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The key component of this image parsing system is a database of

annotated Internet data generated under the control of

an independent organization.

By Benjamin Z. Yao, Xiong Yang, Liang Lin, Mun Wai Lee, and Song-Chun Zhu

ABSTRACT | In this paper, we present an image parsing to text

description (I2T) framework that generates text descriptions of

image and video content based on image understanding. The

proposed I2T framework follows three steps: 1) input images

(or video frames) are decomposed into their constituent visual

patterns by an image parsing engine, in a spirit similar to

parsing sentences in natural language; 2) the image parsing

results are converted into semantic representation in the form

of Web ontology language (OWL), which enables seamless

integration with general knowledge bases; and 3) a text

generation engine converts the results from previous steps

into semantically meaningful, human readable, and query-able

text reports. The centerpiece of the I2T framework is an and–or

graph (AoG) visual knowledge representation, which provides a

graphical representation serving as prior knowledge for

representing diverse visual patterns and provides top–down

hypotheses during the image parsing. The AoG embodies

vocabularies of visual elements including primitives, parts,

objects, scenes as well as a stochastic image grammar that

specifies syntactic relations (i.e., compositional) and semantic

relations (e.g., categorical, spatial, temporal, and functional)

between these visual elements. Therefore, the AoG is a unified

model of both categorical and symbolic representations of

visual knowledge. The proposed I2T framework has two

objectives. First, we use semiautomatic method to parse

images from the Internet in order to build an AoG for visual

knowledge representation. Our goal is to make the parsing

process more and more automatic using the learned AoG

model. Second, we use automatic methods to parse image/

video in specific domains and generate text reports that are

useful for real-world applications. In the case studies at the end

of this paper, we demonstrate two automatic I2T systems: a

maritime and urban scene video surveillance system and a real-

time automatic driving scene understanding system.

KEYWORDS | And–or graph (AoG); image parsing; retrieval; text

generation

I . INTRODUCTION

A. I2T Overview
Fast growth of public photo and video sharing websites,

such as ‘‘Flickr’’ and ‘‘YouTube,’’ provides a huge corpus of
unstructured image and video data over the Internet.

Searching and retrieving visual information from the

Web, however, has been mostly limited to the use of

metadata, user-annotated tags, captions, and surrounding

text (e.g., the image search engine used by Google [1]). In

this paper, we present an image parsing to text description

(I2T) framework that generates text descriptions in natural

language based on understanding of image and video
content. Fig. 1 illustrates two major tasks of this frame-

work, namely, image parsing and text description. By

analogy to natural language understanding, image parsing

computes a parse graph of the most probable interpreta-

tion of an input image. This parse graph includes a tree

structured decomposition for the contents of the scene,

from scene labels, to objects, to parts and primitives, so
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that all pixels are explained. It also has a number of spatial

and functional relations between nodes for context at all

levels of the hierarchy. The parse graph is similar in spirit

to the parsing trees used in speech and natural language

understanding [2] except that it can include horizontal
connections [see the dashed curves in Fig. 1(a)] for spe-

cifying relationships and boundary sharing between dif-

ferent visual patterns. From a given parse graph, the task of

text description is to generate semantically meaningful,
human readable, and query-able text reports as illustrated

in Fig. 1(b).

To achieve the goal illustrated in Fig. 1, we propose an

I2T framework, which has four major components as

shown in Fig. 2.

1) An image parsing engine that parses input images

into parse graphs. For specific domains such as the

two case study systems presented in Section VII,
the image/video frame parse is automatic. For

parsing general images from the Internet for the

purpose of building a large scale image data set, an

interactive image parser (IIP) is used as discussed

in Section III-B.

2) An and–or graph (AoG) visual knowledge repre-

sentation that embodies vocabularies of visual

elements including primitives, parts, objects, and
scenes as well as a stochastic image grammar that

specifies syntactic (compositional) relations and

semantic relations (e.g., categorical, spatial, tem-

poral, and functional relations) between these

visual elements. The categorical relationships are

inherited from WordNet, a lexical semantic net-

work of English [3]. The AoG not only guides the

image parsing engine with top–down hypotheses
but also serves as an ontology for mapping parse

graphs into semantic representation (formal and

unambiguous knowledge representation [4]).

3) A semantic web [5] that interconnects different

domain specific ontologies with semantic repre-

sentation of parse graphs. This step helps to enrich

parse graphs derived purely from visual cues with

other sources of semantic information. For
example, the input picture in Fig. 2 has a text

Fig. 1. Two major tasks of the I2T framework: (a) image parsing and

(b) text description. See text for more details.

Fig. 2. Diagram of the I2T framework. Four key components (as highlighted by bold fonts) are: 1) an image parsing engine that converts input

images or video frames into parse graphs; 2) an AoG visual knowledge representation that provides top–down hypotheses during image parsing

and serves as an ontology when converting parse graphs into semantic representations in RDF format; 3) a general knowledge base embedded in

the semantic web that enriches the semantic representations by interconnecting several domain specific ontologies; and 4) a text generation

engine that converts semantic representations into human readable and query-able natural language descriptions.

Yao et al. : I2T: Image Parsing to Text Description

1486 Proceedings of the IEEE | Vol. 98, No. 8, August 2010



tag ‘‘Oven’s mouth river.’’ With the help of a
geographic information system database embed-

ded in the semantic web, we are able to relate this

picture to a geolocation: ‘‘Oven’s mouth preserve

of Maine state.’’ Another benefit of using semantic

web technology is that end users not only can

access the semantic information of an image by

reading the natural language text report but can

also query the semantic web using standard
semantic querying languages.

4) A text generation engine that converts semantic

representations into human readable and query-

able natural language descriptions. We will come

back to discuss these components in more detail

in Sections I-C–E.

As simple as the I2T task in Fig. 1 may seem to be for a

human, it is by no means an easy task for any computer
vision system todayVespecially when input images are of

great diversity in contents (i.e., number and category of

objects) and structures (i.e., spatial layout of objects),

which is certainly the case for images from the Internet.

But given certain controlled domains, for example, the two

case study systems presented in Section VII, automatic

image parsing is practical. For this reason, our objective in

this paper is twofold.
1) We use a semiautomatic method (interactive) to

parse general images from the Internet in order to

build a large scale ground truth image data set.

Then, we learn the AoG from this data set for

visual knowledge representation. Our goal is to

make the parsing process more and more auto-

matic using the learned AoG models.

2) We use automatic methods to parse images/videos in
specific domains. For example, in the surveillance

system presented in Section VII-A, the camera is

static, so we only need to parse the background

(interactively) once at the beginning, and all other

components are done automatically. In the auto-

matic driving scene parsing system discussed in

Section VII-B, the camera is forward looking at roads

and streets. Although the image parsing algorithm
may produce some errors, it is fully automatic.

B. Previous Work
Over the past two decades, many researchers from both

computer vision and content-based image retrieval (CBIR)

domain have been actively investigating possible ways of

retrieving images and video clips based on low-level visual
features such as color, texture, and object shape. A number

of domain-specific CBIR systems have achieved success

(see surveys [6]–[10]), but these CBIR systems cannot

compete with human visual system in terms of robustness,

flexibility, and shear number of object categories recog-

nizable. The major challenge is a so-called semantic gap

[6], which is defined as the discrepancy between human

interpretations of image information and those currently

derivable by a computer.

From an artificial intelligence (AI) point of view,
bridging the semantic gap is equivalent to solving a visual

symbol grounding problem [11]. Therefore, as suggested by

Harnad [12], we may further decompose the symbol

grounding problem in the visual domain into two levels.

• Categorical representations, which are learned and

innate feature detectors that pick out the invariant

features of object and event categories from their

sensory projections (images). Each category corre-
sponds to an elementary symbol (visual element).

