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For repairing inaccurate depth measurements from commodity RGB-D sensors, existing depth recovery
methods primarily rely on low-level and rigid prior information. However, as the depth quality deterio-
rates, the recovered depth maps become increasingly unreliable, especially for non-rigid objects. Thus,
additional high-level and non-rigid information is needed to improve the recovery quality. Taking as a
starting point the human face that is the primary prior available in many high-level tasks, in this paper,
we incorporate face priors into the depth recovery process. In particular, we propose a joint optimization
framework that consists of two main steps: transforming the face model for better alignment and apply-
ing face priors for improved depth recovery. Face priors from both sparse and dense 3D face models are
studied. By comparing with the baseline method on benchmark datasets, we demonstrate that the pro-
posed method can achieve up to 23.8% improvement in depth recovery with more accurate face registra-
tions, bringing inspirations to both non-rigid object modeling and analysis.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Commodity RGB-D sensors such as Microsoft Kinect [1] have
received significant attention in the recent years due to their low
cost and the ability to capture synchronized color images and
depth maps in real time. They have been successfully used in many
applications such as game and 3D teleconferencing [2–4]. How-
ever, the depth measurements provided by commodity RGB-D sen-
sors are far from perfect and often contain degradations such as
noise and holes. To obtain high-quality depth maps, plenty of
works have been done on depth recovery for commodity RGB-D
sensors [5–10]. The common idea is to make use of some general
prior information such as the spatial depth consistency, temporal
depth continuity, and the coherency between the depth map and
its aligned color image. However, as the distance between the cam-
era and the object increases, the depth measurement error grows
larger and the quality of color image decreases. In this case, general
rigid prior information becomes insufficient for recovering high-
quality depth maps, especially for common indoor scenes with
non-rigid objects.

Among the non-rigid objects, human face is the most represen-
tative one that is widely studied. The space of face shapes is highly
restrictive and usually parametric so that it provides high-level pri-
ors that are easy to use. Therefore, in this paper, we take depth
recovery using face priors as the starting point of semantic prior
guided depth recovery for non-rigid objects. Distinguished from
the works on face model registration/fitting that adapt the 3D
model to the raw input (either color image or depth map), we pro-
pose to simultaneously adjust the face model and refine the depth
map. The benefits of the proposed framework are twofold. On one
hand, 3D model fitting has been reported to be very important in
many face analysis tasks such as face recognition [11–13] and
facial expression tracking [14,15], and higher quality of depth
map generally leads to higher accuracy and better robustness of
face analysis. This work, which is designed to obtained facial depth
maps of higher quality, can also lead to better performance of face
analysis. On the other hand, model fitting methods are also used
for rendering novel views of the face [16–18]. Since the facial depth
map recovered by the proposed method is with per-vertex corre-
spondences to the face model, it can be also used to render novel
views, even with arbitrary face expressions. More importantly,
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the recovered face naturally connects to its surroundings, which
makes rendering more realistic.

It should be pointed out that it is non-trivial to derive effective
prior information for depth recovery from a 3D face model. First,
the 3D model needs to be deformed and aligned with the input
RGB-D data. Nevertheless, accurate alignment is hard to achieve
due to the heterogeneous and quantized noise in the input data.
Second, if the alignment is not accurate, the extracted face priors
might provide inaccurate guidance to the depth recovery process.
To address these issues, we propose a joint optimization frame-
work to iteratively and alternatively refine the depth map and
the face alignment. We consider face priors from both sparse and
dense 3D face models as two alternatives and study their tradeoffs
as priors for depth recovery. Extensive evaluations on benchmark
and real-world data suggest that the proposed method with face
priors clearly outperforms the baseline method that relies on gen-
eric smoothness constraints. We also show that face priors from a
dense model outperforms simpler sparse priors without significant
increase in computational cost. A preliminary version of this work,
reported in [19], makes use of a sparse face model for face priors. In
this paper, we extend our early work by employing a dense face
model, performing more comparisons, and providing more inspir-
ing discussions.
2. Related works

There have been plenty of works on depth recovery, face mod-
eling, and non-rigid model registration, which form nice basis of
this work.

2.1. Depth recovery

For depth recovery, previous researches focus on designing local
filters that can reduce noises while preserving structural details.
Numerous anisotropy filters are developed, including bilateral fil-
ter [20], joint bilateral filter [21], joint trilateral filter [22], and
weighted mode filtering [5]. But these methods usually produces
various artifacts because pre-defined filters are difficult to simulta-
neously handle both sensor diversity and scene complexity. Recent
researches began to incorporate various priors for depth recovery.
Representative methods include color-guided adaptive autoregres-
sive model [8] that considers the coherence between color and
depth, the sensor-oriented optimization model [9] that exploits
the prior knowledge of sensor characteristics, and RGB-D fusion
[10] that takes into account the scene illumination. It is demon-
strated in these works that employing priors for depth recovery
can lead to higher restoration quality. However, the employed pri-
ors are for static and rigid scenes. For dynamic and non-rigid
objects, depth recovery becomes more challenging. Even the latest
method [23] that considers temporal consistency still cannot han-
dle the case of long camera-object distance where the depth map is
with severe degradations.

2.2. Face modeling

As a representative non-rigid object, human face has been stud-
ied for decades. Face modeling usually includes the estimation of
face pose, shape, and deformations, for which statistical models
such as active shape models (ASMs) [24] and active appearance
models (AAMs) [25,26] are common and effective approaches.
There have been efforts to incorporate depth data into these tech-
niques in recent years. For example, in [27] the depth frame is used
as an additional texture to the traditional color texture in the ASM
framework. In [28], the AAM framework is extended by fitting the
3D shape to the point cloud using the Iterative Closest Point (ICP)
[29] separately after each AAM optimization iteration. However,
their strong dependency on the training data limits their robust-
ness in unconstrained environments. Motivated by the idea of
model based image compression, researchers began to design face
models with a number of vertices that can capture sufficient face
expressions while being controlled by a small number of parame-
ters, such as Candide-2 [30] and Candide-3 [31]. In particular,
Candide-3 wireframe model can be easily extended to support
depth input so that it can provide efficient face priors for depth
recovery.

