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Abstract

Recent advanced deep convolutional networks (CNNs)
achieved great successes in many computer vision tasks, be-
cause of their compelling learning complexity and the pres-
ences of large-scale labeled data. However, as obtaining
per-pixel annotations is expensive, performances of CNNs
in semantic image segmentation are not fully exploited.
This work significantly increases segmentation accuracy of
CNNs by learning from an Image Descriptions in the Wild
(IDW) dataset. Unlike previous image captioning datasets,
where captions were manually and densely annotated,
images and their descriptions in IDW are automatically
downloaded from Internet without any manual cleaning and
refinement. An IDW-CNN is proposed to jointly train IDW
and existing image segmentation dataset such as Pascal
VOC 2012 (VOC). It has two appealing properties. First,
knowledge from different datasets can be fully explored
and transferred from each other to improve performance.
Second, segmentation accuracy in VOC can be constantly
increased when selecting more data from IDW. Extensive
experiments demonstrate the effectiveness and scalability
of IDW-CNN, which outperforms existing best-performing
system by 12% on VOC12 test set.

1. Introduction

Performances of convolutional networks (CNNs) can be
improved by increasing depths, number of parameters, and
number of labeled training data. They achieved state-of-the-
art results and even surpassed the performances of human
experts in image recognition [6, 7, 30] and object detection
[26, 21]. Nevertheless, since training data with per-pixel
annotations are limited and difficult to obtain in semantic
image segmentation, performance gain of CNNs by merely
increasing its modeling complexity becomes marginal.

To address data limitation in image segmentation, this
work proposes to jointly train CNN from two sources of
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Figure 1: (a) visualizes an image in IDW and its raw descrip-
tion, searched by using ‘sheep’ and ‘human’ as keywords. We
observe that the description contains unimportant details for object
segmentation (e.g. ‘long blonde hair wearing hat happy time’),
missing important details (e.g. number of people and sheep), and
grammatical errors. As a side-by-side comparison, (b) shows an
image and its per-pixel annotation of VOC12.

data. One is a small set of images with per-pixel anno-
tations, which are difficult to obtain such as VOC12. An
image of ‘human’ and ‘sheep’ in VOC12 and its annotation
are given in Fig.1 (b). The other one is a large set of images
automatically downloaded from the Internet, using the
categories of VOC12 as keywords. Each image is equipped
with an Image Description in the Wild but without per-pixel
annotation. This image set is abbreviated as IDW. Unlike
existing image captioning dataset such as MS COCO [13],
where captions are manually generated by satisfying some
annotation rules, image descriptions in IDW are directly
copied from the web pages, including news, blog, forum,
and photography agency. Fig.1 (a) provides an example
with ‘human’ and ‘sheep’ as keywords, where shows that
raw description of IDW may contain unimportant details,
missing details, and grammatical errors.

With VOC12 and IDW, a novel CNN structure namely
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IDW-CNN and its training algorithm are carefully devised,
where knowledge of these two datasets can be transferred
from each other. Specifically, useful object interactions
or relationships can be extracted from IDW, such as ‘girl
holding sheep’ and ‘girl playing with sheep’, which are
not encoded in the per-pixel labelmaps of VOC12. These
object interactions can be transferred to VOC12 to improve
segmentation accuracy. In addition, labelmaps in VOC12
that capture precise object locations and boundaries are
able to improve the extractions of object interactions in
IDW. These two purposes are formulated cooperatively in
IDW-CNN and learned end-to-end. Extensive studies show
that after training, accuracies of image segmentation and
prediction of object interactions in both VOC12 and IDW
are significantly increased. A more appealing property is
that segmentation accuracy of VOC12 can be constantly
improved, when adding more data to IDW. For instance,
adopting 10 thousand images in IDW increases the accuracy
of a state-of-the-art system, DeepLab-v2 [3], by 7.6% in
VOC12 test set (from 74.2% to 81.8%). Adding another
10 thousand samples brings extra 3.37% improvement.
Another 1.1% improvement can be achieved when intro-
ducing 20 thousand more samples. In general, IDW-CNN
increases accuracy of DeepLab-v2 by 12% without any
post-processing such as MRF/CRF smoothing [3].

