
Pattern Recognition 59 (2016) 168–175
Contents lists available at ScienceDirect
Pattern Recognition
http://d
0031-32

n Corr
E-m
journal homepage: www.elsevier.com/locate/pr
Class relatedness oriented-discriminative dictionary learning
for multiclass image classification

Dongyu Zhang a,n, Pengju Liu b, Kai Zhang b, Hongzhi Zhang b, Qing Wang a, Xiaoyuan Jing c

a Sun Yat-Sen University, Guangzhou 510275, China
b Harbin Institute of Technology, Harbin 150001, China
c State Key Laboratory of Software Engineering of Wuhan University, WuHan 430079, China
a r t i c l e i n f o

Article history:
Received 4 September 2015
Received in revised form
10 November 2015
Accepted 7 December 2015
Available online 19 December 2015

Keywords:
Dictionary learning
Joint sparsity
ℓ1;1-norm
Support vector machine
Class relatedness
x.doi.org/10.1016/j.patcog.2015.12.005
03/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail address: cszhangdy@163.com (D. Zhang).
a b s t r a c t

Dictionary learning (DL) has recently attracted intensive attention due to its representative and dis-
criminative power in various classification tasks. Although much progress has been reported in the
existing supervised DL approaches, it is still an open problem that how to build the relationship between
dictionary atoms and the class labels in multiclass classification. In this paper, based on the assumption
that the relevance of dictionary atoms could be helpful in multiclass classification task, we proposed a
class relatedness oriented (CRO) discriminative dictionary learning method for sparse coding. Utilizing
the ℓ1;1-norm regularization on the coding coefficient matrix, the proposed method can adaptively learn
the class relatedness between dictionary atoms and the multiclass labels. Experimental results of face
recognition, object classification, and action recognition demonstrate that our proposed method is
comparable to many state-of-the-art DDL methods.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

As a hot topic in computer vision community, image classifi-
cation and recognition have inspired many interesting works
[1–6]. In recent years, sparse representations based images clas-
sification have received considerable interest [7–9]. By using over
complete dictionary, sparse representation represents a signal or
image as the sparse linear combination of the dictionary atoms.
Unlike the principle component analysis based decomposition,
sparse representation do not impose the dictionary elements to be
orthogonal, which allows more flexibility to adapt the repre-
sentation to the input signal or image. Recent publications show
that sparse representation has been successfully applied to dif-
ferent kinds of images classification tasks, such as face recognition
[9,36], handwriting digits recognition [18,37], natural images
classification [10], and so on [11–13,40,41].

In sparsity based classification, a query sample xAR is first
represented over a dictionary DARm�K with a sparse coefficients
vector α as x�Dα. Then the classification is performed on the
coefficients vector α and dictionary D. Thus, the effectiveness of
the sparse representation model highly rely on the design of the
overcomplete dictionary. One possible route to design the dic-
tionary is to use a prespecified transform matrix, such as FFT bases
or wavelet bases, which often leads to simple and fast algorithms
for the evaluation of the sparse representation. Although taking
these kinds of analytically designed off-the-shelf dictionary is
universal to all types of images, it might be not effective enough
for specific classification task, such as fine-categories flowers
classification [37] and face recognition [9,36]. Another possible
way to design the dictionary is to learn the dictionary elements/
atoms from the input training data with sparsity regularization.
Wright et al. [9] employed all of training samples as the dictionary
for sparse representation and achieved impressive performances
on face recognition. In [12], by generalizing k-means clustering,
Aharon et al. proposed K-SVD algorithm to efficiently learn an
overcomplete dictionary from a set of training samples. Recent
works show that the dictionary learning methods have been
received considerable interest and led to state-of-the-art results in
image reconstruction [7,8,12,14] and image classification
[9,11,15,16,36,37].