Recent advance in face modeling [32,15,14,33] also follows the
idea of controlling rich expressions via small number of parame-
ters, Typically, the 3D face model is controlled by a set of static
shape deformation units (SUs) and action deformation units
(AUs). In particular, SUs represent the face biometry of an individ-
ual, whereas AUs model the facial expressions. Since there are
more vertices in these models, it is believed that they can provide
more effective priors for facial depth recovery.

2.3. Non-rigid model registration

Methods for non-rigid registration between the face model and
the input play a key role in utilizing high-level prior knowledge in
depth recovery, which have been widely studied for decades. In the
challenging tasks of pose-invariant face recognition and fine-scale
face expression tracking, non-rigid registration methods are devel-
oped to synthesize the facial texture images or fit the face model to
the facial depth maps.

In image based pose-invariant face recognition, face synthesis
using 3D face models has achieved great success [34], which is
unsurprising because 3D face models reveal the intrinsic physical
factors of the face. Roughly two categories of face models are
developed and fitted to the input color images, i.e., principal com-
ponent analysis (PCA) based linear models [11,16,18] that learn
statistical face characteristics from training data and generic elastic
models (GEMs) [35,17] that abstract major face shapes. Both PCA-
based models and GEMs are designed to produce novel facial
images at desired views, which typically start with accurate esti-
mation of sparse correspondences. Since novel facial images are
unnecessary for depth recovery at the current view, there is no
need of a complete implementation of these models for depth
recovery.

Recent advance in depth based facial expression tracking
[14,15,36] performs expression tracking by registering 3D face
models to the input depth map. As the tracking continues, their
methods estimate the deformation parameters in real time while
changing the shape parameters of the pre-defined 3D face models
for the current user. Such strategy is effective when the input
depth map can still reveal the face shape. However, when there
are strong noises in the depth maps, these methods will probably
loose tracking, and the adjusted face model may be far from the
user’s face. Incorporating depth recovery into face tracking is
believed to improve the tracking stability, which partially moti-
vates this work.
3. Technical background

In this section, we introduce the components directly related to
our method, including optimization based depth recovery and two
face models.

3.1. Depth recovery baseline

The adopted baseline model for depth recovery is a simplified
version of our previously work [9], which has general form and



(a) Candide-3 (b) Blendshape
Fig. 1. (a) Candide-3 Wireframe Model. (b) The blendshape face model with a
neutral expression.
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practical effectiveness. In particular, depth recovery is formulated
as an energy minimization problem. Given a degraded depth
map Z and its corresponding color image I, the depth map is recov-
ered by solving

min
U

kEdðU; ZÞ þ ErðUÞ; ð1Þ

where U is the recovered depth map, k is the trade-off parameter, Ed

is the data term, and Er is the regularization term. Both Ed and Er are
quadratic functions. In particular, the data term is defined as

EdðU; ZÞ ¼ 1
2

X
i2Xd

xi UðiÞ � ZðiÞð Þ2; ð2Þ

and the regularization term is defined as

ErðUÞ ¼ 1
2

X
i2Xs

X
j2Xi

aijðUðiÞ � UðjÞÞ2; ð3Þ

where i stands for pixel index (e.g., i ¼ ðix; iyÞ), Xd is the set of pixels
with valid depth measurements, Xs is the set of pixels with suffi-
cient surroundings, and Xi is the set of neighboring pixels of pixel
i. Taking into account the empirical model of Kinect depth measure-
ments [37], the distance-dependent weight xi is defined as

xi ¼
Zmax�ZðiÞ
Zmax�Zmin

� �2
ZðiÞ 2 ½Zmin; Zmax�;

0; otherwise

8<
: ð4Þ

where Zmin ¼ 500 mm and Zmax ¼ 5000 mm are the minimum and
maximum reliable working distances of Kinect-1 [1]. The weight
aij is designed according to the color and depth similarities between
pixel i and pixel j, which will be further explained in Section 4.1 (see
[9] for details).

The effectiveness of this framework stems, in part, from the
convexity of Eq. (1), implied by the specific forms of Eqs. (2) and
(3). This additive energy formulation also makes it possible to
include additional terms dependent on 3D shape prior.

3.2. Face shape models and their deformations

In this work, we make use of two popular 3D face models to
generate the face priors for depth recovery, i.e., Candide-3 wire-
frame model [31] and blendshape face model developed from the
FaceWarehouse database [33]. The former one is a sparse model,
and the latter one is a dense model. We choose them because their
deformation parameters are classified in a similar way.

3.2.1. Candide-3 wireframe model
Candide-3 wireframe model consists of 113 vertices and 184

triangles, which are shown in Fig. 1(a). Every vertex
Pk 2 R3; k 2 Xp ¼ 1; . . . ;113f g, of the 3D shape model is formed
according to a low-dimensional subspace model:

Pk ¼ P0
k þ Skrþ Aka; ð5Þ

where P0
k are the base coordinates of the vertex kth (corresponding

to a reference neutral expression face), Sk 2 R3�Ks and Ak 2 R3�Ka

are, respectively, the individual shape and action deformation bases
(matrices) associated with the vertex, r 2 RKs is the vector of user-
specific shape deformation parameters and likewise a 2 RKa is the
vector of action deformation parameters. For Candide-3 model,
Ks ¼ 14 and Ka ¼ 73. In this work, without loss of generality, we
focus on the static individual shape deformation under the neutral
face expression (a ¼ 0). Thus, the general transformation of a vertex
given global rigid rotation R and translation t is defined as:

Pk ¼ R P0
k þ Skr

� �
þ t: ð6Þ
The geometry of the model is therefore determined by the base
(average) shape P0 and the user-specific shape deformation S, and
is parameterized by the (rigid and non-rigid) deformation vector
h ¼ fR; t;rg.