This work has three main contributions. (1) This
is the first attempt to show that image descriptions in
the wild without manually cleaning and refinement are
able to improve image segmentation. An IDW dataset
containing more than 40 thousand images are constructed
to demonstrate this result. (2) IDW-CNN is proposed to
jointly learn from VOC12 and IDW. Knowledge from both
datasets are fully explored and transferred from each other.
Performances of segmentation and object interaction pre-
diction in both datasets can be significantly improved. (3)
IDW-CNN is capable of constantly improving segmentation
accuracy, when more data are appended to IDW, showing its
scalability and potential in large-scale applications.

1.1. Related Work

Supervised Image Segmentation CNNs achieved out-
standing performances in semantic image segmentation.
For instance, Long et al. [16] transformed fully-connected
layers of CNN into fully convolutional layers (FCN),
making accurate per-pixel classification possible by the
contemporary CNN architectures that were pre-trained on
ImageNet [27]. Since then, the combination of FCN and
MRF/CRF attracts a lot of attention, and achieved great
successes in semantic image segmentation [15, 2, 28, 34].
However, all works above use per-pixel annotations as full
supervision, which are limited and hard to obtain.

Semi- and Weakly-supervised Image Segmentation
Previous works [14, 24, 25, 23] tried to solve semantic

Table 1: Comparisons of semi- and weakly-supervised image
segmentation methods. Different approaches utilize different
supervision as indicated by ‘

√
’. Different from the other methods

that employed manually annotated labels, IDW-CNN learns from
images and descriptions without any human intervention.

Pixel Img Tag BBox Scribble Language
WSSL(weak)[22]

√

WSSL(semi)[22]
√ √ √

MIL-FCN[24]
√

MIL-sppxl[25]
√

CCNN[23]
√

BoxSup[4]
√ √

ScribbleSup[10]
√

NLE [8]
√

DeepStruct[12]
√ √

IDW-CNN
√ √

image segmentation using only weak labels (e.g. image-
level annotation), which are easier to attain but the problem
is ill-posed and more challenging. Recent works [22, 4, 10,
8, 12] address this trade-off by combining both the weak
and strong labels to reduce labeling efforts while improve
segmentation performance. Supervision of these works
are compared in Table 1, including per-pixel annotation,
image-level annotation, bounding boxes (bbox), scribble,
and language. Typically, the methods leverage both the
pixel-level labels and weak labels (e.g. image and bbox)
outperform the others.

For example, WSSL(semi) [22] improves accuracy of
VOC12 val set from 62.5% to 65.1% by leveraging addi-
tional manually labeled bounding boxes and image-level
tags. BoxSup [4] also benefits from bounding box anno-
tations. NLE [8] and DeepStruct [12] employed language
models in image segmentation, but addressed a task dif-
ferent from most of previous works, by parsing an image
into structured regions according to a language expression.
The key disparity between the above approaches and IDW-
CNN is that previous works leveraged manual annotations
but IDW-CNN does not. Extensive experiments show that
IDW-CNN outperforms existing methods by a significantly
large margin.

2. Learning Image Descriptions

Data Collection We construct an image description
in the wild (IDW) dataset to improve the segmentation
accuracy in VOC12. IDW is built with two stages, which
can be easily generalized to different benchmarks other
than VOC12. In the first stage, we prepare 21 prepositions
and verbs that are frequently presented, such as ‘hold’,
‘play with’, ‘hug’, ‘ride’, and ‘stand near’, and 20 object
categories from VOC12 such as ‘person’, ‘cow’, ‘bike’,
‘sheep’, and ‘table’. Their combinations in terms of ‘subject
+ verb/prep. + object’ leads to 20 × 21 × 20 = 8400
different phrases, such as ‘person ride bike’, ’person sit near
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Figure 2: The statistics of IDW dataset.

bike’, and ‘person stand near bike’. However, the semantic
meanings of most of these phrases are rarely presented in
practice, for example ‘cow hug sheep’. After removing
meaningless phrases, we collect hundreds of meaningful
phrases. In the second stage, these phrases are used as
key words to search images and their surrounding texts
from the Internet. We further discard the invalid phrases,
such as ‘person ride cow’, if the number of their retrieved
images is smaller than 150 to prevent rare cases or outliers,
which may lead to over-fitting in training. As a result, we
have 59 valid phrases. Finally, IDW has 41, 421 images
and descriptions. Fig.2 (a) plots the number of images in
IDW with respect to each object category in VOC12. This
histogram reveals the image distribution of these objects in
real world without any manually cleaning and refinement.

