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ABSTRACT

This paper presents a unified framework to learn to quantify percep-
tual attributes (e.g., safety, attractiveness) of physical urban envi-
ronments using crowd-sourced street-view photos without human
annotations. The efforts of this work include two folds. First, we
collect a large-scale urban image dataset in multiple major cities
in U.S.A., which consists of multiple street-view photos for every
place. Instead of using subjective annotations as in previous works,
which are neither accurate nor consistent, we collect for every place
the safety score from government’s crime event records as objective
safety indicators. Second, we observe that the place-centric percep-
tion task is by nature a multi-instance regression problem since the
labels are only available for places (bags), rather than images or
image regions (instances). We thus introduce a deep convolutional
neural network (CNN) to parameterize the instance-level scoring
function, and develop an EM algorithm to alternatively estimate
the primary instances (images or image regions) which affect the
safety scores and train the proposed network. Our method is capable
of localizing interesting images and image regions for each place.
We evaluate the proposed method on a newly created dataset and a
public dataset. Results with comparisons showed that our method
can clearly outperform the alternative perception methods and more
importantly, is capable of generating region-level safety scores to
facilitate interpretations of the perception process.
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1 INTRODUCTION
1.1 Background
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Figure 1: Place-centric visual urban perception. (a) The map
of San Diego, U.S.A. (b) The density map of crime events for
San Diego. The crime events were collected by various govern-
ment agencies. The color of a place represents its densities. (c)
The ground-truth densities (or safety ranks) for the 2000 testing
places. (d) The density map estimated by the proposed method.

The task of visual urban perception [9] [12] [13] [18] aims to
quantify the connections between the physical appearance of urban
environment and perceptual attributes (e.g., safety, attractiveness,
wealth). The well known broken windows theory [14] [27] suggests
that visual signs of environmental disorder, such as broken windows,
abandoned cars, litter and graffiti, can induce negative social out-
comes of and increase crime levels. Other studies [4] [15] [21] [23]
also found the associations between environment disorder and crimi-
nal behaviors, health outcomes, incidences of obesity, and rates of fe-
male alcoholism. More recently, researchers in multi-media comput-
ing and Artificial Intelligence take as inputs geo-tagged street-view
photos [8, 31], and develop learning-based methods using human-
annotated street-view photos. The popularity of high throughput
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data collection methods (e.g., AMAZON MTurk) has increased the
availability of urban perception data, and thus enables the learning
based systems for automatic predictions.

However, existing efforts on visual urban perception are still
limited in two aspects. First, the perception labels are usually crowd-
sourced by human annotators and there are huge variances or incon-
sistent annotations across subjects. For example, it is difficult for a
human to consistently label the safety level of a scene from street-
view photos. The labels might vary over time or across psychological
statuses. Moreover, different annotators might give different ratings
over the same photo. Second, most existing perception methods aim
to learn scoring functions from individual images while the percep-
tion labels are actually associated with places. Figure 2 shows eight
street-view photos of the same place (highlighted on the center map).
These photos together provide a panoramic imagery description of
the place, which is much more informative than a single street-view
photo. For example, the safety level of a place might be mainly
affected by one of the photos, which includes broken windows or
other disorder visual patterns, but not other photos. Therefore, there
is a demand for an urban perception method to develop a capability
of learning from place-centric visual data.

1.2 Overview of this work

The goal of this work is to address the above issues with two inno-
vative efforts. The first one is to collect a large-scale image-based
urban perception dataset, which distinguishes itself from existing
datasets by two aspects: (i) place-centric: providing multiple photos
for every place, as shown in Figure 2; and (ii) objectiveness: mining
the perceived level of safety using publicly available crime events
records. The dataset includes about 20, 000 places in 5 major cities of
U.S.A., and 8 street-view photos per place. To obtain the perceived
safety level for every place, we collect crime event records from the
government agencies in the past ten years and perform clustering
analysis to obtain the crime density map for each city. Figures 1
(a) and (b) show the city map and crime density map for the city
of San Diego, CA, U.S.A. To our best knowledge, the proposed
objective and place-centric urban perception dataset is the first one
in its catalog.