3.2.2. Blendshape face model
An example mesh of the utilized blendshape face model with

neutral expression is shown in Fig. 1(b). It can be seen that com-
pared to the Candide-3, the blendshape model can represent facial
deformations more realistically because of larger number of mesh
vertices.

As specified in [33], a facial expression of a person can be
approximated by

F ¼ Cr�2wT
id�3wT

exp ð7Þ

where Cr is a 3D matrix (called reduced core tensor) of size
ð3� NvÞ � Nid � Ne (corresponding to number of vertices, number
of identities and number of expressions, respectively), wid is an
Nid-dimension identity vector, and wexp is an Ne-dimension expres-
sion vector. Eq. (7) basically describes tensor contraction at the 2nd
mode by wid and at the 3rd mode by wexp.

Similar to [38], for real-time face tracking of one person, given
his identity vector wid, it is more convenient to reconstruct the
Ne expression blendshapes for the person of identity wid as

Bj ¼ Cr�2wT
id�3uT

expj
ð8Þ

where uexpj is the pre-computed weight vector for the jth expression
mode [33]. In this way, an arbitrary facial shape of the person can be
represented as a linear sum of his expression blendshapes [38]:

F ¼ B0 þ
XNe�1

j¼1
ðBj � B0Þej; ð9Þ

where B0 is the neutral shape, and ej 2 ½0;1� is the blending weight,
j ¼ 1; . . . ;Ne � 1. Finally, a fully transformed 3D facial shape can be
represented as

P ¼ R � FðB; eÞ þ t; ð10Þ
with the parameters h ¼ fR; t; eg, where R and t respectively repre-
sent global rotation and translation, and e ¼ fejg defined in (9) rep-
resents the deformation parameters. In this work, we keep the 50
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most significant identity knobs in the reduced core tensor Cr , hence
Nv � Nid � Ne ¼ 11;510� 50� 47.

For the rest of the paper, we will present how to extract and use
the prior information from these two face models to improve the
depth recovery process. Note that we use the notations h as the
parameter vector, P as the set of all the vertices, Pk as the kth vertex
of P for both face models.
4. Proposed method

Given a color image I and its corresponding (aligned) noisy
depth map Z as input, our goal is to obtain a depth map of the face
region with improved quality using the face priors derived from
the general 3D deformable models. The pipeline of the proposed
method is shown in Fig. 2. The first two components in Fig. 2 are
pre-processing steps to roughly clean up the depth data and
roughly align the general face model to the point cloud converted
from the depth data. The last two components in Fig. 2 are the core
of our proposed framework. For the component of the guided
depth recovery, we fix the face prior and use it to update the depth,
while for the last component, we fix the depth and update the face
prior. The last two components alternatively and iteratively oper-
ate until convergence.

4.1. Energy model for depth recovery with face priors

To incorporate the face shape prior into the depth recovery pro-
cess, we propose to recover the depth map U and obtain the defor-
mation parameters h for the face model by solving the following
optimization problem:

min
U;h

ErðUÞ þ kdEdðUÞ þ kf Ef ðU; hÞ; ð11Þ

where Er and Ed are the regularization term and the data term as
shown in Eq. (1), Ef is the term designed for the face prior (to be
defined below), and kd and kf are the trade-off parameters.

The definition of Ed follows that of [9], defined in Eq. (2). For Er ,
as defined in Eq. (3), we use the normalized weights aij:

aij ¼
bijP
j2Xi

bij
; ð12Þ

with

� logbij /
ki� jk2
2l2s

þ kIðiÞ � IðjÞk2
2l2I

þ ðZðiÞ � ZðjÞÞ2
2l2z

; ð13Þ

which are essentially the weights used in joint trilateral filtering
taking into account the range distance, the color difference, and
the depth difference [22], with ls; lI , and lz the lengthscale constants
for range, color, and depth, respectively.

We define the novel face prior Ef term as

Ef ðU; hÞ ¼
X
i2Xf

gi UðiÞ � YðiÞð Þ2; ð14Þ

where Xf is the set of pixels of the face prior, gi is the weight of the
ith guidance depth value,

Y ¼ Tf ðPðhÞÞ ð15Þ

is the guidance depth map generated from the face model, and Tf is
a function that transforms the face model P defined by h to a dense
depth map compatible with U. This term is critical to the recovery
process and will be described in detail in the next section.
4.2. Shape priors for depth recovery

In our work, we use the Candide-3 and the blendshape face
models to generate shape priors. The main reasons for choosing
these models are twofold. First, their deformation parameters are
classified in a similar way. That is, the parameters are either shape
parameters that are related to shape changes or action parameters
that are related to face actions. In our method, the action parame-
ters are assumed to be fixed for simplicity. Second, these two mod-
els are representative sparse and dense models, respectively,
which can be used for evaluating the performance of depth recov-
ery with respect to the model density. Note that our proposed
depth recovery is a generic method, which is also flexible to utilize
any other face model as prior.

4.2.1. Shape prior using Candide-3 model
Considering that the guidance from the sparse vertices of the

Candide-3 model are too weak to serve as the prior for the dense
depth map U, we generate a dense synthetic depth map Y from
the aligned face prior P using an interpolation process. It is possible
to define different interpolation functions according to desired
dense surface properties. In computer graphics, such models may
use non-uniform rational basis spline (NURBS) to guarantee the
surface smoothness. Here, for the purpose of a shape prior, we
choose a simple piece-wise linear interpolation. Fig. 3 shows an
example of the generated dense depth map from the sparse
shape P.