Image Description Representation Each image de-
scription is automatically turned into a parse tree, where we
select useful objects (e.g. nouns) and actions (e.g. verbs)
as supervisions during training. Each configuration of two
objects and the action between them can be considered as an
object interaction, which is valuable information for image
segmentation but it is not presented in the labelmaps of
VOC12.

Here, we use the Stanford Parser [29] to parse image
descriptions and produce constituency trees, which are two-
way trees with each word in a sentence as a leaf node, as
shown in Fig.3(a). Constituency trees from the Stanford
Parser still contains irrelevant words that do neither describe
object categories nor interactions (e.g. adjectives). There-
fore, we need to convert constituency trees into semantic
trees, which only contains objects and their interactions.
The conversion process generally involves three steps.
Given a constituency tree in (a), we first filter the leaf nodes
by their part-of-speech, preserving only nouns as object
candidates, and verbs and prepositions as action candidates.
Second, nouns are converted to objects. We use the lexical
relation data in WordNet [19] to unify the synonyms. Those
nouns that do not belong to the 20 object categories will
be removed from the tree. Third, verbs should also be
recognized and refined. We map the verbs to the defined 21
actions using word2vec [18]. When the mapping similarity

Images and descriptions are downloaded from photography agency
such as www.dreamstime.com.
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Figure 3: An illustration of image description representation. (a)
is the constituency tree generated by language parser. (b) is the
constituency tree after POS tag filtering. (c) presents the object
interactions.

is smaller than a threshold, the verbs will be categorized into
an additional action class, i.e. ‘unknown’. Step 1 to 3 are
shown in Fig.3. Finally, we extract the object interactions
from the semantic tree through the nodes. An example of
description parsing is illustrated in (b), where the principal
component message ‘girl plays with lamb, holding lamb’
is first filtered out of the description, and then is further
transferred into ‘person plays with sheep, holding sheep’.

After parsing all image descriptions in IDW, we obtain
62, 100 object interactions in total. Fig.2 (b) summaries
the number of images with respect to the number of
interactions, showing that each image has 1.5 interactions
on average. Different from existing datasets such as Visual
Genome [9] that each image is manually and densely
labeled with 17.68 relationships per image, the construction
of IDW has no manual intervention and has extremely low
expense compared to previous datasets. By partitioning
IDW into different subsets, we show that IDW-CNN is able
to progressively improve accuracy of VOC12 when training
with more subsets of IDW.

To evaluate the generalization capacity of IDW-CNN,
three test sets are constructed. First, we randomly choose
1, 440 images from IDW as a test set of object inter-
action prediction, denoted as int-IDW. These images are
not utilized in training. Second, we annotate the per-
pixel labelmap for each image in int-IDW, resulting in a
segmentation test set, denoted as seg-IDW. Fig.2 (c) plots
the number of images with respect to the number of objects,
where seg-IDW is compared to the validation set of VOC12,
indicating that seg-IDW is more challenging than VOC12
in terms of the object diversity in each image. Third,
another interesting evaluation is a zero-shot test set denoted
as zero-IDW, which includes 1, 000 images of unseen object
interactions. For instance, the image of ‘person ride cow’



is a rare case (e.g. in bullfight) and is not appeared in
training. This evaluates that IDW-CNN is able to generalize
to unseen object interactions.

2.1. Network Overview

Fig.4 (a) illustrates the diagram of IDW-CNN, which has
three important parts, including a ResNet-101 network for
feature extraction, a network stream for image segmentation
(denoted as ‘Seg-stream’), and another stream for object
interaction (denoted as ‘Int-stream’). They are discussed
as below.

Feature Extraction IDW-CNN employs DeepLab-v2
[3] as a building block for feature extraction. It is a
recent advanced image segmentation system, incorporat-
ing ResNet-101, multi-scale fusion, and CRF smoothing
into a unified framework. To identify the usefulness of
IDW dataset, IDW-CNN only inherits ResNet-101 from
DeepLab-v2, yet removing the other components such as
multi-scale fusion and CRF in DeepLab-v2. Given an
image I , ResNet-101 produces features of 2048 channels.
The size of each channel is 45× 45.