The other effort of this work is to develop a weakly supervised
method to regress the perceived safety label for each place. We cast
the learning of such a regression function in the multi-instance set-
ting. Our method employs a multi-layer bag-instance representation:
each place is described with a bag of street-view photos and each
photo (at a particular viewpoint) with a bag of image regions. An
image region can recursively decompose into a bag of sub-regions.
This Place-Photo-Region-Subregion hierarchy forms a rich and re-
dundant representation, and in the training stage, only place-level
labels are available. We employ a deep convolutional neural network
(DCNN) to parameterize the scoring function, which maps an input
image or image region to a real-valued safety label. Our method
follows the traditional rules of multi-instance regression [22]:(i) only
a portion of the instances in a bag will affect the regression function
to be learned; (ii) the bag-level label specifies the upper-bound of
the predictions over all instances in the bag, i.e. that instance-level
predictions should be less than or equal to the bag-level real-valued
label. We divide all instances of a bag into a primary subset and
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Figure 2: A place with eight street-view photos of varying view-
points. The perception labels (i.e. safety level) for these street-
view photos should be collectively assigned.

a non-primary subset, and use the instances in the primary subset
to estimate the scoring function. The primary/nonprimary labels of
parent-children instances should be collectively assigned so that (i)
all children nodes of non-primary node are non-primary instances
as well; (ii) for any primary-instance, there is at least one primary
child node. We refer our method to hierarchical deep multi-instance
regression (HDMiR), which is different from the conventional multi-
instance methods with two-layer bag-instance representation.

We develop a novel Expectation-Maximization (EM) [30] method
for training HDMIR from weakly supervised street-view photos. Our
method alternates between estimating primary instances for each
bag (E-step), and optimizing the CNN parameters (M-step). In the
E-step, we apply the current DCNN to score every instance (images
or regions) and introduce a clustering method to robustly assign the
highly scored instances to be primary instances and the others to be
non-primary ones. We also introduce two bottom-up/top-down label
propagation steps in order to preserve the above parent-children
consistencies. In the M-step, we use the stochastic gradient descent
(SGD) method to train the DCNN network in order to maximize the
complete data likelihood defined over primary instances.

We apply the proposed EM method over a public dataset and
a newly created dataset, and compare it to the alternative urban
perception methods. Results show that the proposed HDMiR method
can significantly improve perception accuracy on both datasets. This
is a considerably improvement since the proposed method only
requires place-level labels, instead of instance-level annotations.
More importantly, the proposed method is capable of discovering
the most influenced instances (e.g., images or regions) which might
affect the safety score of a place, which results in an explainable
urban perception method.
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1.3 Contributions

The two major contributions of this work include (i) a new large-
scale place-centric urban street-view dataset with objective safety
scores; (ii) a hierarchical multi-instance regression method for urban
perception which can learn a deep scoring function from weakly
supervised data. The proposed EM method can be used for learning
multi-instance regression functions, and has great potentials in a
wide variety of image-based applications.

2 RELATIONSHIPS TO PREVIOUS WORKS

The proposed urban perception method is closely related to three
research streams in the multimedia community.

Visual Urban Perception aims to predict perceptual responses
to scene images and play critical roles in public health and other
socio-economic activities. In the past literature, researchers already
developed a wide variety of perception models for predicting aes-
thetics [13], memorability [12], interestingness [6], virality [5]. In
particular, Naik et al. [20] contributed a visual perception dataset,
known as Place Pulse 1.0, and proposed to use various image fea-
tures and support vector regression for predicting the perceived
safety of street-view images. Dubey et al. [8] made efforts to a
large-scale urban perception dataset, i.e. Place Pulse 2.0, through
crowd-sourcing human annotations from online tools. While being
remarkable successful, these datasets are restricted to the variances
of human perceptions as well as mistakes or errors made during
labeling. Moreover, human annotations are provided for images,
instead of places, and might impose inconsistent labels for different
street-view photos of the same place. In this work, we propose to
create a large-scale place-centric dataset with place-level objective
safety scores which are mined from crime event records.

Learning based perception methods can take advantages of
large-scale labeled data and become much more feasible with the
availability of high throughput online survey websites. These meth-
ods can be divided into two categories. The first category aims to
directly learn a regression function to assign a real-valued label to
the input images [22] [2] [10]. Such methods are limited since hu-
man annotators are not good at providing annotations in continuous
space [8]. The second category, in contrast, aims to learn to rank
pairs of images according to their perception scores. For example,
Kiapour et al.[16] employed image features and manual annotations
to learn to rank images according to their clothing styles. Zhu et
al. [33] ranked facial images for attractiveness, for generating better
portrait images. Wang et al. [25] introduced a deep ranking method
for image similarity metric computation. Zagoruyko and Komodakis
[29] developed a Siamese architecture for computing image patch
similarity for applications like wide-baseline stereo. The predicated
ranks of scene images are often convented to real-valued label in post-
processing steps, €.g.,using the Microsft Trueskill algorithm [11],
which might bring considerable errors.