To mitigate the effects of the piece-wise flat dense patches due
to the linear interpolation, we introduce a weighting scheme
defined through weights gi in (14). In particular, for each pixel
YðiÞ, we use a normalized weight adaptive to the pixel’s distances
from the neighboring vertices of the sparse shape P. Let ðai; bi; ciÞ be
the barycentric coordinates of pixel i inside a triangle defined by its
three neighboring vertices of P. Then, its weight is computed as

gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2

i þ c2i

q
: ð16Þ

This suggests that the pixels corresponding to model vertices have
the highest weight of 1 while the weights decline towards the cen-
ter of each triangular patch. An illustration of the weights is given in
Fig. 3(c), where bright pixels represent large weights.

4.2.2. Shape prior from a dense face model
Because the blendshape model [33] is dense enough to produce

a complete face prior for depth recovery, we can render a dense
depth map from the face model without any depth interpolation.
However, only a subset of vertices can be used for depth recovery,
because some parts of the 3D face model do not contribute as the
prior. For example, the model includes the forehead part, which is
usually covered by hair. Thus, the guidance from the forehead of
the model is ineffective in recovering the depth values of this
region of the input depth map. Therefore, we limit the effective
face region X�f within a mask shown in Fig. 4(c). Similar to the case
of the sparse face model, we also assign a weight to each pixel of
the synthetic depth map to extract effective guidance information
from the model. Considering the blendshape model is sufficiently
dense that each pixel of the guidance depth map corresponds to
a vertex, all the pixels in the face region X�f should have identical
weights. As a result, we use binary weights for the dense model,
i.e. gi ¼ 1; 8i 2 X�f and gi ¼ 0 otherwise.

The process of extracting the effective face region consists of
three steps. First, we render the dense depth map Y from the face
model, as shown in Fig. 4(b). Then, we extract some 2D landmark
points on the face by projecting pre-defined 3D landmarks of the



Fig. 4. The face priors from the dense face model. (a) The landmark points drawn
upon the texture frame. (b) The depth map rendered from the dense face model. (c)
The binary weight map (i.e region mask) for extracting effective guidance from the
face model.

Fig. 3. The face priors from the sparse Candide-3 model. (a) The 3D wireframe
model PðhÞ drawn upon the texture frame. (b) The synthetic depth map Y generated
from the 3D wireframe model. (c) The weights distribution associated with the
synthetic dense depth map, where brighter means a larger weight.

Fig. 2. The pipeline of the proposed method.
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blendshape model to the image plane, as illustrated in Fig. 4(a).
Finally, we use the contour defined by these landmark points to
find the effective face region X�f and construct the aforementioned
binary weight map, as shown in Fig. 4(c). In this way, we can easily
extract the effective information from Y in Eq. (14).
4.3. Energy minimization

From the definitions of the energy functions in Eq. (11), it can be
seen that the overall optimization of U is a convex task, for a given
fixed prior Y. However, the optimization of the parameter set h

might not be convex since it involves rigid and non-rigid deforma-
tions. Therefore, to tackle the global optimization task which
includes both the depth map U and the transformation parameters
h, we resort to a standard iterative alternating optimization algo-
rithm. In other words, we first optimize U while keeping h fixed,
and then optimize h over the enhanced depth map U.

Specifically, we divide problem (11) into two well-studied sub-
problems: depth recovery and shape (rigid and non-rigid) registra-
tion. The subproblem of depth recovery is solved with fixed shape
parameters h,
bU ¼ argmin
U

EðU;YÞ ¼ argmin
U

ErðUÞ þ kdEdðUÞ þ kf Ef ðU;YÞ; ð17Þ

where Y is the guidance depth map generated from the face model.
Since the objective in Eq. (17) is quadratic with respect to U, its opti-
mal solution can be easily found by solving a linear system. In this
way, the subproblem of depth recovery converges.

After the depth map bU is obtained, we convert it into a point
cloud and solve the registration of the shape prior P to this point
cloud, which is determined by h, using ICP approaches [29]. In par-
ticular, the point cloud is constructed by projecting the depth pix-
els from camera plane to 3D space according to the pinhole camera
model. The shape registration problem is separated into subprob-
lems of rigid and non-rigid registrations. The initial rigid registra-
tion is solved by standard ICP [29], and non-rigid registrations
are solved with respect to the face model. In this work, we use r
and e to represent the deformation parameters of Candide-3 and
the blendshape face models, respectively.

4.3.1. Candide-3 registration
For the Candide-3 model, parameters h ¼ fR; t;rg are solved

by

ĥ ¼ argmin
R;t;r

Ef 1 ðR; t;rÞ ¼ argmin
R;t;r

X
k2Xp

PkðR; t;rÞ � dðkÞð Þ2; ð18Þ

where dðkÞ represents the kth point of the point cloud that
corresponds to the model vertex Pk, which are given by ICP
correspondence search. Note that the complexity of such correspon-
dence search is dependent on the number of sparse face
vertices P.

The optimization in (18) is a non-linear least squares problem
because of the multiplication of R and r, as shown in Eq. (6). Fol-
lowing the approach in [39], we divide this optimization into
two subproblems: rigid registration where we minimize Ef 1 w.r.t
R and t given fixed r; and non-rigid registration where Ef 1 is min-
imized w.r.t r while keeping R and t constant. These two subprob-
lems are equivalent to two linear least squares problems. The
minimization of Ef 1 reduces the distance between the Candide
model and the point cloud, thus it also effectively minimize
EðU;YÞ in Eq. (17).