Seg-stream As shown in Fig.4 (a), the above features are
employed by a convolutional layer to predict segmentation
labelmap (denoted as Ĩs), the size of which is 21×45×45.
Each channel indicates the possibility of an object category
presented in image I . The final prediction Is is produced
by refining Ĩs using object interaction. The component of
refinement will be introduced below.

Int-stream This stream has three stages. In the first
stage, we reduce the number of feature channels from
2048 to 512 by a convolutional layer, denoted as h, so
as to decrease computations for the subsequent stages.
Then, we produce a set of 21 object feature maps, de-
noted as {hm

i } where the subscript i ∈ C and C =
{person, cow, ...,bkg}21. Each hm

i is obtained by preform-
ing the elementwise product (“⊗”) between h and each
channel of Ĩs, which represents a mask. Therefore, each
hm
i ∈ R512×45×45 represents the masked features of the i-

th object class. Examples of hm
person and hm

bike in an image
are given in Fig. 5 (a) and (b).

In the second stage, each hm
i is utilized as input to train

a corresponding object subnet, which outputs a probability
characterizing whether object i is presented in image I .
Thus, as shown in orange in Fig.4 (a), we have 21 object
subnets, which have the same network structures but their
parameters are not shared. (b) visualizes this structure in
orange, where hm

i is forwarded to one convolution, one max
pooling, and one full-connection layer. Overall, the second
stage determines which objects are appeared in I .

In the third stage, we train 22 action subnets as outlined
in blue, each of which predicts the action between two

These represent 21 action items and another one subnet indicates no
action is performed between objects.

appeared objects. Similarly, these subnets have the same
architectures but their parameters are not shared. As shown
in (b), structure of the action subnet is analogous to that
of the object subnet, except an elementwise sum (“⊕”)
in the input (in blue). For instance, if both ‘person’ and
‘bike’ are presented in I , the combination of their features,
hm
person ⊕ hm

bike ∈ R512×45×45, is propagated to all action
subnets. Then, the largest response is more likely to be
produced by one of the following action subnets, ‘ride’, ‘sit
near’, and ‘stand near’, to determine the true action between
these two objects. The combination of features is performed
in object pair selection as introduced below.

Object-Pair Selection (OPS) As shown in purple in
Fig.4 (a), OPS is an important component in Int-stream,
which merges features of the presented objects. For exam-
ple, if object subnets of ‘person’, ’bike’, and ‘car’ have high
responses, each pair of features among hm

person, hm
bike, and

hm
car are summed together elementwisely, resulting in three

combined features denoted as hm
person+bike, hm

person+car,
and hm

bike+car. An example of hm
person+bike is plotted in

Fig.5 (c). To resolve the action between each pair of objects,
each merged feature is then forwarded to all 22 action
subnets as discussed above. An appealing property of OPS
is that the number of object interactions of different images
can be different, adaptively determining by the cooperation
between two groups of object and action subnets.

Refinement This is an essential component in Seg-
stream to improve segmentation accuracy. Recall that the
i-th object subnet produces a score (probability), denoted
as loi in Fig.4(a), indicating how likely object i is appeared
in image I . So, we concatenate all 21 scores as a vector
lo ∈ R21×1 and treat it as a filter to refine the segmentation
map Ĩs using convolution. We have Is = conv(Ĩs, lo).

3. Training Approach
IDW-CNN jointly trains images from IDW and VOC12,

by using back-propagation (BP) with stochastic gradient
descent (SGD). Each image in IDW contains object inter-
actions but without labelmap, whilst each image in VOC12
has labelmap but no interactions. Therefore, IDW-CNN
posses a large challenge of missing labels. Unlike previous
multitask deep models [31, 33] that ignore the gradients
of an unlabeled sample in the training stage, IDW-CNN
estimates a pseudo label for each sample and treats it as
ground truth in BP. Experiments show that this process is
important and improves performance. Here, we discuss the
backward propagations of two streams, with respect to two
kinds of data respectively.