Multi-instance Perception Learning We identify that visual ur-
ban perception is essentially a multi-instance learning (MIL) prob-
lem since the perceived labels, e.g., safety, are by its nature asso-
ciated with places, instead of images (of specific viewing angles).
Traditional MIL classification methods [7] [19] [1] [3] assume that
the aggregation function over instance labels is an OR function, i.e.

ACM MM’17, October 2017, Mountain View, CA

that a positive bag contains at least one positive instance and a nega-
tive bag contains only negative instances. A number of approaches
relax the assumption and propose other forms of aggregation. Wei-
dmann et al. [26] considers a generalization where the presence of
a combination of instance types determines the label of the group.
Xu and Frank [28] assume that all instances contribute equally and
independently to a bag’s class label. Zhou et al. [32] build a model
that solves MIL through semi-supervised learning techniques by
considering a negative label for every instance in a negative group.
These solutions are typically tailored to handle specific assumptions
about the whole-part relationships between groups and instances.
The focus of this work is on the predictions of real-valued labels,
e.g., safety scores, which is different from the discrete labels. Ray
and Page [22] proposed an alternative procedure to find the primary
instances and estimate regression functions. Our proposed approach
generalizes such two-level bag-instance relationships through ex-
ploring multi-level place-image-region-subregion relationships in a
hierarchy of instance representation.

3 OUR APPROACH

The goals of this work include two aspects: creating a place-centric
urban perception dataset with objective safety scores, and develop-
ing deep machine perception algorithms which can leverage weak
supervisions.

3.1 Community-Centric Urban Safety Dataset

An distinctive effort of this work is to collect an urban perception
dataset, including both street-level photos and objective safety scores
for each place. To do so, we employ crime event records (e.g., theft,
fight, incidents, robbery etc.), which are publicly available in web-
sites of government agencies, e.g., county police departments. The
records include various details of crime events in the past decades
(usually 10-15 years), e.g., date, time, place (longitude and latitude),
and event types. Figure 1 (c) maps crime events in San Diego City,
where each point represents a crime event. In this dataset, we obtain
a total of 1, 056, 533 crime events for the five major cites in U.S.A.,
including San Diego, Chicago, Seattle, San Francisco and New York
City. Given places of these events, we employ the Parzen Window
method to estimate the density of each place, and quantize a density
label into five levels: 1 to 5. Places with lower density level is safer.
These scores are automatically mined from historical community
data and serve as objective measurements of place-wise safety indi-
cators, which are much more accurate than human annotated labels
used in existing datasets [8] [20].

These original place data, though informative, are obviously re-
dundant since, for example, two places might be physically close
to each other. In order to create a compact place dataset, we per-
form cluster analysis over the place clouds to group adjacent places
together. In particular, we represent each place using its longi-
tude/latitude coordinates, i.e. a two-dimensional feature vector, and
run the K-means method over these vectors. We empirically set K
and calculate the center location of each cluster of places. We con-
sider each cluster as a place and set its safety level to be the average
safety level of its membership places. In this work, we set K = 5000
for all cities. Figure 3 shows the places generated for four cities:
Chicago, Seattle, San Francisco, and New York City. For each cell,
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Figure 3: Visual places used in four major cities in U.S.A, including Chicago, San Francisco, Seattle, New York City. For each city,
we visualize the locations of crime events in the left and the discovered places using cluster analysis in the right. The crime events are

collected from local government agencies.

we show the original places (longitude/latitude) with crime densities
(colored) in the left figure, and the clustered 5000 places in the right
figure. The selected places are well distributed over the urban areas
of the cities.

We employ the Google Street-View API to retrieve scene pho-
tos for each place in the dataset. The API provides access to the
panoramic 360 degree views of a place using two parameters: lo-
cation and point-of-view (or heading angles w.r.t. the true north).
We evenly quantize heading angles into 8 bins and retrieve one
street-level image for each bin at each location. Figure 2 shows the
8 street-view images downloaded for a place in San Diego. Thus,
we obtain a place-centric urban image dataset, where safety scores
are available for places only, rather than images or image regions. In
contrast, most existing urban datasets utilize image-level perception
labels while training machine learning models.