The current dictionary learning methods can be grouped into
two categories, unsupervised dictionary learning [12,13] and
supervised dictionary learning [15–17,37]. In unsupervised dic-
tionary learning method, the dictionary is designed to minimize
the residual error of reconstructing the training samples without
using the classification labels. The dictionaries produced in such
way can faithfully represent the training samples, which are useful
for image reconstruction. However, they are not advantageous for
image classification tasks. Although some of unsupervised dic-
tionary learning were applied for classification tasks, recent
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research indicated that the supervised dictionary learning can
yield better classification performance by exploiting the class
discrimination information [15–17].

The current supervised dictionary learning methods can be
roughly grouped into two categories. In the first category, a shared
dictionary by all classes is learned with discriminative repre-
sentation coefficients simultaneously [16,17,21]. In the second
category, multiple dictionaries or class-specific dictionaries are
learned [18,20,23,27,38]. Ramirez et al. [18] proposed a structured
dictionary learning scheme by promoting the discriminative abil-
ity of different class-specific sub-dictionaries. Zhou et al. [27]
proposed to learn multiple dictionaries for visually correlated
object classification. However, there are potential problems in both
of the two categories of supervised dictionary learning methods.
For the first categories, each of the dictionary atom is associated to
all the classes, while the possible mixed information of different
classes may reduce the discrimination of the learned dictionary.
For the second categories, each dictionary atom is assigned to a
single class, but without exploiting the possible correlation of
different class dictionary atoms which may help in promoting the
discrimination performance. Both of the two cases have ignored
the fact that the relationship between the dictionary atoms and
class labels needs to be updated during the dictionary learning
process. Although much progress have been made in dictionary
learning, it is still an open problem to adaptively build the rela-
tionship between dictionary atoms and class labels.

In this paper, we proposed a new discriminative dictionary
learning (DDL) scheme to adaptively learn the relationship
between the dictionary atoms and the class labels by using a joint
sparsity constraint on the coding vectors of each class of training
samples. Specifically, the joint sparsity is enforced on the repre-
sentation coefficients with the ℓ1;1-norm regularization, which
has been widely applied as penalties in signal processing [24] and
machine learning [25,26]. Besides, in order to make the coding
vectors more discriminative, we also add a linear classifier to the
objective function. Thus, we can learn a class related dictionary
and a multiclass linear classifier simultaneously. For a test sample,
we could use the learned dictionary to obtain the corresponding
coding vector, and then predict its label with the linear classifier.
Similar work of exploiting the relation of dictionary atoms and
class labels has been studied recently. For example, in [37] Gao
et al. learned a shared dictionary and category specific dictionaries
for fine-grained flower images categorization, in which the shared
dictionary used to describe the correlated relation of different
classes. However, in their method the structures of shared dic-
tionary and category specific dictionaries are pre-specified. We
argue that the relationship between dictionary atoms and class
labels should not be predefined. Instead, they should be learned
adaptively during the dictionary learning process. This piece of
work of is an extension of our conference paper, in which we
further analyze the motivation and the principle of the proposed
class relatedness dictionary method. More experiments have also
been performed to comprehensively evaluate the proposed
method.

The remainder of this paper is organized as follows. In Section 2,
we briefly introduce the related work about DDL methods. Then we
propose our class relatedness oriented (CRO) DDL model, together
with the corresponding optimization method in Section 3. Experi-
mental results of the proposed method are discussed in Section 4,
and finally Section 5 concludes this paper.
2. Related work

Discriminative dictionary learning (DDL), has been successfully
applied in pattern recognition applications such as image
classification [18,19,29] and face recognition [9,20,36]. DDL
methods concentrate on the discriminative classification capability
of the dictionary as its goal is to assign correct class labels to the
test samples. To enrich such capability, how to build the rela-
tionship between dictionary atoms and class labels plays a crucial
role in the dictionary learning process.