• Symbolic representations, which consist of symbol

strings describing semantic relations between

elementary symbols, such as category membership

relations (e.g., a zebra is a horse that has stripes),

functional relations (e.g., in Fig. 1, the man is the

owner of the backpack), and so on. With these

semantic relationships, basic elementary symbols
grounded in categorical representations (e.g., horse
and stripe) can be used to compose new grounded

symbols using rules (e.g., zebra ¼ horse þ stripes).

Previous work can be roughly classified into two groups

accordingly.

Group 1 studies the categorical representation for

objects and events from visual signals (e.g., object

recognition from images). This has been the mainstream
for computer vision research for the past decades. Fig. 3

illustrates a rough but intuitive idea about two major tasks

of the categorical representation:

• Task1: Extract low-level visual features such as

coherent regions (segmentation) [13]–[15], salient

edges [16], [17], filter-bank responses (textons)

[18], [19], SIFT descriptors [20], color histograms

Fig. 3. Categorical representation of visual contents. Task1.

Extract low level visual features from raw images. Task2.

Map visual features into semantic concepts. Concepts in blue color are

correct ones that are related to the image content. Concepts in

red are irrelevant, and are generated by either classification error or

unrelated text tags.

1A complete reference will essentially include all computer vision
literature. We only list a few representative methods as examples.
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[21], shape descriptors [22], and scene layout [23]
from raw images.1

• Task2: Map these low-level visual features into

high-level semantic concepts. For example, detect-

ing and recognizing the pedestrian from Fig. 3

requires a combination of edge features and shape

information [24].

Extensive previous work in image annotation (e.g.,

[25]–[27]) and video annotation (e.g., reported under the
TREC Video Retrieval Evaluation program (TRECVID)

[28]) has been mainly focused on addressing categorical

representation, but none of them performs full segmenta-

tion and recognition over an entire image simultaneously.

Also, as illustrated by Fig. 3, local concepts are prone to

error due to a lack of global context. For example, the tree

crown and white sky in Fig. 3 are easily confused with a

mountain covered in snow. This kind of inconsistency can
be mitigated by modeling scene context and relations

between objects, which is a relatively new topic in

computer vision. A few recent approaches have proposed

interesting models for image understanding using contex-

tual information [29]–[32]. The image parsing algorithm in

the I2T framework is similar to these algorithms in spirit.

Group 2 pays attention to the symbolic representation,

i.e., semantic relations between visual symbols. Marszalek
and Schmid used semantic hierarchies (categorical rela-

tions) of WordNet to integrate prior knowledge about

interclass relationships into the visual appearance learning

[33]. Following this line, J. Deng et al. launched an Image-

Net project aiming to populate a majority of the synsets in

WordNet with an average of 500–1000 images selected

manually by humans [34]. While the semantic hierarchy

provided by WordNet is very useful to shed light on inter-
class relationships between visual elements, we believe,

however, it is not sufficient for modeling symbolic repre-

sentation of a visual system. On the one hand, it does not

account for some important aspects of semantic relation-

ships such as co-occurrence relations studied in [35],

spatial relationships [30], [32], and functional relation-

ships. On the other hand, many semantic relationships in

the WordNet hierarchy are purely conceptual with abso-
lutely no correspondence in visual domain. For example,

in WordNet, the ‘‘combustion engine’’ is connected with

the ‘‘car’’ by the is-part-of relation. For most people (except

car mechanics), however, this relationship has no visual

evidence and thus cannot provide any useful information

to recognize motorized vehicle from images. WordNet is,

after all, a lexical dictionary designed for language, not

vision. In this paper, we propose a different approach from
the ImageNet database. As discussed in more detail in

Section II-A, the semantic relations of the AoG are learned

from our own large scale ground truth image database.

Therefore, the semantic relationships in the AoG are

grounded to image or video instances.

To properly evaluate the contribution of the I2T

framework, we would also like to review literature related

to image parsing. Early work on image parsing can be dated
back to Fu’s syntactic image grammar in the 1970s [37].

Due to difficulties posed by the semantic gap and limi-

tation in computation power, image grammar work at that

time was limited to artificial images such as line drawings.

With great developments in both appearance-based

modeling and computation strategies, the recent vision

literature has observed a trend for returning to the gram-

matical and compositional methods. In a series of work
[14], [38]–[40], Zhu and his collaborators posed image

parsing as a unified framework for image segmentation,

object detection, and recognition. The image parsing prob-

lem is then solved optimally under the Bayesian frame-

work by a data-driven Markov chain Monte Carlo

(DDMCMC) algorithm. A dedicated survey paper [36]

reviewed histories and recent progresses of image parsing

and summarized them under a unified stochastic image
grammar framework.

C. AoG Visual Knowledge Representation
Image parsing has been previously demonstrated in a

small number of images and object categories [14], but the

difficulty and complexity of this task grows significantly as

the number of object and scene categories increases. A key

problem here is how to represent and organize a huge

number of diverse visual patterns systematically and ef-

fectively. Objects with similar semantic meaning may

differ greatly in image appearance. For example, an onto-
logy engineer will probably classify ‘‘round clock’’ and

‘‘square clock’’ into the same category ‘‘clock,’’ but as

shown in Fig. 4, these two types of clocks have dramat-

ically different visual look. This is a similar problem to the

‘‘semantic ambiguity’’ in natural language processing

(NLP), which can be solved by defining multiple senses

for a single word. For example, in WordNet, there are five

alternative senses for the noun ‘‘car’’: 1) automobile; 2) rail
car; 3) cable car; 4) gondola of a balloon; and 5) elevator

car. In the same spirit, we introduce an AoG representa-

tion, first proposed in [41],2 that is able to describe all

possible structural variabilities of visual object categories.

To illustrate the basic idea of the AoG, let us first look

at the two parse graphs of clocks shown in the left panel of

Fig. 4. We may notice that both clocks share the com-

ponent ‘‘frame’’ and ‘‘hands,’’ and a couple of relations: the
hinge joint to connect clock hands and a concentric

relation to align the frames. Therefore, by summarizing all

shared components and relations from a number of parse

graphs of clocks, we may arrive at a combination graph as

shown in the right panel of Fig. 4, which is called an AoG

because it has or-nodes pointing to alternative subconfi-

gurations and and-nodes decomposing into a number of

components. It is a graph (as opposed to a tree) because
there are links between or-nodes representing shared

2The term ‘‘and–or graph’’ has been previously used by Pearl in AI
search and is not related to the AoG discussed here.
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relations. The relations shown in this example are mainly

spatial/geometric relationships between object parts. For
example, the ‘‘frame’’ and the ‘‘numbers’’ share a concentric
relation, and the ‘‘hands’’ are connected by a hinged relation.

These relations can be learned from parse graphs as they are

commonly shared by most of the examples. The ‘‘clock’’

example provides a way for using an AoG to represent

images of an object category.

In addition, to achieve the visual symbol grounding

problem described in the previous section, there are still
two challenges to overcome. First, we need to collect a set

of image examples for each visual element (symbol) in

order to learn an AoG model that grounds the symbol into

visual signals. Second, we need to discover semantic

relationships between these visual elements in order to

build the symbolic representation of visual knowledge. The

solution to the first challenge is to build a large scale

ground truth image data set, which is discussed in the next
section. The second challenge is handled by the design of

the AoG model. As we will discuss in Section II, the

relationships of the AoG are not limited to the spatial/

geometric relationships shown in the ‘‘clock’’ example

above; they also include object-level semantic relation-

ships such as categorical membership relationships, func-

tional relationships, etc. These relationships can also be

learned from the large scale ground truth image data set.

D. Image Database and Interactive Image Parsing
Building an image data set with manually annotated

parse graphs provides training examples needed for learning
the categorical image representation in the AoG model.