4.3.2. Blendshape registration
For the dense blendshape model, parameters h ¼ fR; t; eg are

solved by

ĥ ¼ argmin
R;t;e

Ef 2 ðR; t; eÞ; ð19Þ

where the energy function Ef 2 consists of two terms, i.e.,

Ef 2 ðR; t; eÞ ¼
1
Nd

XNd

k¼1
Pk R; t; eð Þ � dðkÞð Þ � nkð Þ2

þx2D
1
Nl

XNl

i¼1
Pp Pi R; t; eð Þð Þ � li

�� ��2
: ð20Þ

The first term (upper part) measures the 3D registration error in
terms of point-to-plane distance, where Nd is the number of corre-
spondences and dðkÞ is the corresponding data point with nk as its
normal. Note that a subsampling is applied to the blendshape model
to reduce the computational cost, resulting in about two thousand
vertices used in the correspondence search. The second term (lower
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part) measures the 2D registration error, where Nl is the number of
2D landmarks recovered by an ASM method [40], li is a 2D land-
mark, and Pi is the corresponding 3D landmark of the model which
is projected onto the image plane by projection Pp.

The optimization problem defined in Eq. (19) is non-convex and
non-linear because the variable e is bounded within ½0;1� and the
definition of Ef 2 includes a 2D projection. To solve this problem,
we resort to a standard bound and linear equality/inequality con-
strained (BLEIC) quadratic solver. Similar to the case of using
Candide-3 model, we solve for R and t with fixed e. For non-rigid
registration, e is optimized with fixed R and t. Note that separating
the whole problem into subproblems leads to faster convergence
and less computational cost. The optimization of Ef 2 guarantees
local convergence. It also decreases the distance between the point
cloud and the blendshape model, therefore it minimizes the global
energy EðU;YÞ.

The overall procedures for solving the optimization problem
(11) is summarized in Algorithm 1. For clarity, we differentiate
between the cases of sparse (Candide-3) and dense (Blendshape)
models. Note that the blendshape face model also has expression
parameters. But we only focus on neutral faces for simplicity.
Because both two sub-problems have convergence guarantees,
the proposed optimization process can also guarantee local
convergence.

Algorithm 1. The proposed solving procedures
Input: Color image I and its depth map Z, the trade-off factors
kd and kf , and the stopping thresholds �1 and �2.

Output: The refined depth map U and the model parameters
h.

Initialization: h1  0;U0  0;U1  Z;n 1;
Initial face alignment: Estimate the initial model parameters

h0 from I and Z;
Generate the initial prior Y0 ¼ Tf ðPðh0ÞÞ;
Compute the weights xi and gi for each pixel i;

while not ðkhn � hn�1Þk22 6 �1 and kUn � Un�1k22 6 �2Þ do
Un ¼ argminUEðU;Yn�1Þ;
Construct a point cloud from Un;
if Candide-3 model is used then

Solve rigid ICP for Rn; tn, and d;
r̂n ¼ argminrEf 1 ðrÞ
hn  fR̂n; t̂n; r̂ng;

else

R̂n; t̂n ¼ argminR;tEf 2 ðR; tÞ
ên ¼ argmineEf 2 ðeÞ
hn  fR̂n; t̂n; êng;

end if
Update the prior Yn ¼ Tf ðPðhnÞÞ;
Compute xi and gi for each pixel i;
n nþ 1;

end while
4.4. Implementation details

4.4.1. Preprocessing steps
The proposed guided depth recovery assumes starting with a

roughly aligned face model. To get this rough registration, two
pre-processing steps are performed prior to solving the optimiza-
tion problem (11), as shown in Fig. 2. In the first step, depth
denoising, we use the baseline method [9] to reduce the noise of
the input depth map. In the second step, we use different schemes
for the alignment of different face models.

For the blendshape model, obtaining a rough alignment is rel-
atively simple. First, we use a classical face detector [41] to detect
the face and an ASM alignment algorithm [40] to extract 2D land-
mark points. With the pre-processed depth map, we convert
these 2D landmark points to 3D points. Then, the SVD based reg-
istration method [42] is used to estimate the initial R and t.
According to our experience, such initial alignment is good
enough for extracting useful guidances from the blendshape
model. Lastly, the subject identity, which is denoted as xid in
Eq. (7), must be estimated in order to prepare the person-
specific expression blendshapes Bj

� �
in Eq. (8). To this end, we

follow the technique in [33,38] to estimate xid by matching the
3D landmarks of the blendshape to 2D ASM landmarks, which
is formulated as an optimization problem.

However, the alignment of Candide-3 model obtained by the
SVD-based method is not sufficiently good and sometimes even
harmful for guiding depth recovery due to its limited represen-
tation capability. Fig. 5(a) shows such a case. To address this
problem, we further refine the 3D face registration by using
point-to-plane ICP [43] constrained by the small set of
correspondences used in the initial alignment. In particular,
we solve

min
R;t

X
i2Xp

Rp0ðiÞ þ t � dðiÞð ÞTnðiÞ
� �2

þwa

X
j2Xs

Rp0ðjÞ þ t � dðjÞk k2

ð21Þ

to update R and t. The major difference between Eqs. (20) and (21)
is the second term that represents the point-to-point distance
function for the set of vertices used to estimate head pose by
the SVD method [42]. Minimizing the second term helps prevent
the 3D shape model from sliding away too much, as shown in
Fig. 5(b).