Based on the relationship between dictionary atoms and class
labels, prevailing DDL methods can be roughly divided into two
main categories: global dictionary learning methods and class-
specific dictionary learning methods. In global dictionary learning,
the dictionary atoms are shared by all class and the coding vectors
are generally explored for classification. Mairal et al. [21] proposed a
DDL method by learning a shared dictionary and training a classifier
on coding vectors simultaneously for handwriting digit recognition
and texture classification. Zhang and Li [17] proposed a joint
learning algorithm based on K-SVD for face recognition. Pham and
Venkatesh [16] proposed to jointly train the dictionary and classifier
for face recognition and object categorization. Cai et al. [22] pro-
posed a support vector guided dictionary method (SVGDL) to jointly
optimize the dictionary and classifier. Even though a global dic-
tionary can be powerful to represent training data, all the above
methods fail to adaptively learn the correspondence between dic-
tionary atoms and class labels. As each dictionary atom is shared by
all classes, the mixed information from different class samples may
reduce the discrimination of the learned dictionary.

In class-specific DDL methods, each dictionary atom is assigned
to a single class and the dictionary atoms associated with different
classes are encouraged to be as independent as possible. Ramirez
et al. [18] proposed a structured dictionary learning scheme by
promoting the discriminative ability between different class-
specific sub-dictionaries. Castrodad and Sapiro [23] learned a set
of class-specific sub-dictionaries with non-negative penalty on
both dictionary atoms and coding vectors. Yang et al. [20] pro-
posed a DDL framework which employs Fisher discrimination
criterion to learn class-specific dictionaries. Since each dictionary
atom has a single label, the reconstruction error with respect to
each class could be used for classification. However, those meth-
ods ignored the cross relatedness of different dictionary atoms and
class labels, e.g., sometimes it is helpful in promoting the perfor-
mance by assigning some dictionary atoms to different class labels
in multiclass classification task.

The above DDL approach associates dictionary atoms and class
labels in two extreme manners: the dictionary atom is either
associated to all classes, or assigned to a single one. In order to
adaptively build the relationship between dictionary atoms and
class labels, we propose a well-principled DDL scheme by applying
joint sparsity constraint on the coding vectors of each class with
ℓ1;1-norm regularization, respectively. Since the ℓ1;1-norm is a
matrix norm that encourages entire rows of a matrix to be zeros,
the resultant coding vector of a certain class should be row sparse.
Besides, by incorporating a classifier into the objective function to
promote the discriminative ability of coding vectors, our method
would adaptively build the relatedness between class labels and
the dictionary atoms in the training phase.
3. The CRO-DDL method

In this section, we first briefly describe the general DDL model,
and then propose our CRO-DDL method. The process of para-
meters optimization for the proposed method is also presented,
and the classification rule is discussed in the end of this section.
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3.1. The general DDL model

Let X¼ X1;X2;…;XC½ � be a set of N training samples with class
label yiA ½1;…;C�, where Xk is the subset containing nk samples from
the k-th class. The general DDL model can be described as follows:

min
D;A

R X;D;Að Þþλ1 JAJþλ2L Að Þ; ð1Þ

where R X;D;Að Þ is the reconstruction error, DARm�K is the learned
dictionary of C classes, A¼ ½A1;A2;…;AC �ARK�n is the sparse coding
coefficients of input training samples X, λ1 and λ2 are the trade off
parameters, JAJ denotes certain norm for A. In general, JAJ is set to
be JAJ1 to ensure the sparsity of coding vectors which tends to
produce better classification results [31]. However, the ℓ1-norm clas-
sification sparse coding suffers from high computation burden. To
tackle this problem, some researchers attempt to use ℓ2-norm reg-
ularization and their results can be very competitive with well-
designed classification rule or classifier [22].

3.2. Formulation of CRO-DDL

Instead of learning a global dictionary without class specific
property or a class-specific dictionary without class relatedness
property, we propose to adaptively learn the relationship between
dictionary atoms and the class labels.