Properly annotated data sets also provide training examples

needed for learning semantic relationships. This data set

must be large scale in order to provide enough instances to

cover possible variations of objects. To meet this need,

S.-C. Zhu founded an independent nonprofit research

institute called Lotus Hill Institute (LHI, Ezhou, China),

which started to operate in summer 2005. It has a full time
annotation team for parsing image structures and a devel-

opment team for annotation tools and database construc-

tion. Each image or object is parsed interactively into a

parse graph where objects are associated with WordNet

synsets to inherit categorical relationships. Functional rela-

tionships such as ‘‘carry’’ and ‘‘eat’’ are also specified man-

ually. Fig. 10 lists an inventory of the current ground truth

data set parsed at LHI. It now has over 1 million images (and
video frames) parsed, covering about 300 object categories.

To cope with the need of labeling tens of thousands of

images, an interactive image parsing software, named IIP,

was developed to facilitate the manual annotation task (see

more details in Section III-B). As stated in a report [42], this

data set provides ground truth annotation for a range of

vision tasks from high-level scene classification and object

Fig. 4. Categorical representation with AoG. The left panel illustrates two parse graphs of clocks. The right panel shows an AoG of a clock

generated from merging multiple parse graphs together. The dark arrows in the AoG illustrate one parse graph (a round clock). Some leaf nodes

are omitted from the graph for clarity. Edited from [36].
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segmentation to low-level edge detection and edge
attributes annotation. Comparing with other public data

sets collected in various groups, such as MIT LabelMe [43],

ImageNet [34], the MSRC data set [44], Caltech 101 and

256 [45], [46], and Berkeley segmentation [47], [48], the

LHI data set not only provides finer segmentation but also

provides extra information such as compositional hierar-

chies and functional relationships.

E. Image Ontology and Text Generation
In a knowledge sharing context, the term ontology

stands for a ‘‘formal, explicit specification of a shared

conceptualization’’ [4]. As discussed by Town [11], the

most important issue for designing an image ontology is

how to provide a systematic way to ground the terms of the

ontology to the actual visual data. As the AoG provides a

unified model for both categorical and symbolic represen-
tation, it is reasonable to believe that the AoG can serve as

a domain-specific image ontology.

Using the AoG, the image content inferred by image

parsing can be expressed by a standard semantic represen-

tation language called the resource description framework

(RDF). Another semantic representation language called

the video event markup language (VEML) [49] is also used

for annotating video events. Both of these languages can be
merged into the Web ontology language (OWL) [5], [50].

Using OWL representation, an ontology engineer can

declare how knowledge concepts defined in different

ontologies are related. With this ontological mapping,

multiple OWL documents can be interconnected. This

promotes reuse of existing ontologies and encourages the

development of domain-specific ontologies to address the

diverse needs of different applications. With this frame-
work, image and video content can be published on the

semantic web and allow various semantic mining and

inference tools to retrieve, process, and analyze video

content. Some of the semantic concepts such as object

classes can be mapped to well-established concepts defined

in general knowledge bases such as open geospatial

consortium (OGC) and WordNet. This improves the acces-

sibility and portability of the inferred video content. The
whole integrated system is illustrated in Fig. 2.

While OWL provides an unambiguous representation for

image and video content, it is not easy for humans to read.

Natural language text remains the best way for describing

visual content to humans and can be used for image captions,

scene descriptions, and event alerts. In the later sections, we

will further present text generation techniques that convert

the semantic representation to text description using natural
language generation (NLG) techniques.

F. Outline of the Paper
The remainder of the paper is organized as follows. In

Section II, we discuss the AoG in detail, including rep-

resentation, inference, and statistics. In Section III, we

introduce several improvements in automatic image pars-

ing algorithms guided by the AoG model as well as the IIP
software that integrates semiautomatic algorithms such as

interactive segmentation, shape matching, etc., with human

annotations. In Section IV, we introduce the data structure

and design of the LHI data set. In Section V, we discuss in

detail the semantic representation of visual content,

including how to derive it from parse graphs and how to

integrate it with the general knowledge base. In Section VI,

an NLG algorithm is introduced. In Section VII, we
introduce two case studies of the proposed I2T framework:

a real-time automatic driving scene understanding system

and a maritime and urban scene video surveillance system.

II . AoG REPRESENTATION

The AoG is a compact yet expressive data structure for

representing diverse visual patterns of objects (such as a

clock). In this section, we will formally define the AoG as a

general representation of visual knowledge, which entails

1) a stochastic attribute image grammar specifying com-

positional, spatio–temporal and functional relations be-
tween visual elements; and 2) vocabularies of visual

elements of scenes, objects, parts, and image primitives.

A. Stochastic Image Grammar
The AoG representation embodies a stochastic attributed

image grammar. Grammars, studied mostly in language [52],

are known for their expressive power to generate a very large

set of configurations or instances (i.e., their language) by
composing a relatively small set of words (i.e., shared and

reusable elements) using production rules. Therefore, the

image grammar is a parsimonious yet expressive way to

account for structural variability of visual patterns. We use

Fig. 5 as an example to review the representational concepts

of the image grammar in the following.

1) An and–or tree is an AoG without horizontal

connections (relations). As shown in Fig. 5(a), an and–or
tree includes three types of nodes: and-nodes (solid circles),

or-nodes (dashed circles), and terminal nodes (squares). An

and-node represents a decomposition of an entity into its

parts. There are two types of decompositions: a) object !
parts, and b) scene ! objects. The object ! parts

decomposition has a fixed number of child nodes, which

correspond to the grammar rules, for example:

A! BCD; H! NO:

This is equivalent to other part-based models such as the

constellation model [53] and the pictorial structures [54].

The scene ! objects decomposition has a variable

number of child nodes, which correspond to the grammar

rules, for example:

A! Bðn1ÞCðn2ÞDðn3Þ
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where ni denotes the number of occurrences of a type of

object in a scene. One example of the aerial image scene

parsing is illustrated in Fig. 6. We can use this model to

create a vast amount of unique scene configurations by

sampling as shown in Fig. 7. This model is similar (and can
be converted) to the model presented by Sudderth et al.
[55], [56]. For more details, refer to [51].

The or-nodes act as ‘‘switches’’ for alternative sub-

structures, and stand for labels of classification at various

levels, such as scene category, object classes, parts, etc.

They correspond to production rules like

B! EjF; C ! GjHjI:

Due to this recursive definition, one may merge the AoGs

for many objects or scene categories into a larger graph. In

theory, all scene and object categories can be represented

by one huge AoG, as is the case for natural language. The

nodes in an AoG may share common parts. For example,

both cars and trucks have rubber wheels as parts, and both

clock and pictures have frames.

2) Relations represent the horizontal links for

contextual information between the children of an and-

node in the hierarchy at all levels, as shown by the dashed

lines in Fig. 5(a)–(c). Each link may represent one or

several relations. There are three types of relations of
increasing abstraction for the horizontal links and context.

The first type is the bond type that connects image

primitives into bigger and bigger graphs. The second type

includes various joints and grouping rules for organizing

the parts and objects in a planar layout. The third type is

the functional and semantic relation between objects in a

scene.

• Relations Type 1: Bonds and Connections (Relation
Between Image Primitives). Leaf nodes of the and–

or tree are image primitives. Fig. 8(i-a) illustrates a

dictionary of image primitives called ‘‘texton’’

(blobs, bars, terminators, and junctions) as pro-

posed in [57]. The type 1 relations are bonds and

connections between image primitives. Each image

primitive has a number of open bonds, shown by

the half-disks, to connect with others to form
bigger image patterns. For instance, Fig. 8(i-b)

Fig. 5. Illustrating the AoG representation: (a) an AoG embodies the grammar productions rules and contexts; it contains many parse graphs,

one of which is shown in bold arrows; (b) and (c) are two distinct parse graphs obtained by selecting the switches at related or-nodes;

(d) and (e) are two graphical configurations produced by the two parse graphs, respectively. The links of these configurations are inherited

from the AoG relations. From [36].
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shows an example composing a big ‘‘T’’-shape

image using seven primitives. Two bonds are said
to be connected if they are aligned in position and

orientation. The bonds and connections can be

considered as random variables pointing to neigh-

bors of an image primitive forming a mixed ran-

dom field (see details in [58]).