Backwards of Seg-stream As shown in the first two red
arrows of Fig.4 (a), seg-stream has two identical softmax
loss functions. One minimizes the per-pixel discrepancy
between a ground truth labelmap I

s
and Ĩs, whilst the

other involves Is. Both loss functions are indispensable
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Figure 4: (a) illustrates the diagram of IDW-CNN, which has two streams. Given an image I , the first stream predicts its segmentation
labelmap Is and the second stream estimates its object interactions. The second stream contains two groups of sub-networks, where 21
object subnets recognize object classes appeared in the object interactions, while 22 action subnets predict action items between them.
Each subnet has the same network structure as shown in (b), but are learned to achieve different goals. Thus, their parameters are not
shared. ‘conv’, ‘max pool’, and ‘fc’ indicate convolution, max pooling, and full-connection respectively. IDW-CNN has four groups of
losses functions as marked by 1.-4. in red.

(a)                               (b)                                (c)

Figure 5: Combined feature of person and bicycle. The features
of person hm

person and bicycle hm
bike are visualized in (a) and (b),

respectively. Then the combined feature hm
person+bike are the

element-wise summation of hm
person and hm

bike, visualized in (c).

in seg-stream. The first one learns to update the 2048 ×
45 × 45 features of ResNet-101. Besides these features,
the second one also updates 21 object subnets, improving
object categorizations.

In the following, we employ subscripts ‘voc’ and ‘idw’
to distinguish the images and labels from each dataset re-
spectively. In particular, for an image in VOC, the gradients
of these two losses are calculated as in conventional BP,
since the ground truth labelmap I

s

voc is available. However,
given an image in IDW, as I

s

idw is unavailable, only the
first loss is activated. We estimate a latent I

s

idw as ‘pseudo
ground truth’ by combining the predicted segmentation
map, Ĩsidw, and the predicted object labels, loidw. Intuitively,
to attain I

s

idw, we zero those regions presented in Ĩsidw but
their corresponding object labels are absent in loidw.

Backwards of Int-stream As illustrated in the third and
forth red arrows of Fig. 4(a), int-stream consists of two
groups of loss functions. In the first group, each object
subnet is trained by a 1-of-2 softmax loss to determine if
the specific object appeared in an image. In the second
group, each action subnet produces a response, forming
totally 22 responses. Then the entire action nets optimize

a 1-of-22 softmax loss, the largest response represents the
true action between these two objects. Here, we introduce
BP for two datasets respectively. For an image in IDW, as
both ground truth labels of objects and actions, l

o

idw and
l
a

idw, are available, gradients can be simply obtained by BP.

For an image in VOC, ground truth of the presence of an
object, l

o

voc, can be easily determined from the labelmaps
I
s

voc. However, as the ground truth actions, l
a

voc, between
objects are not available, they need to be inferred in the
learning stage. For example, if ‘bike’ and ‘person’ are
presented in Isvoc, there are four different possible actions
between them such as ‘sit’, ‘stand’, ‘ride’, and ‘sleep’.
In our implementation, we obtain a prior distribution with
respect to actions between each pair of objects. For ‘bike’
and ‘person’, this prior produces high probabilities over the
above four actions and low probabilities over the others. In
the training stage, the loss function offers low penalty if the
predicted action is among one the above, otherwise provides
high penalty.

Implementation Details As mentioned in Sec.2.1, IDW-
CNN employs ResNet-101 as building block, where the pa-
rameters are initialized by classifying one thousand image
classes in ImageNet. The other parameters in IDW-CNN are
initialized by sampling from a normal distribution. IDW-
CNN is trained in an incremental manner with three stages.

First, all losses are deactivated except the first one as
marked by ‘1.’ in red of Fig. 4(a). In this stage,
MS COCO [13] is used to train the model following [3],
in order to adapt features from image classification to
image segmentation. Second, three losses except the fourth
one are optimized by using VOC training set to improve
segmentation. Third, parameters are jointly fine-tuned by
all loss functions to transfer knowledge between VOC and
IDW.



(a) sit near         (b) ride    (c) stand near   (d) sleep near

(e) sit near          (f) ride    (g) stand near   (h) sleep near

(i) sit near           (j) ride     (k) stand near  (l) sleep near

Figure 6: Visualization of interaction feature maps, where the
verbs here denotes the interactions between ‘person’ and ‘bike’.
This results indicate that learning image description benefits image
segmentation.