Fig. 1 shows the motivation of our proposed methods. Supposes
that dictionary D to be a collection of different kinds of features of
images, where each dictionary atom corresponding a single category
of features. For the samples of i-th class Xi, it can be represented by
the corresponding sparse coding coefficients matrix Ai over D as
X�DAi. This progress can be regards as the course of feature
selection. As the samples of Xi are with the same class label, they
must share similar features. Thus, for the coding vectors ak; ajAAi ,
the non-zero elements of vector ak and aj should be at the same
rows. Thus, the coding matrix Ai should be group sparse. Besides,
different class samples may share some common features as shown
in Fig. 1. The i-th class samples share some atoms/features with class
k, while class i may also share other features with class j. These
shared features may be helpful in the classification of different
classes, such as class k and class j. These shared atoms are not pre-
specified for different class samples. They are learned from the
j
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Fig. 1. Illustrations of class relatedness dictionary learned in the proposed method. Some
matrix of each class is group sparse.
training samples adaptively, by adopting the ℓ1;1-norm regulariza-
tion together with the discriminative classifier.

Based on the above assumption, we adopt the ℓ1;1-norm for
group sparse regularization and replace JAJ with

PC
k ¼ 1 JAk J1;1

in Eq. (1). The
PC

k ¼ 1 JAk J1;1 penalizes the sum of maximum
absolute values of each row of the k-th class coding matrix Ak , and
encourages entire row to be zero, which forcing Xk to be sparsely
represented by the linear combination of atoms of dictionary D.
Besides, in order to enlarge the discriminative ability of coding
vectors, we use a multi-class support vector machine (SVM) as the
discrimination term, i.e.,

LðAÞ ¼ 2
XC
k ¼ 1

L A; yk;wk; bk
� �

; ð2Þ

where wk denotes the normal to the k-th class hyperplane of SVM,
bk denotes the corresponding bias, and yk ¼ yk1; y

k
2;…; ykn

� �
is

defined as yki ¼ 1 if class labels yi ¼ k and otherwise yki ¼ �1.
Specifically, the discrimination term is
L A; yk;wk;bk
� �¼ 1

2Jwk J22þθℓ A; yk;wk; bk
� �

, where ℓ A; yk;wk; bk
� �

is the hinge loss function, and θ is a predefined constant. Thus, the
proposed CRO-DDL model can be formulated as follows:

min
D;A;w;b

JX�DAJ2F þλ1
XC
k ¼ 1

JAk J1;1þ2λ2
XC
k ¼ 1

L A; yk;wk; bk
� �

ð3Þ

where W¼ w1;w2;…;wC½ �, b¼ b1; b2;…; bC
� �

. According to [22],
the solution of SVM classifier, can be represented as the linear
combination of a few coding coefficient vectors, i.e., support vec-
tors, which indicates that only the coding vectors near the
hyperplane play the dominant role in the discriminative dictionary
learning. The dictionary learned in this way is adaptive to the
training data, and the optimal parameters of SVM classifier can
also be simultaneously learned for classification.

3.3. Optimization of CRO-DDL

In this section, we describe our algorithm to find the optimal
solution for all parameters of Eq. (3). As a joint optimization pro-
blem, Eq. (3) can be solved by optimizing the objective function
with respect to D, A and W;b

� 	
alternatively.
j

k

  

i

s selected 
ss k

Dictionary atoms 
selected by Aj for

class j

ared dictionary atoms  
for class i and  j

of dictionary atoms are shared with different classes. Besides, the coding coefficient



Fig. 2. Sample illustrations from Extended Yale B dataset.
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3.3.1. Update the coding coefficient matrix A
Note that JX�DAJ2F ¼

PC
k ¼ 1 JXk�DAk J2F , and then the pro-

posed CRO-DDL model can be reformulated as

min
D;A;W;b

XC
k ¼ 1

JXk�DAk J2F þλ1
XC
k ¼ 1

JAk J1;1þ2λ2
XC
k ¼ 1

LðA;yk;wk; bkÞ:

ð4Þ
By fixing dictionary D and classifier parameter W;b

� 	
, the coding

coefficient matrix A can be obtained by separately calculating Ak,
ðk¼ 1;…;CÞ as:

〈Ak〉¼ arg min
Ak

JXk�DAk J2F þλ1 JAk J1;1þ2λ2
XC
k ¼ 1

LðAk; yk;wk; bkÞ:

ð5Þ
To efficiently solve Eq. (5), we adopt the commonly used aug-

mented Lagrange multiplier (ALM) method by introducing aux-
iliary variable A0

k, ðk¼ 1;…;CÞ, and then iteratively solved the
following equivalent problem:

〈Ak;A
0
k〉¼ arg min

Ak ;A
0
k

JXk�DAk J2F þλ1 JA
0
k J1;1þ2λ2

XC
k ¼ 1

L Ak; yk;
� �

þu
2
JAk�A0

k J
2
F ; ð6Þ

where u is a positive penalty parameter. We then adopted the
augmented Lagrangian method to alternatively optimize Ak and A0

k

until convergence as follow:
(a) First, we fix parameter A0

k to solve Ak. Let aki denote the
coding vector of i-th sample from k-th class and a0ki denote the
corresponding auxiliary variable, we can optimize Ak in columns
as,

〈aki 〉¼ arg min
aki

Jxki �Daki J
2
2þ2λ2θ

XC
k ¼ 1

ℓ2ðaki ; yi
kÞþ

u
2
Jaki �a0ki J

2
2:

ð7Þ
Require: Train sam
1: while not conve
2: for k¼ 1 to C
3: for i¼1 to

4: aki’arg m

5: end for
6: A0

k’arg mi
7: end for
8: D’arg minD J
9: for k¼ 1 to C
10: Update wk

11: end for
12: end while
Output: dictionary
For computational simplicity and better smooth property, we
adopt the quadratic hinge loss function ℓ2 aki ; yki ;wk; bk

� �
¼

max yik wT
kaki þbk

� ��1;0
� �� �2

in Eq. (7). Thus, Eq. (7) became a least
square problem with respect to aki which can be easily solved.

(b) After Ak is fixed, we can get A0
k by solving the following

problem:

〈A0
k〉¼ arg min

A0
k

λ1 JA
0
k J1;1þu

2
JAk�A0

k J
2
F ; k¼ 1;2;…;C: ð8Þ

Problem (8) is a ℓ1;1 regularized problem for joint sparse dic-
tionary learning. In this paper, we employed the projected gra-
dient method developed by Quattoni et al. [30] to solve it.

3.3.2. Update the dictionary D
By fixing A, W, and b, the optimization solution of problem of

(4) with respect to D equal to the following problem:

〈D〉¼ arg min
D

JX�DAJ2F ; s:t:Jdi J22r1; i¼ 1;…;K ; ð9Þ

where the constraint on di is to avoid the scaling issue of dic-
tionary atoms. Problem (9) can be solved effectively by introducing
a variable S:

〈D〉¼ arg min
D

JX�DAJ2Fs:t: D¼ S; Jsi J22r1; i¼ 1;…;K: ð10Þ

The optimal solution of problem (10) can be obtained by the
alternating direction method of multipliers (ADMM) [28] algo-
rithm as

Dðtþ1Þ ¼ arg min
D

JX�DAJ2F þρJD�SðtÞ þTðtÞ J2F ;

Sðtþ1Þ ¼ arg min
b

ρJDðtþ1Þ �SþTðtÞ J2F ; s:t:Jsi J
2
2r1;

Tðtþ1Þ ¼ TðtÞ þDðtþ1Þ �Sðtþ1Þ; update ρ if appropriate:

8>>><
>>>:

ð11Þ

3.3.3. Update the classifier parameters W and b
By fixing parameters D and A, we can update W and b by

solving the following problem:

W;b
� 	¼ arg min

W;b

XC
k ¼ 1

L Ak; yk;wk;bk
� �

: ð12Þ

Problem (12) is actually a multiclass linear SVM problem. We
adopted the SVM solver in [10] to solve it.