• Relations Type 2: Joints and Junctions (Relation
Between Object Parts). When image primitives are

connected into larger parts, some spatial and

functional relations must be found. Beside its open
bonds to connect with others, usually its immedi-

ate neighbors, a part may be bound with other

parts in various ways. Parts can be linked over large

distances by collinear, parallel, or symmetric rela-

tions. This is a phenomenon sometimes called

gestalt grouping. Fig. 8 displays some typical rela-

tions of this type between object parts.

Fig. 6. An example of a hierarchically parsed aerial image. (a) The original image. (b) A flat configuration of objects in the scene.

(c) A hierarchical parse graph of the scene. (d) Three typical contextual relationships and related objects. From [51].

Fig. 7. Samples from our learned model (blue ¼ roofs, red ¼ cars, black ¼ roads, green ¼ trees). These are not images directly sampled

from the training data, but collections of objects obeying the statistics of our learned model. We can create a vast amount of unique

object configurations even though we have never observed them directly. Adapted from [51].
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• Relations Type 3: Interactions and Semantics (Relation
Between Objects). When letters are grouped into

words, semantic meanings emerge. When parts are

grouped into objects, semantic relations are created

for their interactions. Very often these relations are
directed. For example, the occluding relation is

viewpoint dependent binary relation between ob-

jects or surfaces, and it is important for figure-ground

segregation. A supporting relation is a view point

independent relation. There are other functional

relations among objects in a scene. For example, a

person is carrying a backpack, and a person is eating

an apple. These directed relations usually are par-
tially ordered. Examples of object interaction rela-

tions are shown in the parse graph of the outdoor

scene shown at the beginning of this paper (Fig. 1).

3) A parse graph, as shown in Fig. 1, is a hierarchical

generative interpretation of a specific image. A parse graph

is augmented from a parse tree, mostly used in natural or
programming language by adding a number of relations,

shown as side links, among the nodes. A parse graph is

derived from the AoG by selecting the switches or classi-

fication labels at related or-nodes. Fig. 5(b) and (c) shows

two instances of the parse graph from the AoG in Fig. 5(a).

The part shared by two nodes may have different instances,

for example, node I is a child of both nodes C and D. Thus,

we have two instances for node 9.
4) A configuration is a planar attribute graph formed

by linking the open bonds of the primitives in the image

plane. Fig. 5(d) and (e) shows two configurations pro-

duced by the parse graphs in Fig. 5(b) and (c), respectively.

Intuitively, when the parse graph collapses, it produces a

planar configuration. A configuration inherits the relations

from its ancestor nodes, and can be viewed as a Markov

network (or deformable template [59]) with a reconfigur-
able neighborhood. We introduce a mixed random field

model [58] to represent the configurations. The mixed

random field extends conventional Markov random field

models by allowing address variables, which allows it to

handle nonlocal connections caused by occlusions. In this

generative model, a configuration corresponds to a primal

sketch graph [17].

5) The language of a grammar is the set of all possible
valid configurations produced by the grammar. In

stochastic grammar, each configuration is associated with

a probability. As the AoG is directed and recursive, the

subgraph underneath any node A can be considered a sub-

grammar for the concept represented by node A. Thus, a

sublanguage for the node is the set of all valid configura-

tions produced by the AoG rooted at A. For example, if A is

an object category, say a car, then this sublanguage defines
all the valid configurations of a car. In an exiting case, the

sublanguage of a terminal node contains only the atomic

configurations and thus is called a dictionary.

B. Visual Vocabularies
Another important component of the AoG representa-

tion is the visual vocabulary. Language vocabulary is a

collection of terms or codes composing its atomic elements
(e.g., words). Similarly, a visual vocabulary consists of the

terminal nodes of the AoG, which comprise atomic entities

of visual patterns. Due to the scaling property, the terminal

nodes could appear at all levels of the AoG, which is

different from language, where the terminal nodes only

appear at the lowest level. Each terminal node takes

instances from a certain set. The set is called a dictionary

and contains image patches of various complexities. The
elements in the set may be indexed by variables such as

type, geometric transformations, deformations, appear-

ance changes, etc. Each patch is augmented with anchor

points and open bonds to connect with other patches.

An example of visual vocabularies at each level of the

AoG is shown in Fig. 9. For each dictionary, there is a set

of or-nodes (solid ellipses) representing abstract visual

Fig. 8. Examples of three types of relations in the AoG. Modified

from [36].
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concepts. Each or-node is connected to a set of and-nodes

(dashed rectangles) representing alternative subconfigura-

tions of that concept. Each and-node is associated with a

set of instances from real-world images. And-nodes can be

further decomposed into a number of components of lower

level. There are four types of visual dictionaries illustrated

in Fig. 9. From top to bottom, they are scenes, objects,
parts, and image primitives, respectively. We will now

briefly discuss them.

• Scene. Human vision is known to be able to

perform scene classification in a very short time

� 400 ms [60]. There are several previous works

(such as [61]) proving that scene classification can

be solved using simple global features. Therefore,

the highest visual dictionary in the AoG is scene
(see top level of Fig. 9 for example).

• Objects are the most important elements for under-

standing images. There has been much research on

visual dictionaries of commonly seen object cate-

gories, such as face, car, pedestrians, etc. An

example of an object dictionary is illustrated in the

second level of Fig. 9.

• Parts have long been believed to be important visual
elements for object detection, especially deform-

able objects. Examples of object parts are illustrated

in the third level of Fig. 9. Another visual dictionary

of human body parts is illustrated in Fig. 19.

• Image primitives are the leaf nodes of the AoG.

They represent a set of image patches. The lowest

level of Fig. 9 illustrates three commonly recog-

nized image primitives. 1) Textons. As defined by

Julesz in [62], textons are shape structure fre-
quently observed in natural images, such as ‘‘blob,’’

‘‘bar,’’ ‘‘parallel lines,’’ and ‘‘junctions.’’ Each texton

is denoted with a symbolic sign. 2) Textures.

Different types of texture are denoted with

different filter response histograms (small arrows

with different lengths). The length of the arrow

represents the strength of the filter response at its

orientation. 3) Flat regions. They are denoted with
filter response histograms with even bars.

C. AoG Statistics
Aiming at providing ground truth annotation for a wide

range of computer vision research, the LHI data set con-

tains ground truth annotations for high-level tasks such as

scene classification, object detection, aerial image under-

standing, text detection, and recognition, as well as low-

level tasks such as edge detection and edge attribute

annotation. Fig. 10 shows a recently updated inventory of

Fig. 9. Visual vocabularies of scenes, objects, parts, and image primitives compiled into an AoG representation. Each or-node (sold ellipses)

represents for a visual concept and is pointed to alternative subconfigurations. Each and-node (dashed rectangles) is associated with a set of

instances (solid rectangles) from an annotated image database and can be decomposed into a number of components in a lower level.

See text for detailed discussion of each dictionary. For clarity purposes, only part of the vertical links is shown.
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the LHI data set, where a physical object (PO) represents a

meaningful entity in an image, such as an object or an

object part. We further use Fig. 11 to study more statistics

of the LHI data set. Fig. 11(a) displays the growth in image

and PO number of the LHI data set over time. Fig. 11(b)

shows the growth of the AoG over time. The solid line

stands for the number of object categories. The dashed line

is the average number of children of a part-level or-node,

while the dash–dot line is the average number of instances

of a part-level and-node. We may notice that the increase

Fig. 10. Inventory of the LHI ground truth image database. Annotation examples of each category in this figure as well as a small publicly

available data set can be found on at www.imageparsing.com.