3.2 Learning Deep Multi-instance Regression for
Urban Perception

We formulate the learning of visual urban perception models in the
multi-instance setting. We consider a place as a bag of instances,
where each instance represents a street-view image or an image
region. In the training set, there are a set of n bags. Each bag consists
of multiple instances, and a real valued safety label. Our goal is to
learn a scoring function f(-) that returns a real value for each in-
stance. Classical multi-instance regression methods [22] often divide
all the instances of a bag into two categories: primary instances and
non-primary instances, and use only primary instances to estimate
the prediction function f(-). In this work, for example, an image full
of facade surfaces or corners of an intersection might not be useful

for determining the scoring function. We thus propose to identify
primary instances and use these instances to train the proposed deep
regression network.

In order to harness the recent technical breakthrough in deep fea-
ture learning, we employ deep convolutional network (DCNN) [17]
to parameterize the scoring function f(-). Figure 4 illustrates the
network architecture, which includes five convolution layers, three
pooling layer sand three fully connected layers. For any instance
x € R, we perform forward propagation to get its activations of the
last fully connected layer fc8 which can be viewed as high level
features of the input image. We connect f¢8 to an output unit, i.e.,
f(-). We take f(x) as the real-valued prediction of the instance x.
The outputs f(x) of all instances in the same bag are connected to
an aggregate layer in order to get the bag-level prediction. In this
work, we use max() as the aggregate function.

Formally, let X = {xg;,2x;},i = 1,2,...,n denote a bag of n
instances, where each instance xj; represents an image or image
region, and z; = 1if z; is a primary instance and 0 otherwise. Let
f(xx;) denote the prediction on the instance xy;. Let z; = [zx;] pool
over the latent variables for the bag k. The prediction over a bag x
is defined as

FO06:0.20) = 9 fGer). - flo ) M

where ¢ represents the aggregate function, 0 represents the DCNN
parameters. Only primary instances, i.e., zx; = 1, are used in the
above aggregate function and thus the non-primary instances do not
affect the training of the deep scoring function f().
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Figure 4: Deep Multi-instance Regression network. There are
five convolution layers, three pooling layers, and three fully con-
nected layers. All these layers are shared across the instances of
the same bag.

When the hidden labels z are available, the objective function of
the proposed multi-instance regression method is defined as follows,

M
J0:2) = ~log POIxi0.2) = ) L(fGei0.z0.0) @)
k=1

where zp = [zg;] pools over the hidden variables for the instances
of the bag k, M is the number of bags, L(- - ) is the loss function.
We use the least square method, i.e. £ = [y — f(xx; 6, 2)]°.

We develop an Expectation-Maximization (EM) method to jointly
estimate the hidden labelsz and learn the neural network from weakly
supervised data. Let x = [xi ],y = [yx],k = 1,2,..., M. We use the
following probabilistic graphical model:

Px,y.2:6) = | | Po)( | ] Plakil: ) Pylz.x) 3)

X€EX ki
The model P(x) is a background reference distribution, P(y|z, x) is
the observation model.

Our EM method includes two iterative steps. In the M-step, with
the estimated hidden variables z, we aim to estimate the network
parameters 6 through maximizing the following expected complete-
data likelihood model,

0(6;0) = ZP(Z|X; 0’)log P(z/x; 0) ~ log P(2|x; 0) )

In the E-step, with the estimated network parameters 6’, we aim to
solve the latent variables z by

: = argmzaxrlP(zki|xk,~;9')P(y|z,X) )
k,i
= argmaleogP(zki|xki;0')+logP(y|z,x) 6)
z
ki

The model log P(zy;|xk;; 0”) is defined over the outputs of the CNN
regression network with the newly updated parameters 6”. In partic-
ular, we specify P(zx; = 1|xg;;60”) o< f(xg;;0’), i.e. the predicated
safety score for the instance xj;. We set the observation model
log P(y|z, x) to be a constant which allows us to estimate the hidden
variables for each bag separately. In particular, we employ clustering
methods, e.g., K-Means, to group all instances of a bag into two
clusters according to their real-valued predictions f(xy;;6”) with
the current network parameters 0’, and consider the higher-scored
cluster as the primary subset. The predictions yy;, however, might
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not be accurate at early stages of the EM iterations. To address this
issue, we represent each instance xj; using the activations h(xy;) of
the last layer of the CNN network, and develop algorithms to solve
the two center features cg,, p = 1, 2 and zy; iteratively. For the bag
k, we aim to optimize the following objective function.