By repeating the above steps, we can obtain the optimal
parameters D, A, W, b of problem (4) iteratively. Algorithm
1 summarizes the optimization procedure of above parameters.

Algorithm 1. Optimization procedure of CRO-DDL model.
ples X, Class label Y; λ1; λ2;θ;u.
rge do
do
nk do

inaki
Jxki �Daki J

2
2þ2λ2θ

PC
k ¼ 1 ℓ

2ðaki ; yikÞþu
2Jaki �a0ki J

2
2

nA0
k
λ1 JA

0
k J1;1þu

2JAk�A0
k J2F

X�DAJ2F ; s:t: Jdi J22r1; i¼ 1;…;K ;
do
; bk by solving Eq. (12) with multi-class SVM solver in [10].

D, coding matrix A, classifier parameters W and b.
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Fig. 3. Classification accuracy vs. (a) λ1 and (b) λ2, respectively. In (a) λ1 is fixed to 0.1 and in (b) λ2 is fixed to 0.005.

Table 1
The recognition rates of competing methods on Extended Yale B dataset.

SRC [9] DKSVD [17] LC-KSVD [36] FDDL [20] SVGDL [22] CRO-DDL

0.9 0.753 0.906 0.919 0.961 0.971

Fig. 4. Sample illustrations from AR dataset.

Table 2
The face recognition rates of competing methods on AR dataset.

SRC [9] DKSVD [17] LC-KSVD [36] FDDL [20] SVGDL [22] CRO-DDL

0.888 0.854 0.897 0.920 0.946 0.949

Table 3
The gender recognition rates of competing methods on AR dataset.

SRC [9] DKSVD [17] LC-KSVD [36] FDDL [20] SVGDL [22] CRO-DDL

0.93 0.861 0.86 0.954 0.943 0.951
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3.4. Classification rule of CRO-DDL

Once the dictionary D and the classifier parameters 〈W;b〉 are
learned, we perform classification as follows: for a test sample x,
we first calculate the sparse coding vector. As ℓ1;1-norm is a
matrix norm and thus cannot tackle a single vector, we use ℓ1-
norm regularization to get the coding vector, resulting in the fol-
lowing tractable problem [31,39]:

〈an〉¼ arg min
a

Jx�DaJ22þλ1 JaJ1: ð13Þ
After obtained the coding vector an, we can directly use the SVM
classifier for classification as

identityðxÞ ¼ arg max
k

wT
ka

nþbk; k¼ 1;…;C: ð14Þ

4. Experimental results

In this section, we experimentally evaluated the proposed CRO-
DDL algorithm for objection recognition, action recognition, and
face recognition on four publicly available datasets, i.e., Extended
Yale B dataset [34], AR dataset [33], Caltech-101 object dataset
[32], and UCF sports action dataset [35], respectively. We com-
pared the performance of the proposed model with the sparse
representation based classification (SRC) method [9], K-SVD [12]
and state-of-the-art DDL methods including DKSVD [17], LC-KSVD
[36], FDDL [20] and SVGDL [22].

4.1. Experiments on face recognition

We applied our algorithm for face recognition problems on two
public datasets, i.e., Extended Yale B [34] and AR [33]. We will
show the experimental results in the following subsections.

4.1.1. Face recognition on Extended Yale B
We test the proposed method on the Extended Yale B database

[34], which consists of 2414 frontal face images from 38 persons.
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Fig. 6. Example images of classes with high classification accuracy from Caltech-
101: (a) accordion, 100% accuracy; (b) chair, 100% accuracy; (c) scissors, 100%
accuracy; (d) stopsign, 100% accuracy; (e) trilobite, 100% accuracy.
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All the images were cropped into the size of 54�48. Fig. 2 shows
some samples from the Extended Yale B dataset.

Following the experimental setting in [22] for comparison, we
randomly selected 20 images of each person for training and the
rest were used for testing. In this experiment, the number of the
dictionary atoms was 380.