4. Experiments
We evaluate IDW-CNN in two aspects. Sec.4.1 con-

ducts an extensive ablation study, including effectiveness
of region pair selection, scalability, and object interaction
prediction. Sec.4.2 compares segmentation accuracy of
IDW-CNN with those of the state-of-the-art methods. To
identify the usefulness of IDW, for all experiments, IDW-
CNN employs ResNet-101 of DeepLab-v2 as backbone
network, yet removing any pre- and post-processing such
as multi-scale fusion and CRF. In this case, ResNet-101
achieves 74.15% accuracy compared to 79.7% of the full
DeepLab-v2 model.

4.1. Ablation Study

Effectiveness of Object-Pair Selection (OPS) We com-
pare performances of IDW-CNN with and without OPS.
The latter method is abbreviated as ‘IDW-CNN w/o OPS’,
which turns into a multi-task model, such that the entire
shared features (2048×45×45 as in Fig.4) are directly
utilized to predict both segmentation map and object inter-
action, without OPS as the full model did. We consider
two variants of ‘IDW-CNN w/o OPS’. The first one directly
trains 20 + 22 + 20 = 62 subnets, indicating two objects
(20 categories each) and 22 actions. This is similar to [17],
denoted as ‘IDW-CNN w/o OPS-1’. The second one trains
59 subnets, corresponding to 59 valid object interactions,
denoted as ‘IDW-CNN w/o OPS-2’.

Segmentation accuracies on VOC12 test and seg-IDW
are reported in Table 2 and 3 respectively, showing that
performances drop 7.1% and 6.5% when removing OPS,
which is a key to the success of IDW-CNN. It is worth not-

(a) input image (b) person rides horse (c) stand near horse

Figure 7: Visualizations of features in action subnets.

ing that ‘IDW-CNN w/o OPS-1’ still outperforms ResNet-
101 by 5% on VOC12 test, demonstrating the usefulness
of IDW dataset. As an example, Fig.6 visualizes features
of hm

bike+person, which are the inputs to the action subnets.
They help refine the predicted labelmaps. The first row
shows the images. The second and third rows show the fea-
tures of IDW-CNN and IDW-CNN w/o OPS-1 respectively.
Good features for segmentation should have high responses
on both objects. Intuitively, OPS learns discriminative
features for ‘person’ and ‘bike’, therefore improving their
segmentation performance. Fig.7 exhibits the effectiveness
of action subnets. With OPS, each action subnet is able
to identify informative region of a specific action. For
instance, given the same image of two ‘person’ and a
‘horse’, both ‘ride-subnet’ and ‘stand near-subnet’ correctly
identify the ‘person’ who is involved in the corresponding
action. IDW captures this information, which is missing in
VOC12.

Scalability of IDW-CNN The entire IDW is randomly
partitioned into three subsets, which contain 10, 10, and 20
thousand images respectively. We evaluate the scalability
of IDW-CNN by gradually adding one subset in training.
Segmentation accuracies on VOC12 test and seg-IDW are
reported in Table 2 and 3, respectively. For example, the
first model is trained with the first 10 thousand samples
and the number of samples is doubled (20 thousand) in
the second model. The third model is trained with the
full IDW (40 thousand). Table 2 shows that the accuracies
increase when we simply double the scale of IDW. For
instance, IDW-CNN trained with full IDW achieves the best
performance. It outperforms the other two models by 3.4%
and 1.1% respectively. Another interesting observation
is that performances of nearly all object categories can
be improved, when presenting more data of IDW. This
may because IDW-CNN learns from more diverse data,
increasing its modeling complexity. Similar trend is ob-
served in Table 3, where accuracies have much larger room
for improvements compared to VOC12, showing that seg-
IDW is a competitive complementary test set to evaluate
segmentation methods.

Object Interaction Prediction We study the perfor-
mance of predicting object interactions on int-IDW. To
exhibit the superiority of IDW-CNN, we use the two strong



Table 2: Per-class comparisons on VOC12 test. Best result is highlighted.