After initial pose estimation, some parts of Candide-3 model
may not well match that of the input data, especially for chin
and nose. We address this small problem empirically by looking
for these points based on our observations. Fig. 5 gives an
intuitive illustration for this coarse-to-fine alignment. Note that
the current implementation of our method may not work
well for challenging cases such as large head rotations.
Discriminative and generative techniques from face tracking
may handle such cases. However, related discussions are not
included because handling such cases is beyond the scope of
this paper.
4.4.2. Parameter selection
To determine a reasonable value range of kf , we conduct small-

scale experiments using the BU4DFE database and evaluate the dif-
ference between the ground truth and the depth map recovered by
the proposed method. Experimental setup is identical to that
described in Section 5.1. As shown in Fig. 6, the testing error firstly
decreases and then increases as kf increases, which means that the
weight of face prior should be neither too small nor too large for
the optimal restoration performance. Too small kf makes the pro-
posed method performs like the baseline method, while too large
kf changes the proposed method into depth replacement where
the recovered facial depth is replaced by the prior facial depth.
By comparing the optimal values of kf indicated in Fig. 6(a)–(c),
it can be found that the optimal choice of kf increases as the
camera-object distance increases. Although the optimal values of
kf only work for the testing data, we still adopt them in our exper-
iments because such setup already demonstrates the benefit of the
face prior.



Fig. 5. The coarse-to-fine face alignment. (a) The alignment after SVD-based pose estimation. (b) The alignment refined by the point-to-plane ICP with regularization. (c) and
(d) The alignment after estimating initial shape parameters.

Fig. 6. The testing errors with respect to kf at different distances. Note that the errors are normalized w.r.t. the maximum value of error. The testing depth maps are rendered
at the distances of (a) 1.5 m, (b) 1.75 m, and (c) 2.0 m.
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5. Experiments

In this section, we conduct experiments to evaluate the perfor-
mance of the proposed method. The priors from both sparse and
dense face models are used and compared in these experiments.
The BU4D Facial Expression database [44] is used for quantitative
evaluations. Considering that Kinect is the most popular commod-
ity RGB-D sensor, we add some Kinect-like artifacts according to
[37] to the depth maps generated from the BU4DFE database, as
described in Section 5.1. By using synthetic data, we are able to
obtain the ground truth for quantitative evaluation. Section 5.2
shows the comparisons between using and not using face priors
as well as the comparisons between sparse and dense face priors.
In Section 5.3, we also show qualitative results on real-world data
captured by Kinect-1 sensor. Since face tracking is beyond the
scope of this work, we focus on a simple case that the face is
always with neutral expression and mainly report the recovery
performances.

5.1. Generating data for quantitative evaluations

According to [37], distance-dependent noise and quantization
error are the two main characteristics of the data captured by
Kinect. We simulate these two artifacts in our experiments. In par-
ticular, the distance-dependent noise is simulated by

Z0ðiÞ ¼ Z0ðiÞ þ nðiÞ; ð22Þ
where i stands for pixel index, Z0 is the depth map generated from
the face model, nðiÞ is a random sample of a Gaussian distribution
Nð0; cZ2

0ðiÞÞ, and c ¼ 1:43� 10�5 is Kinect-oriented constant [37].
The quantization artifact is simulated by quantizing the noisy depth
map using quantization steps computed from the camera parame-
ters of Kinect. An example of the added artifacts is shown in Fig. 7.
5.2. The effectiveness of employing face priors

To show the effectiveness of our idea of utilizing the prior face
information, we compare the proposed method with the baseline
method [9]. For a fair comparison, the parameters ls; lI; lz, and kd
are set according to [9] for both the proposed and the baseline
methods. For the proposed methods, we empirically set �1 ¼ 0:5
and �2 ¼ 2. It should be noted that the proposed method is not sen-
sitive to these parameters because its performance remains similar
when the parameters change within a reasonable range. Consider-
ing that the reliability of the input depth map decreases as the dis-
tance increases, we use a relatively small value for kf at close
distances, and a relative large value at far distances. Specifically,
kf ranges from 0:1 to 0:9 for both Candide-3 model and the blend-
shape model. The value range is determined according to our
experiments on a small subset of RGB-D data. We recommend con-
ducting small-scale experiments to determine the range of kf
before utilizing the proposed method.

BU4DFE database contains more than 600 sequences of 3D face
expressions. For the evaluation of depth recovery, we choose 266
sequences whose 1st frame is with neutral (or nearly neutral)
expression and render their first frames as RGB-D data sets. Each
depth map is rendered at four different camera-object distances:
1.5 m, 1.75 m, 2.0 m, and 2.3 m. Note that as the camera-object dis-
tance increases, the resolution of face region decreases. Fig. 8
shows the face region of ‘‘F001” data rendered at 4 distances with
resolutions ranging from 30� 40 to 50� 60. According to the anal-
ysis of the weight map in Section 4.2.2, in the ideal case that each
depth pixel corresponds to a vertex of the face model, for a face
region of M pixels, the maximum number of required vertices is
M. As shown in Fig. 7, the face region of the synthetic data has less
than 3000 pixels, which means a 3D model with more than 3000
vertices for the face region is enough. The utilized blendshape have



Fig. 7. An example of adding Kinect-like artifacts. (a) The noise-free depth map. (b) The depth map with distance-dependent noise. (c) The depth map with both noise and
quantization error.

Fig. 8. Face region of ‘‘F001” data rendered at 4 distances, which are shown in their original resolutions: (a) 48� 60, (b) 41� 50, (c) 38� 46, and (d) 30� 40 pixels.

(a) Baseline (b) Sparse (c) Comp.

(d) Baseline (e) Sparse (f) Comp.

Fig. 9. Representative comparisons between the baseline method and the proposed method with sparse face priors. (a) and (d) are the difference maps for the baseline
method, in which the errors are encoded by different colors. (b) and (e) are the difference maps for the proposed method with sparse face priors. (c) and (f) show the
comparisons between the baseline and the proposed methods. The light blue color indicates the region where the proposed method achieves lower recovery error and the
yellow color indicates the region where the baseline method is better. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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around 4000 vertices for describing the face region, which is more
than enough for good depth recovery.