Fig. 11. Statistics of the LHI database. (a) Number of annotated images and POs over time. (b) Number of object categories over time, average

number of children of a part-level or-node and average number of instances of a part-level and-node over time. (c) Average number of and-nodes

and instances at ‘‘scene,’’ ‘‘object,’’ ‘‘part,’’ and ‘‘primitive’’ levels, respectively (estimated from 20 object categories and normalized to 1).
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in or-nodes gradually slows down, which means that when
there are a lot of instances, a new instance is more likely to

merge into already existing subconfigurations, rather than

create a new subconfiguration of its own. Fig. 11(c) com-

pares the number of and-nodes and instances at ‘‘scene,’’

‘‘object,’’ ‘‘part,’’ and ‘‘primitive’’ levels. The numbers are

estimated from 20 object categories (with a confidence

margin marked on top of each bar). Numbers are nor-

malized so that they sum to 1. This figure implies two facts
that match common sense. 1) Different levels of visual

elements are observed with different frequencies. Image

primitives are observed most frequently. Scene level nodes

have the smallest population. 2) Middle level nodes, i.e.,

objects and parts, are more ‘‘uncertain’’ and contain more

varying patterns. Therefore, there are many more and-

nodes of parts and objects than of scenes and primitives. It

is also worth mentioning that primitives are not explicitly
annotated in the data set; they are clustered from the

annotated data using the method proposed in [63].

III . IMAGE PARSING GUIDED
BY THE AoG

As discussed in the previous section, parse graphs can be

derived from the AoG by selecting the switches or classi-
fication labels at related or-nodes. Image parsing can be

interpreted as generating a parse graph from the AoG that

best matches the input image. Automatic image parsing

algorithms guided by the AoG have been discussed in detail

in a survey paper [36]. Here we extend the discussion with

several improvements, namely, a bottom–up/top–down

inference algorithm from [64] and a cluster sampling

algorithm from [51]. We also introduce an IIP, which is
developed for building a large scale ground truth image

data set effectively and accurately.

A. Automatic Image Parsing

1) Bottom–Up/Top–Down Inferences With AoG: We extend

the previous algorithm in [40] to work on an arbitrary

node A in an AoG, as illustrated in Fig. 12. We define
three inference processes for each node A in an AoG.

1) The � process. The � process handles situations in

which node A is at middle resolution without

occlusion. Node A can be detected directly (based

on its compact image data) and alone (without

taking advantage of surrounding context) while its

children or parts are not recognizable alone in

cropped patches. An example of �ðfaceÞ process is
shown in Fig. 13. Most of the sliding window

detection methods in computer vision literature

belong to this process. It can be either bottom–up

or top–down in terms of whether discriminative

models such as the Adaboost method [65] or

generative models such as the active basis model

[59] are used.

2) The � process. When node A is at high resolution,

it is more likely to be occluded in a scene. Node A
itself is not detectable in terms of the � process

due to occlusion. A subset of node A’s children

nodes can be detected in cropped patches (say,
their � processes are activated). Then, the �ðAÞ
process computes node A by binding the detected

child nodes bottom–up under some compatibility

constraints. An example of �ðfaceÞ process is

illustrated in Fig. 13. Most of component [66],

[67], fragment [68], or part-based methods, the

constellation models [69], and the pictorial

models [70] belong to this process.
3) The � process. The � process handles situations in

which node A is at very low resolution. Node A
cannot be detected alone based on �ðAÞ, and

neither can its parts. Then, the �ðAÞ process also

fails. Information outside the local window must

be incorporated; an example of �ðfaceÞ process is

illustrated in Fig. 13. The �ðAÞ process top–down

predicts node A top–down from a parent node
whose � process is activated. In this paper, we let

the parent node pass contextual information, such

as information from some sibling nodes or other

spatial contexts. Most of the context-based

methods [31], [32] belong to this process.

Fig. 12. Illustration of identifying the �ðAÞ, �ðAÞ, and �ðAÞ inference

process for node A in an AoG (see text for detail definitions). The �ðAÞ
process is directly based on the compact image data of node A (either

bottom–up or top–down), the �ðAÞ process generates hypotheses of

node A by bottom–up binding the � processes of some child node(s)

[e.g., ð�ðC1Þ; �ðC2ÞÞ ! �ðAÞ], and the �ðAÞ process predicates

hypotheses of node A from the � processes of some parent node(s)

[e.g., �ðPÞ ! �ðAÞ in a top–down fashion]. In computing, each process

has two states: ‘‘on’’ or ‘‘off.’’ For example, the � process of node C3 is

off and we show it in gray. Because AoG is often recursively defined,

each node has its own �, �, and � processes. Modified from [64].
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For node A, all three inference processes �ðAÞ, �ðAÞ,
and �ðAÞ contribute to computing it from images in

complementary ways. The effectiveness of each process
depends on the scale and occlusion conditions. As shown

in Fig. 13, the three cases of human faces can be handled

by the �ðfaceÞ, �ðfaceÞ, and �ðfaceÞ, respectively. Intu-

itively, for robust inference, we should integrate them. As

an AoG is a recursive structure, the three inference

processes are also defined recursively, and each and-node

has its own �, �, and � inference processes (except that

the � process of the root node and the � processes of leaf
nodes are always disabled). We would like to refer

interested readers to [64] for detailed theoretical proofs

and experimental results.

2) Cluster Sampling: Aside from bottom–up/top–down

detection of a single object, another important issue

pertinent to automatic image parsing is how to coordinate

detection of multiple objects in one image. For example, in

Fig. 3, there are nine candidate objects (i.e., person, grass,

etc.) overlapping and competing with each other. It is

important to have an algorithm that can optimally pick the
most coherent set of objects. Previous methods such as

[40] and [64] commonly used a greedy algorithm, which

first assigned a weight to each of the currently unselected

candidate objects based on how well it maximized the

posterior. The object with the highest weight was selected

to be added to the running parse of the scene. The objects

were then reweighted according to how much the

remaining objects would improve the overall explanation
of the scene and this process iterated until no objects above

a certain weight remained. The problem with this

approach is that it is greedy and cannot backtrack from a

poor decision. For example, by selecting the snow covered

mountain in Fig. 3, the algorithm will now give an

exceedingly low weight to the trees as we virtually never

see trees on a snow summit. Had the snow covered

mountain been selected first, we would not have arrived at

Fig. 13. Illustration of integrating the �ðfaceÞ, �ðfaceÞ, and �ðfaceÞ in the human face AoG for face detection. The three inference processes

are effective in complementary ways depending on the scale and occlusion conditions. The typical situations shown here are common to other

object categories. Modified from [64].
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the correct interpretation. We would like our new algo-
rithm to be able to backtrack from these mistakes.

We use an algorithm called clustering via cooperative

and competitive constraints (C4) [51] to deal with these

problems. It differs from classic cluster-sampling algo-

rithms such as Swendsen–Wang clustering [71], [72] in

two major ways.

1) Negative edges: In addition to the ‘‘positive’’ edges

in Swendsen–Wang clustering, in which nodes
were encouraged to have the same label, C4

incorporates negative edges, dictating that neigh-

boring sites should not be labeled similarly. We

use them here to indicate that two explanations of

the scene cannot both exist at once. For example,

we could have negative edges between two over-

lapping cars to indicate that they cannot both be in

the same explanation at the same time.
2) Composite Flips: Traditional Swendsen–Wang cut

(SWC) updates the label of a single cluster in one

step. In our model, the new labels for one cluster

may cause it to violate constraints with neighbor-

ing clusters, so we may need to update the labels

of many clusters simultaneously. We thus form

composite components consisting of conflicting

clusters that all need their labels reassigned at
once to remain consistent. Fig. 14(b) shows C4 on

a toy model. In this example, we have introduced a

backbone of negative edges down the middle of

the lattice, requiring that nodes on one side have

the same color, but each side has a different color.