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU
ResNet-101 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 74.2
IDW-CNN(10k) 91.4 68.1 85.0 71.3 82.3 93.8 87.7 88.8 51.7 81.1 73.8 89.1 80.3 89.8 87.2 71.8 91.3 70.9 90.0 77.1 81.8
IDW-CNN(20k) 94.5 67.3 93.1 69.5 83.0 95.1 89.4 93.2 52.0 94.8 75.5 92.8 95.3 91.6 89.1 73.7 93.7 74.9 93.9 80.5 85.2
IDW-CNN(40k) 94.8 67.3 93.4 74.8 84.6 95.3 89.6 93.6 54.1 94.9 79.0 93.3 95.5 91.7 89.2 77.5 93.7 79.2 94.0 80.8 86.3
IDW-CNN w/o OPS - 1 93.6 62.1 91.3 64.3 75.4 91.9 87.4 90.7 34.4 88.1 69.0 86.5 90.1 85.7 85.8 66.4 89.5 58.6 86.2 71.3 79.2
DeepLab2+CRF [3] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7
CentraleSupelec [1] 92.9 61.2 91.0 66.3 77.7 95.3 88.9 92.4 33.8 88.4 69.1 89.8 92.9 87.7 87.5 62.6 89.9 59.2 87.1 74.2 80.2
LRR-4x [5] 92.4 45.1 94.6 65.2 75.8 95.1 89.1 92.3 39.0 85.7 70.4 88.6 89.4 88.6 86.6 65.8 86.2 57.4 85.7 77.3 79.3
HP[32] 91.9 48.1 93.4 69.3 75.5 94.2 87.5 92.8 36.7 86.9 65.2 89.1 90.2 86.5 87.2 64.6 90.1 59.7 85.5 72.7 79.1
DPN[15] [15] 89.0 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 77.5
RNN[34] 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7
Piecewise[11] 87.5 37.7 75.8 57.4 72.3 88.4 82.6 80.0 33.4 71.5 55.0 79.3 78.4 81.3 82.7 56.1 79.8 48.6 77.1 66.3 70.7
Zoom-out[20] 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6
FCN[16] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
WSSL(weak)+CRF[22] 94.7 62.3 93.3 65.5 75.8 94.6 89.7 93.9 38.6 93.8 72.2 91.4 95.5 89.0 88.4 66.0 94.5 60.4 91.3 74.1 81.9
BoxSup[4] 89.8 38.0 89.2 68.9 68.0 89.6 83.0 87.7 34.4 83.6 67.1 81.5 83.7 85.2 83.5 58.6 84.9 55.8 81.2 70.7 75.2

Table 3: Per-class comparisons on seg-IDW. Best result is highlighted.

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU
ResNet-101 50.9 42.0 67.9 17.4 46.4 65.4 59.6 64.8 32.5 21.1 45.8 69.7 74.3 61.2 79.7 25.2 40.0 23.8 34.6 57.6 50.6
IDW-CNN(10k) 61.7 42.9 72.2 18.4 51.2 66.5 61.3 71.3 35.1 61.6 44.4 74.2 74.6 66.2 79.3 30.9 50.7 24.8 36.0 66.7 55.8
IDW-CNN(20k) 60.5 42.6 70.5 23.7 52.0 65.7 61.5 72.2 37.4 74.1 45.0 74.3 75.2 67.6 80.0 42.8 51.3 27.1 37.5 65.0 57.6
IDW-CNN(40k) 64.4 40.1 72.2 21.9 55.7 68.9 62.6 71.7 33.9 75.6 51.2 76.4 78.0 69.7 80.1 35.4 57.6 33.7 37.5 71.6 59.1
IDW-CNN w/o OPS - 1 55.3 37.2 64.8 20.1 54.5 63.5 59.0 67.9 31.8 25.4 51.5 71.7 77.1 55.1 80.2 33.5 39.6 32.1 34.9 66.1 52.6
DeepLab2+CRF [3] 50.9 42.0 67.9 17.4 46.4 65.4 59.6 64.8 32.5 21.1 45.8 69.7 74.3 61.2 79.7 25.2 40.0 23.8 34.6 57.6 50.6
WSSL(weak)+CRF[22] 51.4 42.5 61.6 17.0 48.4 62.4 58.3 65.8 34.2 30.8 47.3 70.5 75.1 60.5 80.4 34.8 43.6 24.6 33.4 65.9 52.0

Method/Task Action Pred. Object Pred.Recall-5 Recall-10

Random Guess 0.0006 0.0012 N/A
IDW-CNN w/o OPS - 1 0.9340 0.9568 0.7954
IDW-CNN w/o OPS - 2 0.9295 0.9591 0.7909
Full Model 0.9620 0.9760 0.9523

Table 4: Results of object interaction prediction.