5.2.1. Qualitative comparisons
First, we present several qualitative (visual) comparisons

between the baseline method and the proposed method with
sparse face priors. The first comparison is on data sets ‘‘F005”
and ‘‘M004” rendered at 1.75 m. As shown in Fig. 9(a), (b), (d)
and (e), we color the differences between the recovered depth
maps and the ground truths, where dark blue indicates small dif-
(a)RGB (b)Baseline

(e)RGB (f) Baseline

Fig. 10. Visual examples of depth recovery on the data sets ‘‘F001” and ‘‘M009” render
respectively. (b) and (f) are the difference maps for the baseline method, where dark blu
difference maps for our method with sparse face priors. (d) and (h) are the difference map
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. The depth MAE results on data sets rendered at different c
ferences and red represents larger differences. Our results suggest
that the baseline method fails to handle the case of rich textures.
Some large errors around the eyes’ region are specific examples
for this case. In contrast, the face priors used in the proposed
method can reduce such artifact and thus lead to higher recovery
quality. In Fig. 9(c) and (f), we use the light blue color to represent
the region where the proposed method achieves higher recovery
quality, and yellow color to represent the region where the base-
line method is better. The cases shown in Fig. 9 are representative
for most data sets, suggesting that the proposed method generally
(c)Sparse (d)Dense

(g)Sparse (h)Dense

ed at 2.00 m. (a) and (e) are the input color images of subject ‘‘F001” and ‘‘M009”,
e represents small errors and light blue represents large errors. (c) and (g) are the
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Table 1
Quantitative comparisons among the baseline method, the proposed methods with sparse and dense face priors (in mm). The improvements of the proposed methods over the
baseline method are shown in percentage points.

Distance (m) Noise level (mm) Baseline Sparse priors Dense priors

1.50 32.18 4.12 3.95 (4.2%) 3.61 (12.6%)
1.75 43.79 5.36 5.00 (6.6%) 4.50 (16.0%)
2.00 57.20 6.84 6.34 (7.3%) 5.54 (19.0%)
2.30 75.65 8.09 7.39 (8.6%) 6.16 (23.8%)

(a) Baseline (b) Ours (c) Reference

Fig. 12. Representative results of face registration on the data sets ‘‘F005” and ‘‘M004” rendered at 1.75 m. The proposed method produces a better fitting around the face
boundary and the eyes’ region compared to the baseline method.
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achieves higher recovery quality compared to the baseline
approach.

Next, we consider the impact of the dense face priors on the
refinement approach. We construct difference maps to show the
pixel-wise MAE of the results on two data sets ‘‘F001” and
‘‘M009” (rendered at 2.0 m), respectively. Fig. 10(b) and (f) shows
that the baseline method fails to reduce the noise around the eyes
and nose areas due to the complex texture and high noise level.
Fig. 10(c) and (g) indicates that our method with sparse face priors
can effectively reduce the noise in the region of complex texture.
However, due to the piece-wise planar nature of the guidance
depth map, some face details, such as the nose, are not recovered
very well. Using a more geometrically detailed depth guidance,
our method can recover additional facial details, including the nose
structure.

5.2.2. Quantitative evaluations
Fig. 11 shows the mean absolute error (MAE) of the recovered

depth map for each data set. Since we focus on face fidelity, the
MAE is computed only using the depth values inside the face
region. It can be seen that, in most cases, the proposed methods
achieve higher recovery accuracy compared to the baseline
method, which suggests that the face prior is helping the depth
recovery. In addition, these results suggest that dense face priors
improve depth recovery over the sparse counterparts.

Table 1 summarizes the average MAE results, in which we also
show the actual noise levels of the data sets. It can be seen that,
with face priors, the improvement of recovery accuracy exhibits
a generally increasing trend with the distance. This is because
the quality of the input depth map keeps decreasing with the
increase of the distance and the baseline method only uses the
input depth map as the data term. These results demonstrate that
our proposed method with dense priors can improve the recovery
accuracy up to 23.8%. The improvement difference between with
dense and with sparse priors is up to 15.2%.

Besides the recovery error, we also evaluate the registration
accuracy by comparing the baseline method with the proposed
method with sparse face priors. To get the reference registration
and shapes, we fit Candide-3 model to noise-free data. The face
model is also fitted to the depth maps obtained by different
methods. We then compare the fitting result with the reference
registration. Fig. 12 gives two visual comparisons of the registra-



Table 2
Quantitative evaluations of the proposed method using 4 metrics of registration accuracy. The results obtained by the baseline and proposed methods are separated by ‘‘/”. The
improvement of the proposed method over the baseline method is shown in percentage points.

Distance (m) Overall 2D error (px) 2D translation error (px) 2D landmark error (px) 3D shape error (mm)

1.50 1.04/ 0.89 (13.9%) 0.59/ 0.51 (12.5%) 0.86/ 0.74 (14.0%) 2.06/ 1.79 (13.1%)
1.75 1.01/ 0.87 (13.7%) 0.58/ 0.49 (15.3%) 0.82/ 0.72 (12.6%) 2.26/ 1.99 (12.0%)
2.00 1.12/ 0.93 (17.4%) 0.56/ 0.45 (19.5%) 0.96/ 0.80 (16.8%) 2.89/ 2.42 (16.5%)
2.30 1.14/ 0.99 (13.3%) 0.61/ 0.53 (12.2%) 0.95/ 0.82 (14.0%) 3.08/ 2.54 (17.5%)

(a) Mannequin (1.50 m): baseline/ours

(b) Mannequin (1.68 m): baseline/ours

Fig. 13. The results on real Kinect data of a mannequin, which are shown in both 2D and 3D. In each figure, the result of the baseline method is on the left-hand side, while the
result of the proposed method with Candide-3 model is on the right-hand side.