As there are four parameters λ1, λ2, u, and θ in the proposed
CRO-DLL method, we first analyze their sensitivity. For simplicity,
we set θ¼ 0:2 as [22], u¼ λ2, and tune λ1 and λ2. Fig. 3 shows the
variation of classification accuracy along with the parameters. In
Fig. 3, we first set λ1 ¼ 0:1 and change λ2 to see the variation of
classification rate. The result shows the proposed method
achieved the best accuracy when λ2 ¼ 0:005. Next, we set λ2 ¼
0:005 and tune the parameter λ1. Fig. 3(b) shows that, with
λ1 ¼ 0:1, we can get satisfactory classification rate. Thus, for face
recognition on Extended Yale B dataset, λ1 and λ2 were set to
0.1 and 0.005, respectively.

The corresponding classification accuracy is shown in Table 1.
For comparison, Table 1 also presents the classification rates of SRC
[9], DKSVD [17], LC-KSVD [36], FDDL [20], and SVGDL [22]. As one
can see that the proposed CRO-DDL achieved better recognition
accuracy than all the competing methods.

4.1.2. Face recognition on AR dataset
We further test our method on the AR dataset [33] for Face

recognition. The dataset is consists of over 4000 face images collected
from 126 individuals. Following the experimental setting in [33], we
used a subset containing 1400 face images from 50 females and 50
males subjects in the experiment. The face images were resized to
60� 43 as shown in Fig. 4. For each subject, we selected the 7 images
with illumination and expression changes from Session 1 for training,
and the other 7 images with the same condition from Session 2
for testing. The dictionary size was set to 500 in the experiment.
Parameters were set as λ1 ¼ 0:2; λ2 ¼ 0:002;u¼ 0:002, and θ¼ 0:2,
respectively.

We evaluated our approach and compared with SRC [9], DKSVD
[17], LC-KSVD [36], FDDL [20], and SVGDL [22]. Experimental
results of different methods are summarized in Table 2. The
recognition accuracy of proposed CRO-DDL is 0.949, which has
improvement over all the competing methods. SVGDL performs the
second best in this experiment, followed by FDDL and LC-KSVD.

4.1.3. Gender recognition on AR dataset
We also evaluate the proposed method for gender classifica-

tion. We selected a subset of 25 males and 25 females to construct
the training dataset, and select other 25 males and 25 females to
construct the test dataset. The images of the training dataset and
test dataset has no-overlap. For each image, we used PCA to reduce
its dimension to 300. The dictionary size was fixed to 500. Para-
meters were set as λ1 ¼ 0:3; λ2 ¼ 0:005;u¼ 0:005, and θ¼ 0:2,
respectively.

We compared our method with SRC [9], DKSVD [17], LC-KSVD
[36], FDDL [20], SVGDL [22], and the comparison results are shown
in Table 3. We can see that our method performs the second best
classification rate, which is slightly lower than that of FDDL. This
maybe because that, in gender classification, there are enough
training samples for each class (only two classes). Thus, in FDDL,
the learned dictionary of each class is representative enough to
represent the test sample.

4.2. Objection classification on Caltech-101 dataset

The Caltech-101 object dataset [32] contains 9144 images from
102 object classes, i.e., 101 object classes and a background class.
The contents of images includes flowers, trees, animals, and
vehicles. The samples from each class have significant shape
variability. For each class, its number varies from 31 to 800. For
fairly comparison, we followed the experimental setting as [22].
For each category we randomly selected 5, 10, 15, 20, 25 and 30
images for training, used the rest for testing. The number of dic-
tionary atoms was set to be 510 in all the cases. We repeated the
experiments 10 times with different random splits of the training
and testing images. The final recognition rates were reported as
the average of each run.