Method/Task Action Pred. Object Pred.Recall-5 Recall-10

Random Guess 0.0006 0.0012 N/A
IDW-CNN w/o OPS - 1 0.0975 0.3048 0.0243
Full Model 0.5488 0.8293 0.9512

Table 5: Results of zero-shot object interaction prediction.

baselines, IDW-CNN w/o OPS-1 and -2. The evaluation
metric of object interaction is Recall-n (n = 5, 10),
measuring the possibility that the true interaction is among
the top 5 or 10 predicted interactions. These interactions
are ranked according to their confidence scores (which
are the responses after softmax function). For example,
since we have 22 actions and 20 object categories, the
total number of possible configurations of interactions are
20 × 22 × 20 = 8800. Then a random guess results in a
Recall-5 of 5 ÷ 8800 = 0.00057. Experimental results are
shown in Table 4, where IDW-CNN outperforms the others
by 3% at Recall-5.

Zero-Shot Prediction Another interesting evaluation is
to predict unseen object interaction on zero-IDW, which

is not presented in the training stage, such as ‘person-
ride-cow’,‘dog-suck-bottle’, and ‘cow-suck-bottle’. Table
5 reports the results. In this setting, IDW-CNN outperforms
IDW-CNN w/o OPS-1 with a large margin, i.e. 54.88%
compared to 9.75% at Recall-5, demonstrating the superior
generalization capacity of IDW-CNN. The result of zero-
shot interaction prediction is illustrated in the last column of
Fig.8. When presenting an image with a man riding a cow,
IDW-CNN accurately predict the interaction ‘person-ride-
cow’. And it also demonstrates advantage in segmenting
this image, see the 3rd and 4th row in the last column.

4.2. Segmentation Benchmarks

The segmentation accuracies of IDW-CNN are com-
pared to state-of-the-art methods on both VOC12 test and
seg-IDW. On VOC12 test, we adopt 9 fully-supervised
methods, including DeepLab2+CRF [3], CentraleSupelec
[1], LRR-4x [5], HP [32], DPN [15], RNN [34], Piece-
wise [11], Zoom-out [20], and FCN [16]. Two state-
of-the art semi-supervised methods are also employed,
WSSL(weak)+CRF [22] and BoxSup [4]. Most of these
approaches employed pre- and post-processing methods
such as multiscale fusion and CRF to improve performance,
while IDW-CNN does not.

Results are reported in Table 2. IDW-CNN signifi-
cantly outperforms the best-performing method by 4.4%.
A significant 12% gain is achieved when comparing to
ResNet-101, which is the backbone network of IDW-CNN,
showing the effectiveness of IDW data and the proposed
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on-boat
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Figure 8: Visualization of object interaction prediction. The first three columns refer to IDW dataset. The middle three columns refer
to VOC12 test set. The last column refers to zero-shot novel set. (a) are input images. (b) are the object interaction predictions. (c) are
segmentation predictions using DeepLab-v2. (d) are segmentation predictions based on our model (IDW-CNN).

network architecture to learn from it. We also compare
IDW-CNN with both fully- and semi-supervised methods
on seg-IDW. Table 3 shows the results of IDW-CNN and
the other competing approaches. IDW-CNN achieves best
performances on most of the object categories. Fig.8
visualizes several segmentation and interaction prediction
results. Intuitively, IDW-CNN performs very well in both
task.

5. Conclusion

We proposed a deep convolutional neural network to
increase segmentation accuracy by learning from an Image
Descriptions in the Wild (IDW-CNN). IDW-CNN has sev-
eral appealing properties. First, it fully explores the knowl-
edge from different datasets, thus improves the performance
of both dataset. Second, when adding more data to IDW,
the segmentation performance in VOC12 can be constantly
improved.

IDW-CNN achieves state-of-the-art performance on
VOC12, and many valuable facts about semantic image
segmentation are revealed through extensive experiments.
There are several directions in which we intend to extend
this work, such as improving IDW-CNN by adding a knowl-
edge from object attributes. Deeply combining with some
language processing techniques also would be a possible
way.
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