(a)Mannequin (1.6 m) (b)Mannequin (2.0 m)

(c)Male (1.6 m) (d)Male (2.0 m)

Fig. 14. The results of our methods with sparse and dense priors on real Kinect data sets. For each comparison, the color image, point cloud recovered by utilizing sparse
priors, and point cloud recovered by utilizing dense priors are placed from left to right.
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(a) Mannequin (1.6 m): raw/baseline/sparse/dense

(b) Mannequin (2.0 m): raw/baseline/sparse/dense

(c) Male (1.6 m): raw/baseline/sparse/dense

(d) Male (2.0 m): raw/baseline/sparse/dense

Fig. 15. The results of different methods on real Kinect data sets.

1 For interpretation of color in ‘Fig. 13’, the reader is referred to the web version of
this article.
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tion results on data sets. We can see that the proposed method
produces a more accurate face registration compared to the base-
line method, especially in the eyes’ region and around the face
boundary.

Quantitative evaluations of the registration accuracy are shown
in Table 2. Four metrics are used to compute the registration error.
Given two sets of 2D points, i.e., the estimated points P2D

fit and the

ground-truth points P2D
ref , the overall 2D error is computed as

kP2D
fit � P2D

refk=Nv , where Nv ¼ 113 is the number of vertices in
Candide-3 model. Considering that there may be a global misalign-
ment between these two point sets, the 2D landmark error is com-
puted after aligning their center. The Euclid distance between
these two centers is denoted as 2D translation error and shown
in Table 2. After aligning the centers of the two 2D face models,
we compute the mean squared error between the 2D landmarks
of the fitted model and those of the reference model and denote
it as 2D landmark error. The 3D shape error is computed by scaling
the difference between 3D models, i.e., kP3D

fit � P3D
refk=Nv , where P3D

fit

represents the 3D points of Candide-3 that fits to the recovered
depth map and P3D
ref represents that fits to the noise-free depth

map. It can be seen that the improvement of the proposed method
in registration accuracy is significant, up to 17.5%. It indicates that
a better recovered depth map is helpful for the face alignment.
5.3. Experiments on real data

For the experiments on real data, we use Kinect-1 to capture
several RGB-D frames of a mannequin and a male subject at dis-
tances ranging from 1.0 m to 2.0 m. The results of the proposed
and the baseline methods are then visually compared because
we do not have the ground truth.
5.3.1. Depth recovery with sparse face prior
Fig. 13 shows the registration (red1 wireframe) and depth recov-

ery (white cloud) results of the mannequin at distances 1.50 m and
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1.68 m, where Candide-3 model is used. It is shown that the pro-
posed method clearly outperforms the baseline method. The depth
maps in these tests were captured at a relatively large distance from
the sensor and, as a consequence, using the baseline alone is insuffi-
cient to reconstruct the depth maps properly. Specifically, the depth
maps recovered by the baseline method are flat on the upper half of
the face in Fig. 13, mainly at the forehead and noseline areas. On the
other hand, the proposed method guided by the sparse face priors is
able to reconstruct more reasonable depth maps in those areas, e.g.,
following the natural shape of the forehead. This also affects the final
registration quality, although to a somewhat lesser extent than in
the BU4DFE synthetic data. We attribute this to the discrepancy
between the depth noise model used in BU4DFE experiments and
that in the real data, as well as the additional noise in the color
channels.
5.3.2. 3D reconstruction with face priors
To compare our methods using sparse and dense face priors, we

reconstruct the 3D models of both the mannequin and the male
subject. The largest camera-face distance in this set is 2.0 m, both
for the mannequin and the male subject. Fig. 14 shows the recon-
struction results in the form of point clouds. The results clearly
indicate that the dense priors lead to improved fidelity of the
reconstruction. At large camera-face distances, the depth maps
recovered with the sparse face priors become piece-wise flat, while
the depth maps recovered with the dense face priors preserve the
face details, especially around the nose area. This is because the
deformation of Candide-3 model is constrained only by a set of
sparse vertices, which is relatively loose. The blendshape model
follows stricter constraints and thus preserves sufficient facial
details to serve as a good guidance.

3D models can be easily reconstructed from the recovered
depth maps by projecting 2D pixels to 3D points and then connect-
ing neighboring points as triangles. Therefore, we additionally ren-
der the depth maps and color images as textured meshes, depicted
in Fig. 15. These results indicate that our method using the dense
face priors produces improved rendering images at novel views
while preserving the face geometry. These results also inspires us
that the proposed method can be used to generated a user-like
3D model with deformation parameters identical to pre-defined
3D models, which sheds lights on non-rigid 3D model understand-
ing and facial expression transfer researches.

It should be noted that the presented experiments only contain
the simple case of neutral face. When there are dynamic face
expressions, a more powerful face tracker should be used.
6. Conclusion

In this work, we review our preliminary idea of employing face
priors in depth recovery [19] from the aspect of depth recovery for
non-rigid objects, and present a detailed study on it w.r.t. model
density, parameter selection, and thorough evaluations on bench-
mark data sets. In particular, two representative face models are
utilized and compared to better understand the model density to
the recovery accuracy. Experimental results on a benchmark data-
set show that, even for the coarse and sparse face model, properly
taking into account the face priors brings in up to 8.6% of improve-
ment in depth quality. Such improvement is further enlarged to
23.8% when a dense face model is used, which can be essential
for applications such as 3D telepresence and teleconference. More-
over, the proposed method also leads to better registration accu-
racy, with up to 17.5% of improvement, suggesting its possible
role in helping other high-level face analysis tasks.

As the starting point of non-rigid prior guided depth recovery,
there are many possible avenues for broadening this work. Utiliz-
ing RGB images of higher resolution, dividing the face into different
parts, and extensions to other types of high-level priors would be
nice choices. Note that this work still has limitations, two of which
may be the lack of considerations of temporal consistency and
dynamic face priors. For face depth recovery on RGB-D videos, con-
sidering these two factors would be more helpful.
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