We evaluated the effectiveness of proposed CRO-DDL on Caltech-
101 by comparing it with six state-of-the-art sparse representation
methods, i.e., SRC [9], K-SVD [12], DKSVD [17], LC-KSVD [36], FDDL
[20] and SVGDL [22]. For observation convenience, the comparison
results are shown in Fig. 5.



Fig. 7. Sample illustrations from UCF sports action dataset.

Table 4
Confusion matrix of CRO-DDL on UCF sport action dataset.

Predicted

Diving Golf High-bar Kicing Lifting Swing Riding Running Skating Walking

Actual Diving 0.83 0 0 0 0 0.17 0 0 0 0
Golf 0 0.94 0 0 0 0.06 0 0 0 0
High-bar 0 0.05 0.90 0 0 0.05 0 0 0 0
Kicking 0 0 0 1.00 0 0 0 0 0 0
Lifting 0 0 0 0 0.83 0 0 0 0.17 0
Swing 0 0 0 0 0 1.00 0 0 0 0
Riding 0 0 0 0 0 0 1.00 0 0 0
Running 0 0 0 0 0 0 0 1.00 0 0
Skating 0 0 0 0 0 0 0 0 1.00 0
Walking 0 0 0 0 0 0.04 0 0 0 0.96

Table 5
The recognition rates of competing methods on UCF sports action dataset.

SRC [9] DKSVD [17] LC-KSVD [36] FDDL [20] SVGDL [22] CRO-DDL

0.929 0.881 0.912 0.943 0.944 0.968
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As shown in Fig. 5, SRC achieved the worst accuracy which was
possibly attributed to the lack of discriminative dictionary learn-
ing. With class-specific dictionaries, FDDL outperformed K-SVD
and LC-KSVD. However, when the training number was high
(about 25, 30) per class, there was no significant gain over K-SVD
and LC-KSVD. By learning a discriminative dictionary under the
guidance of SVM, SVGDL had a better classification accuracy than
LC-KSVD and FDDL. With the possible learned cross class relat-
edness, our method outperformed all the competing methods.
Fig. 6 shows some examples from the classes with high classifi-
cation accuracy.

4.3. Action recognition on UCF sports action dataset

We evaluated the proposed method on the UCF sports action
dataset [35] which has been widely used for numerous applications,
such as action recognition, action localization, and saliency detection.
The dataset consists of a set of actions collected from various sports
from broadcast television channels, such as the BBC and ESPN,
including a total of 150 sequences of 10 action classes, such as diving,
golf, kicking, lifting, horse riding, running, skateboarding, swinging
(pommel horse), swinging (high bar), and walking. Fig. 7 shows dif-
ferent class samples of UCF sports action dataset.

Following the common experimental settings in [22], we
evaluated our approach by using the five-fold cross validation, in
which four folds of samples were used for training, and the rest
samples were used for test. The dictionary size was set to 50.
Parameters were set as λ1 ¼ 0:2; λ2 ¼ 0:02;u¼ 0:02, and θ¼ 0:2,
respectively. The confusion matrix of proposed method on UCF
sports action dataset is shown in Table 4. It can be seen that our
proposed method receives 100% correct on 5 classes.

For comparison, we list the classification accuracies of our CRO-
DDL and the comparison methods, including SRC [7], DKSVD [17],
LC-KSVD [36], FDDL [20], and SVGDL [22] in Table 5. Our proposed
method has the best classification result. FDDL and SVGDL have
very comparable results, i.e., 0.943 vs. 0.944.
5. Conclusions

In this paper, based on the assumption that relevance between
dictionary atoms of different class labels could be helpful in mul-
ticlass classification task, we proposed a new dictionary method,
CRO-DDL algorithm, for sparse representation. Utilizing the
ℓ1;1-norm regularization on the coding matrix of each class, the
proposed method can adaptively builds the relevance between
dictionary atoms and the class labels, by learning a class related
dictionary and a SVM classifier simultaneously. Experimental
results on face recognition, object classification, and action clas-
sification demonstrate that our method is comparable to many
state-of-the-art DDL methods in multi-class image classification.
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