Traditional Gibbs sampling attempts to update

one site at a time, which creates a low probability

state. SWC updates an entire side at one time, but
only updates one cluster and ignores negative

edges, thus creating another low-probability state.

C4 clusters the entire system and relabels the

individual clusters subject to both positive and

negative constraints, creating a high-probability

state.

We extend the example from the Ising model in
Fig. 14(b) to handling general problems in candidacy

graphs in Fig. 14(a). Objects that have a high prior pro-

bability of being on together are grouped together with

‘‘positive’’ edges, while objects that have low prior pro-

bability of being on together are grouped by ‘‘negative’’

edges. Here we have added positive and negative edges

based on pairwise energies from the exponent in the AoG.

B. Semiautomatic Image Parsing
The IIP is a software for image annotation developed at

the LHI to improve the efficiency of manual image anno-

tation in order to cope with the need of annotating tens of

thousands of images. The IIP has the following components.

1) Segmentation. Manual segmentation of objects

from an image, especially fine segmentation as

illustrated in Figs. 16 and 17, is the most time

consuming part of any image annotation task. We
cannot rely on automatic tools to do this job

because results from even the state-of-the-art

image segmentation algorithms are far from

satisfactory compared with human results. One

way out of this dilemma is a hybrid of manual and

automatic segmentationVan interactive segmen-

tation tool, where the human can provide guides

(e.g., initialization) to the segmentation algorithm
and is able to edit small defects in the segmentation

results. Luckily, there has already been some

powerful interactive object segmentation tools

available, such as the GrabCut [73] and GraphCut

[15] currently integrated into the IIP. Fig. 15(a)

illustrates the user interface of the IIP when

performing the interactive object segmentation. To

get the boundary of the target object in an image, a
human labeler will first draw a rectangular box

surrounding the target and activate the GrabCut

algorithm, which will automatically generate a

rough boundary of the object. A human labeler will

then use the GraphCut algorithm to modify small

Fig. 14. (a) A visualization of the C4 algorithm. Here negative edges down the center encourage the four corners to be opposite colors,

creating a checkerboard pattern. The right panel shows a connected component V0 formed after edges are turned on and off. V0 can be

broken down in the final panel into subcomponents of like-colored nodes connected by negative edges. (b) Conversion from a candidacy graph

to a binary graph with positive/negative edges. From [51].
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defects on the boundary, by specifying pixels

belonging to the object (the red line) and to the

background (the blue line), respectively.

2) AoG database. Since the task of annotating tens

of thousands of images cannot be done by a single

person on a computer (in fact, there is a team of
about ten labelers at the LHI), it is very important

to have a consistent structure for different human

labelers. The AoG, as discussed before, is a sys-

tematic way to summarize visual knowledge. The

IIP has a centralized database storing the AoG and

a number of terminal interfaces that support

multiple users working concurrently.

3) Shape retrieval and matching. Given the data-
base, the task of annotation is to associate the parse

graph of a new image instance with the existing

AoG. This is essentially a retrieval problem: given a

new instance of object (with sketch graph gener-

ated by interactive segmentation), find the most

similar node from the AoG database. This is by no

means a trivial task given the potential number of

all and-nodes in the AoG [as shown in Fig. 11(c)].
We develop a retrieval algorithm based on shape

matching and semantic pruning. First, good

candidates are automatically selected from the

AoG. Then, a shape matching algorithm such as

shape context [22] and graph match [74] is used to

fit the template onto an object. The shape

matching results are further pruned by semantic

meaning. For example, a car wheel may be
matched to the frame of a round clock, but if it is

known to be a ‘‘car’’ part, the IIP will prune out the

semantically incompatible matches. Thus, the

labeling procedure is sped up dramatically. If

there is a new instance that does not resemble any

previously observed and-nodes in the AoG, then

the human labeler will add a new and-node as a

new subconfiguration under the same or-node

concept. A similar methodology has been used in a

work by Hays et al. [75].

IV. THE LHI DATA SET

In this section, we use examples from the LHI data set to

illustrate more details about the data structures and design

issue of the data set.

A. Object Segmentation
The task of object segmentation is to create a label map

where different objects presented in the original image are

annotated with different colors. One important feature of

the LHI data set is that it provides fine segmentation. For

example, Fig. 16 compares segmentation label maps from

both the LHI data set and the MSRC data set [44]. It is

Fig. 15. Interactive parsing: Left panel shows an example of interactive object segmentation, where the boundaries of the car and

its parts are derived by GrabCut and GraphCut algorithms. A sketch graph of the car is further derived by composing all the boundaries.

The right panel shows an example of shape retrieval from the AoG database. The sketch graph of a new instance of car is matched with all

stored sketch graphs in the car category; the instance is then associated with the and-node with the best match score.

Fig. 16. (a) Two example images from the MSRC data set [44].

(b) Segmentation label maps from the MSRC data set. (c) Segmentation

label-maps from the LHI data set (label maps are set to be transparent

for better illustration).
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clear that the segmentation label maps of the LHI data set

are much more accurate. Fine segmentation not only

provides better accuracy for evaluation, but also makes it

possible to annotate small objects in complicated scenes

(e.g., Fig. 17).

B. Sketch Graph
A segmentation label map only provides silhouettes of

objects, which cannot represent internal structures. We

adopt a new data structure called sketch graph in addition

to the segmentation label map. As shown in Figs. 18 and
19, a sketch graph is composed of a set of control points

representing landmark positions, which are further

grouped into a set of curves to form ‘‘sketches.’’ This is

similar in spirit to the active shape models (ASMs) [76],

and is closely related to the primal sketch representation

[17]. Fig. 18 shows that the sketch graphs can capture

internal structural information of cloth, such as the folds,

sewing lines, and albedo/lighting changes. A dictionary of
human body components is illustrated in Fig. 19, where

each element is a small sketch graph and has open bonds

(anchor points) for connecting with other parts.

Sketch graphs can be further augmented to include

low-middle level vision elements by adding attributes to

each curve (attributed curves). As illustrated in Fig. 20, the

curves on the Winnie the Pooh are differently colored

(different attributes) and represent occlusion, surface
normal change, and lighting/albedo change, respectively.

The attributed curve is also useful for representing illusory

(occluded) contours in an image (as illustrated in Fig. 21).

This is closely related to the ‘‘2.1D sketch,’’ which is

proposed in [77] to model low-level depth reconstruction

exhibited in early human vision.

C. Hierarchical Decomposition
As shown in Fig. 1, each image in the LHI data set is

decomposed hierarchically from scene to parts to generate

a parse graph. Horizontal links are also added between

nodes to represent relationships between objects and

parts. Both the hierarchical decomposition and horizontal

relationships will become a part of an AoG.

Fig. 17. Example segmentation label map of an aerial image (a school scene).

Fig. 18. Sketch graph representation of cloth. The sketch graph

can effectively capture internal structural information of cloth,

such as folds, sewing lines, and albedo/lighting changes.

Fig. 19. Dictionary of cloth and body components. Each element is a

small sketch graph and has open bonds (red points) for connecting with

other parts. Modified from [41].

Fig. 20. Attributed curves. ‘‘Winnie the Pooh’’ is labeled with three

types of curve attributes: surface: curves generated by surface norm

change; boundary: curves on object boundary; shadow: curves

generated by shadow.
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D. Semantic Annotation Using WordNet Vocabulary
WordNet [3] contains a large vocabulary, which has

been systematically annotated with word sense informa-

tion and relationships such as synonyms, hyper- and

hyponyms, moronyms, etc. We annotate the LHI data set

according to the vocabulary from WordNet. Therefore, the

LHI data set inherits the semantic relationships between

concepts from WordNet. The following steps are adopted

when a name is chosen for an object: 1) words must be
selected from the WordNet; 2) the sense in WordNet

should be mentioned; 3) descriptive words can be added to

provide further information (e.g., [male]human, [race]car).