: 2
ming, z, Y. Y. llep = el

p=L22ki=p

ra Z Z l(f(xki)Zf(xkj) @)

zki=12zx;=0

which is an integer optimization problem. The first team is a classical
data objective for clustering and the second term encourages the
ordering of the two desired clusters.

We develop a constrained clustering method to solve Eq. (7).
Our method, like K-Means, randomly selects two instances and use
their activations as the center vectors ¢; and c2. Then, we employ
three alternative steps: (i) to assign every instance into one of the
two groups, which has closer center vector; (ii) to swap instances
between the two clusters so that all instances in the first group have
higher safety scores than the other group; (iii) to calculate the new
center vector for each group. We alternate these three steps multiple
times until convergence. The swapping step is used to enforce the
constrains defined in Eq. (7).

We further extend the above constrained clustering method to
explore the hierarchical relationships between places, street-view
photos and image regions. An image region can further decompose
into multiple sub-regions in a recursive fashion. In such a hierarchical
setting, it is convenient to denote the number of layers to be L. The
nodes of top layer (i.e., places) are provided with real valued safety
labels, while the other nodes are not available. An node of layer [
includes multiple children nodes of layer [ + 1, which are labeled
as primary or non-primary instances. There are two multi-instance
assumptions: (i) all the children nodes of a non-primary node are
non-primary as well; (ii) a primary node should have at least one
primary child node.

Algorithm 1 summarizes the sketch of identifying primary in-
stances in the hierarchy. We employ two propagation steps to ensure
consistencies of parent-child label assignments. The top-down prop-
agation is used to set the children nodes of a non-primary node to
be non-primary and the bottom-up propagation is used to set the
ancestor nodes of an primary node to be primary. These two steps
are performed once for each iteration.

3.3 Sketch of HDMiR

Algorithm 2 summarizes the proposed HDMiR method. In the E-step,
we use Algorithm 1 to estimate the latent variables; in the M-step,
we employ the stochastic gradient descent method to optimize the
network parameters 6. Note that regions of varying resolutions are
resized and used to train the same deep network. Using a single deep
network for multiple purposes have been proved to be successful in
the past efforts [24].

The proposed HDMiR method can be also applied over the tra-
ditional image-centric urban perception dataset, considering each
image as a hierarchy of region-subregions. In experiments, we will
show that such a deep network with alternative optimization tech-
niques can significantly improve urban perception quality on both
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Algorithm 1 Hierarchical Primary Instance Recognition

1: Input: streetview photos of a place and their features;
Output: Latent variables zj; for individual instance nodes in
the hierarchy.

2: Initialize two centroids: cyq, cx2;

3: Iterate until convergence,

- Assign every instance to one of the two groups with
closer centroid;

- Swap instances between the two clusters if they violate
the constraints in Eq. (7);

- Top-down Propagation: for any non-primary node, set
its offspring nodes to be non-primary nodes;

- Bottom-up Propagation: for any primary node, set its
ancestor nodes (including parent nodes) to be primary
nodes;

- Re-calculate the centroids for each cluster;

Algorithm 2 Sketch of the proposed EM algorithm

1: Input: multiple places with their street-view photos and place-
level safety scores;
Output: deep multi-instance regression network parameters 6
2: Initialize 6 with pretrained network models;
3: Iterate until convergence,
- E-step: estimate the latent variables z by Algorithm 1;
- M-step: train the network parameters 0 by the stochas-
tic gradient descent method;

traditional image-centric public datasets and the newly created place-
centric image datasets.

4 EXPERIMENTS

In this section, we apply the proposed hierarchical deep multi-
instance regression (HDMiR) method over both public datasets and
the newly created urban perception dataset and evaluate it in both
qualitative and quantitative ways.

4.1 Evaluation Protocols

Datasets

We use two datasets to evaluate the proposed regression method.
The first one is a newly created dataset, which includes safety ranks
(or scores) for 20, 000 places in five major U.S.A. cities and 8 photos
for each place. We retrieve these 160, 000 images using the Google
Street-view API and mine their safety scores from the historical
crime records maintained by local government agencies. We divide
each photo into 5 subregions to enable the proposed hierarchical
multi-instance regression method. For evaluation purposes, we split
the places of each city into two subsets: 3000 places for training and
validation, and 2000 for testing. More details of this dataset can be
found in Section 3.1.

