-
idates the significant contribution of the CMB on improving
learning efficiency when given insufficient training data.

6 Conclusion

This paper presented a novel memory network module called
Convolutional Memory Block (CMB) for improving the
learning efficiency and representation of CNNs on still depth
images, which lack of color / texture information. The CMB
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Figure 6: Experimental study on the average estimation accuracy
with standard deviation under various percentages of training data
from K2HPD using PCK@0.5 metric.

is designed to enable the memory mechanism of convolu-
tional layers by leveraging an internal memory with three spe-
cific controllers to store the rich representative structural fea-
tures and spatial correlations among training samples. Based
on the proposed CMB, we have developed a concise yet pow-
erful articulated pose estimation framework, which employs
three CMBs to enhance its three different scales of convo-
lutional feature maps. Extensive experiments validated the
effectiveness and efficiency of our CMB and framework. In
the future, we will extend our CMB to support depth video
data for other tasks, e.g., human action/activity recognition.
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