This process has to be done manually by a human.

V. SEMANTIC REPRESENTATION
AND QUERY

A. Semantic Representation
Semantic representation is a formal way of expressing

inferred image and video content and provides a bridge to

content knowledge management. This is needed for a variety

of information exploitation tasks, including content-based

image and video indexing and retrieval, forensic analysis,

data fusion, and data mining. The representation should be

unambiguous, well formed, flexible, and extensible for
representing different object classes, their properties, and

relations.

With an image ontology based on the AoG, we can

convert the parse graph representation of an image into

semantic representation using RDF format. For example, the

XML report in Fig. 22 shows a section of the semantic

representation converted from the parse graph illustrated in

Fig. 1. In this report, each object is associated with an and-
node in the AoG. For example, the object node ‘‘#WATER_1’’

has resource ‘‘&aog;Object::Water[3],’’ where ‘‘&aog;’’ points

to a web resource defining the image ontology based on the

AoG, ‘‘Object::Water’’ means an or-node named ‘‘Water’’ in

the ‘‘Object’’ level, and ‘‘[3]’’ stands for the third subconfi-

guration under the or-node, which pointed to an and-node.

The hierarchical structure of the parse graph is represented

in a node-list format. For example, the object ‘‘#PERSON_
WITH_EQUIPMENT_1’’ has a child with node ID ‘‘PWE-1,’’

which is associated with the object ‘‘#PERSON_1’’ and also

points to its sibling ‘‘PWE-2.’’ Relations are also defined

based on the AoG. For example, the relation ‘‘#RELATION_1’’

is associated with an AoG concept ‘‘&aog;Carry’’ and has an

agent ‘‘#PERSON_1’’ and a patient ‘‘#BACKPACK_1.’’ Simi-

larly, with the AoG image ontology, we can translate any

parse graph into a semantic representation.

Fig. 22. Semantic representation of the parse graph in Fig. 1 based on

an image ontology embodied in the AoG representation.

Fig. 21. Sketch graph with 2.1D layered representation.

Green lines stand for illusory (occluded) contours.
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Recent emergence of semantic web technology has
encouraged the growth of distributed yet interconnected

ontologies published on the Internet using the OWL. Using

the OWL representation, an ontology engineer can declare

how knowledge concepts defined in different ontologies

are related. With this ontological mapping, multiple OWL

documents can be interconnected. This promotes reuse

of existing ontologies and encourages the development of

domain-specific ontologies to address the diverse needs of
different applications. The semantic description of a parse

graph in RDF format can be translated into the OWL

format. The collective ontology can express more complex

image content and video events. With this framework,

visual content can be published on the semantic web,

allowing various semantic mining and inference tools to

retrieve, process, and analyze the content. Some of the

semantic concepts such as object classes can be mapped to
well-established concepts defined in standard knowledge

bases such as the Open Geospatial Consortium (OGC) and

WordNet. This improves the accessibility and portability of

the inferred video content.

B. User Queries
With visual content published in OWL, a user can now

perform content-based searches using SPARQL, the query
language for semantic web [78], released by the World Wide

Web Consortium (W3C). With SPARQL, users or autono-

mous data mining engines can perform searches by expres-

sing queries based on semantics. This improves usability as

the details of database models are hidden from the user. The

versatile nature of SPARQL allows the user to query multiple

OWL documents collectively and this enhances data inte-

gration from multiple knowledge sources. For example, sup-
pose that a car in an image is annotated as a ‘‘sedan’’ while the

user performs a search using the term ‘‘automobile’’;

SPARQL is still able to retrieve the result because WordNet

identifies that the two words are synonyms.

VI. TEXT GENERATION

While OWL provides an unambiguous representation for
image and video content, it is not easy for humans to read.

Natural language text remains the best way for describing

the image and video content to humans and can be used for

image captions, scene descriptions, and event alerts. NLG

is an important subfield of natural language processing.

NLG technology is already widely used in Internet

applications such as weather reporting and for giving

driving directions. A commonly used NLG approach is
template filling, but it is inflexible and inadequate for

describing images. An image NLG system should be able to

consume OWL data, select relevant content, and generate

text to describe objects in images, their properties, events,

and relationships between other objects.

The text generation process is usually designed as a

pipeline of two distinct tasks: text planning and text

realization. The text planner selects the content to be
expressed, and decides how to organize the content into

sections, paragraphs, and sentences. Based on this

formation, the text realizer generates each sentence using

the correct grammatical structure.

A. Text Planner
The text planner module translates the semantic

representation to a sentence-level representation that
can readily be used by the text realizer to generate text.

This intermediate step is useful because it converts a

representation that is semantic and ontology based, to a

representation that is based more on functional structure.

The output of the text planner is based on a functional
description (FD) which has a feature-value pair structure,

commonly used in text generation input schemes [79]. For

each sentence, the functional description language spe-
cifies the details of the text that is to be generated, such as

the process (or event), actor, agent, time, location, and

other predicates or functional properties. An example of

functional description is shown in Fig. 23. The text planner

module also organizes the layout of the text report

document. The planning of the document structure is

strongly dependent on the intended application. For

example, a video surveillance report may contain separate
sections describing the scene context, a summary of

objects that appeared in the scene, and a detailed list of

detected events. Other applications, such as an e-mail

report or instant alert would warrant different document

structures, but the underlying sentence representation

using functional description remains the same.

B. Text Realizer
From the functional description, the text realizer

generates each sentence independently using a simplified

head-driven phrase structure grammar (HPSG) [80].

HPSG consists of a set of production rules that transform

the functional description to a structured representation of

grammatical categories. Grammatical categories include

the following part-of-speech tags: S (sentence), VP (verb

phrase), NP (noun phrase), DET (determiner), and PP
(prepositional phrase) among others. Examples of produc-

tion rules include: S! NP VP, NP! DET (A) N, VP! V

NP, VP! V PP, VP! V ADV, and PP! P NP. Rules with

features are used to capture lexical or semantic properties

and attributes. For example, to achieve person–number
agreement, the production rules include variables so that

information is shared across phrases in a sentence: S !
NP(per,num) VP(per,num). A unification process [81]
matches the input features with the grammar recursively,

and the derived lexical tree is then linearized to form the

sentence output. An example of text realization is shown in

Fig. 23.

While general-purpose text realization is still an active

research area, current NLG technology is sufficiently

capable of expressing video content. The lexicon of visual
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objects and relationships between objects is relatively

small. In addition, textual descriptions of visual events are

mostly indicative or declarative sentences and this

simplifies the grammar structure of the resulting text

significantly.

VII. CASES STUDIES

A. Video Surveillance System
In this section, we demonstrate an end-to-end system

from surveillance videos to text reports using the I2T
framework. The overall architecture of the system is

shown in Fig. 24(a), which resembles the diagram for

static images shown in Fig. 2 except two extra steps for

analyzing video content, namely object tracking and event

inference. First, an IIP generates a parse graph of scene

context from the first frame of the input video. The parse

graph is further translated into a semantic representation

using techniques described previously. Since the camera in

this system is static, the parsing result of the first frame can

be used throughout the entire video. Second, the system

tracks moving objects in the video (e.g., vehicles and

pedestrians) and generates their trajectories automatically.

Third, from the scene context and object trajectories, an

event inference engine extracts descriptive information
about video events, including semantic and contextual

information, as well as relationships between activities

performed by different agents. The video event markup

language (VEML) [49] is adopted for semantic represen-

tation of the events. Finally, a text generation engine is

used to convert the semantic representation of scene

context and video events into a text description. In the

following sections, we describe the system in detail.