The second dataset StreetScore includes 4109 images in two cities:
Boston and New York. Each image is provided with a safety score
(between 0 and10). The scores are derived from pair-wise rankings
of photo pairs in response to the question ‘which place looks safer?’.
A total of 208, 738 comparisons were collected from an online game,
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which are converted to ranked scores using the Microsoft Trueskill
algorithm [11]. It is noteworthy that the upgraded version of this
dataset, known as Place Pulse 2.0 [8], provides pair-wise ranking
annotations only and is not applicable for the regression purposes. In
particular, the TrueSkill algorithm usually needs 24 —36 comparisons
per image for obtaining stable ranking, whereas there are only 3.35
comparisons per image in the Pulse 2.0. We evenly split the images
of StreetScore dataset into two subsets and use one for training and
the other for testing. Note that this dataset is image-centric, and only
individual street-view photos are provided with safety scores. To
apply multi-instance methods, we consider each street-view photo
as a bag of instances, and each instance represents an image region.

Implementation

We implement the proposed hierarchical deep multi-instance re-
gression (HDMiR) method as follows. For the E-Step, we set the
maximal iteration of the Algorithm 1 to be 20. For the M-step, we
use the stochastic gradient descent method with mini-batches to
train the network [17]. Each mini-batch contains 30 bags. The initial
learning rate is 0.001 and is decreased by a factor of 0.1 after every
2000 iterations. We set the momentum to be 0.9 and the weight decay
to be 0.0005. The maximal iteration is set to be 120, 000. The net-
work parameters 6 are pre-trained on the ImageNet for classification
purpose. Fine-tuning the proposed network on the newly created
dataset takes about 96 hours on a NVIDIA Telsa K40 GPU. The
average inference time for one image is about 0.1 seconds. We resize
all images or image regions in the instance hierarchy to be 224 by
224 pixels, and use them as inputs to to the deep neural network.

Baseline Methods

We compare the proposed method to alternative regression meth-
ods in both supervised setting or multi-instance setting. In the su-
pervised setting, we directly assign bag-level labels to instances
and train various machine learning models using either manually
engineered features or deep learned features. These methods include.
(I) Streetscore [20], which uses support vector regression (SVR) and
a group of appearance features, including GIST, Texton histogram,
color histogram, HOG, Dense SIFT, LBP etc. (II) SVR with deep
features over pre-trained networks. In particular, for each image
or image region, we feed it to the pretrained CNN network (VGG
Network [24]), and use the activations (of 4096 dimensions) as fea-
tures. (III) Deep regression networks, including the AlexNet [17],
the VGGNet [24] and the PlacesNet [31], which are trained in an
end-to-end fashion. For these deep models, we used their pre-trained
models publicly available in the Caffe framework, and fine-tuned
them on the two datasets separately for regression purposes. We use
least square loss for all these three regression networks.

In the multi-instance setting, we use the multi-instance regression
(MIR) [22] method, which employs an alternative method to jointly
discover a single primary instance for each bag, and to solve the
regression problem. The original work used linear regression which
is not suitable for dealing with high-dimensional image data. Instead,
we use the deep regression network VGGNet, as introduced before,
to regress the primary instances.

Metrics

We use the coefficient of determination R? [20] between true
scores y and predicated scores § to evaluate the accuracy of a re-
gression model. R? is a quantitative measure for the proportion of
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Figure 5: Results for the places in Chicago. Left: groundtruth safety levels for the 2000 testing places; right: the safety levels predicated
by the proposed algorithm. Highlighted areas include failure places.
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Figure 6: Results for the places in San Francisco. Left: groundtruth safety levels for the 2000 testing places; right: the safety levels
predicated by the proposed algorithm. Highlighted areas include failure places.

total variance of true data explained by the prediction model. Let §
denote the average predicated safety level of all testing samples. We

defined R? = 1 - %

Results on the place-centric dataset

We apply the proposed HDMiR method over the newly created
place-centric image data for learning to predict instance-level safety
levels. Table 1 reports the quantitative results of various methods.
In order to analyze the effects of the proposed instance hierarchy,
we implement a variant of Algorithm 2 which uses two-layer bag-
instance image representation, called Deep Multi-instance Regres-
sion (DMiR). From the table, we found that proposed weakly super-
vised deep regression method methods (DMiR and HDMiR) clearly
outperform the classical regression method Streetscore [20] and the
more recent end-to-end learning based deep methods. It is notewor-
thy that the three networks AlexNet, VGGNet and PlacesNet are
popular deep learning models which achieved remarkable successes

in multiple domains. These improvements are because of the pro-
posed weakly supervised framework which can takes advantages of
the bag-instance constraints. Moreover, from the comparisons be-
tween DMiR and HDMiR, we can observe that the proposed instance
hierarchy can further enhance system accuracy.

Figures 5 and 6 visualize the predicated safety levels (1-5) for
two cities, Chicago and San Francisco, respectively. Each point
represents a testing place in longitude/latitude coordinates. The pre-
dictions are obtained by the proposed HDMiR method. For each
figure, we show the ground-truth labels in the left column and the
predicated labels in the right column. Figure 1 visualizes the pred-
ications for the places in San Diego. Note that we learn a single
regression model for all the five cities. We can observe that the pred-
ications are consistent with the true safety levels. We also highlight
a few areas which include obvious wrong ranks. Figure 7 visualizes
four exemplar street-view photos (one per place), which are correctly
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Figure 7: Exemplar results on places in San Diego. Each row
shows four street-view photos of different places, which are suc-
cessfully classified by the proposed HDMiR (within 0.5 distance
from the true level) and are not classified correctly by the base-
line methods. For each image, we show the regions with highest
safety score.

predicated by the proposed HDMiR method, but are mis-predicated
by the other baseline methods. We consider a prediction to be correct
if it is 0.5 away from the ground-truth level. Each image is overlaid
with the highest scored instance, either a subregion or a whole image.
These exemplar street-view photos are very challenging because,
for example, the photos of level 1 have similar appearance as the
photos of level 2, and existing urban perception methods failed to
predict the correct safety level. In contrast, the proposed method can
work well through exploring the consistencies in the hierarchy of
instances.

Algorithms R?
Streetscore [20] 0.49
SVR+Deep Features 0.51
AlexNet [17] 0.53
VGGNet [24] 0.61
PlacesNet [31] 0.65
MIR [22]+VGGNet Features 0.69
DMiR 0.78
HDMiR 0.81

Table 1: Quantitative results (R? Jon the Place-centric Dataset.

Results on the StreetScore dataset

Table 2 reports the quantitative results on the StreetScore dataset [20].

We consider each photo as a bag of five regions, and apply the pro-
posed HDMiR method or other multi-instance regression methods. It

Xiaobai Liu, Qi Chen, Yuanlu Xu, and Liang Lin

is noteworthy that similar observations can be drawn from the com-
parisons between the proposed multi-instance regression methods
and alternate methods. These results demonstrate that the proposed
regression method for place-centric street-view data can be gen-
eralized to the image-centric image data, and can achieve equally
promising perception accuracies.

Algorithms R?
Streetscore [20] 0.54
SVR+Deep Features 0.58
AlexNet [17] 0.62
VGGNet [24] 0.68
PlacesNet [31] 0.69
MIR [22]+VGGNet Features 0.72
HDMiR 0.84

Table 2: Quantitative results R? on the StreetScore Dataset.

S CONCLUSIONS

This paper presented a hierarchical deep multi-instance regression
(HDMiR) method for learning robust visual perception models from
weakly supervised images. We used advanced neural networks as
base models, and introduced a multi-instance regression network to
predict safety scores for instances, i.e. street-view images or their
image regions. We contributed an innovative hierarchical instance
representation and developed an EM algorithm to jointly identify
primary instances for each bag, and to learn the deep regression
network. Another significant effort of this work is to create a novel
place-centric urban perception dataset with objective safety scores,
which is different from most existing datasets which crowd-sourced
image-based safety scores from human beings. We apply the pro-
posed regression method over both the newly created dataset and
publicly available dataset. Results with comparisons to alternative
methods clearly demonstrated the advantages of the proposed meth-
ods.

The proposed HDMiR method has great potentials in various
regression problems, and the developed deep networks and EM tech-
niques can be applied to solve other types of perception tasks, e.g.,
house pricing, market analysis, and transportation demand estima-
tions.
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