1) Event Inference: For event inference, we leverage the

existing state-of-the-art in knowledge representation and

focus on extracting descriptive information about visual

Fig. 23. Example of a functional description (FD) of a video event being converted to natural language text by the text realizer. The FD

is first transformed to a part-of-speech (POS) tree where additional syntactic terms (‘‘between’’ and ‘‘and’’) are inserted. The POS tree is

then linearized to form a sentence. Notice that the FD and the POS tree share similar hierarchical structure, but there are notable differences.

In the FD, children nodes are unordered. In the POS tree, the ordering of children nodes is important and additional syntactic nodes

are inserted.

Fig. 24. (a) Diagram of the video-to-text system. (b) Parse graph of the scene context.
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events, including semantic and contextual information as
well as relationships between activities performed by

different agents. A grammar-based approach is used for

event analysis and detection. In the following, we discuss

different aspects of event inference.

a) Scene region analysis: Scene region analysis

enhances the scene understanding by analyzing the func-

tional and contextual property of scene regions. Pixel-level

scene element classification can be further analyzed to
derive higher level scene content. For instance, in road

analysis, the aim is to extract road structure, junctions, and

intersections. To analyze road structure, we expand the

taxonomy and object class properties, and derive object class

relations. Based on these relations, roads are detected using

the data-driven approach with data from the observed

trajectories of vehicles. Combining road information with

superpixel-based scene element classification, the bound-
aries of roads can be extracted fairly accurately. Junctions are

then detected as intersections of roads. Similar inference can

be made on other types of scene regions, such as waterway

(used by watercraft) and sidewalk (used by pedestrians).

A key benefit of scene region extraction is the

automatic demarcation of region-of-interest (ROI) zones

for higher level analysis. A zone is a generic term to

describe an image region that has semantic, contextual, or
functional significance. Examples of zones include road

junctions, port docking areas, and entrances to buildings.

A zone serves as a spatial landmark; the position and

motion of other objects can be described with respect to

this landmark. This allows us to detect semantic actions

and events, and it facilitates the textual description of the

events thereafter.

b) Spatio–temporal analysis: For spatio–temporal
analysis, we assume that an object is moving on a ground

plane and the detected trajectory is a series of tracked

‘‘footprint’’ positions of the object. The trajectory is then

approximated by a series of image-centric segments of

straight motions or turns, such as ‘‘move up,’’ ‘‘turn left,’’

etc. The trajectory can be described concisely in terms of

these motion segments. A trajectory is also described in

relation to the zones that are demarcated in the scene,
such as entering and exiting a zone. The system analyzes

the motion properties of objects traveling in each zone,

such as minimum, maximum, and average speeds. From a

collected set of trajectories, histogram-based statistics of

these properties are learned. By comparing new trajecto-

ries to historical information, abnormal speeding events

inside the zone can be detected.

Speed information is generally expressed in image-centric
measure (pixel per second). The image size of an object is

then used to coarsely estimate the ground sample resolution

(meter per pixel) to compute true speed (e.g., mile per hour).

More accurate estimation can be obtained by calibrating the

camera, either manually or automatically [82].

Complex events are composed of subevents and can be

represented by a spatio–temporal parse graphs (see

Fig. 25). Contextual information is important for video
event understanding and is specified by the spatial,

temporal, and functional relations between moving objects

and background objects. The context includes approach-

ing, entering, and exiting a location, providing semantic-

based inference and descriptive event annotation.

2) Results: Our evaluation focused on urban traffic and

maritime scenes, and it consisted of two parts. We evaluated
event detection and metadata/text generation with sequences

of different scenes. We processed ten sequences of urban and

maritime scenes, with a total duration of about 120 min, that

contain more than 400 moving objects. Visual events were

extracted and text descriptions were generated. Detected

events included: entering and exiting the scene, moving,

turning, stopping, moving at abnormal speed, approaching

traffic intersection, entering and leaving traffic intersection,
failure-to-yield violation, watercraft approaching a maritime

marker or a land area, and an object following another object.

When annotating these events in both metadata and

text description, the system extracts and provides infor-

mation about the object class, scene context, position,

direction, speed, and time. Examples of text descriptions

and corresponding video snapshots are shown in Fig. 26.

With the text description, user can search for video events
using keywords. Full text search engines are commercially

available to provide word-based indexing and searching

functionalities.

Fig. 25. Example of a video event detection involving a failure-to-yield

incident. Each image frame is represented by a parse graph and objects

are tracked over frames. In the event grammar, complex events are

composed of elementary events observed as the motion of objects

(cars) with respect to scene context (road lanes and intersection).

There are two events in this example: (1) car-1 stopping in road-0;

(2) car-2 crossing intersection without stopping.
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B. Automatic Driving Scene Parsing
The second application of the proposed I2T system is

an ongoing project on automatic driving scene parsing. As
illustrated in Fig. 27, we build a novel AoG for driving

scenes using an X-shaped-rays model at low resolution to

obtain efficient scene configuration estimation. Then, we

further detect interesting objects in the ‘‘foreground’’ such

as cars and pedestrians and classify regions at high

resolution under the scene context.

We exploit several useful features from the X-shaped-

rays model to classify different scenes, such as the four

intersection angles, the area ratio of sky to the whole

image, the area ratio of building to the whole image, etc.

For detecting cars and pedestrians, we adopted the active

Fig. 26. Samples of generated text and corresponding video snapshots.

Fig. 27. (a) Under a low resolution (e.g., 32 � 32 pixles), a driving scene can be approximated by an X-shape-rays model with four components

(left, right, bottom, and top). (b) The AoG used for parsing driving scenes. means a component is missing.
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basis model [59]. One example of a scene parsing and text

generation results are illustrated in Fig. 28.

VIII. CONCLUSION AND DISCUSSION

This paper proposes a framework that provides an end-to-

end solution for parsing image and video content,

extracting video event, and providing semantic and text

annotation. One major contribution is the AoG visual

knowledge representation. The AoG is a graphical

representation for learning categorical image representa-
tions and symbolic representations simultaneously from a

large scale image. It not only provides top–down guides

during the image parsing process but also connects low-

level image features with high-level semantically mean-

ingful concepts so that the parsed image can be seamlessly

transformed to a semantic metadata format and finally to a

textual description. The I2T framework is different from,

but complementary to, existing technology in keyword-
based image and video shots categorization/annotation,

because it provides richer and semantically oriented

annotation of visual contents. With image and video

contents expressed in both OWL and text format, this

technology can be easily integrated with a full text search

engine, as well as SPARQL queries, to provide accurate

content-based retrieval. Users can retrieve images and
video clips via keyword searching and semantic-based

querying.

For future work, we are going to explore connotative

messages from an image. At the moment, the I2T system,

like most other CBIR systems, can only process denotative

messages from an image. To explain the concept of

connotative and denotative messages, we would like to use

a simple example from [83]: Consider a drawing of a cute
rabbit. Based on this image, most viewers would perceive a

rabbit. Viewer from the Western or Christian cultural

background might also be reminded of the Easter Bunny

and associate the image with Easter themes. In this

example, the identifiable object, a rabbit, functions as the

denotative message. Additional messages such as Easter

themes are connotative. Viewers conceive connotative

messages from an image based on visual perception
(denotative messages) as well as their own cultural

background. It is widely recognized that images convey

both denotative and connotative messages, whereas the

connotative message is oftentimes more important for

representing a searcher’s intention. It is obvious that

deriving connotative messages from images requires

integrating knowledge from several related domains such

as art history, social and religious culture, among others.
Since the semantic web technology is a perfect tool for

integrating diverse domain knowledge, the I2T framework

provides a possible solution for indexing and retrieving

connotative message from images. h
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