
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 12, DECEMBER 2016 2273

Multi-loss Regularized Deep Neural Network
Chunyan Xu, Canyi Lu, Xiaodan Liang, Junbin Gao, Wei Zheng, Tianjiang Wang, and Shuicheng Yan

Abstract— A proper strategy to alleviate overfitting is critical
to a deep neural network (DNN). In this paper, we introduce the
cross-loss-function regularization for boosting the generalization
capability of the DNN, which results in the multi-loss regularized
DNN (ML-DNN) framework. For a particular learning task,
e.g., image classification, only a single-loss function is used for all
previous DNNs, and the intuition behind the multi-loss frame-
work is that the extra loss functions with different theoretical
motivations (e.g., pairwise loss and LambdaRank loss) may drag
the algorithm away from overfitting to one particular single-loss
function (e.g., softmax loss). In the training stage, we pretrain the
model with the single-core-loss function and then warm start the
whole ML-DNN with the convolutional parameters transferred
from the pretrained model. In the testing stage, the outputs by
the ML-DNN from different loss functions are fused with average
pooling to produce the ultimate prediction. The experiments con-
ducted on several benchmark datasets (CIFAR-10, CIFAR-100,
MNIST, and SVHN) demonstrate that the proposed ML-DNN
framework, instantiated by the recently proposed network in
network, considerably outperforms all other state-of-the-art
methods.

Index Terms— Deep neural network (DNN), multi-loss,
overfitting, visual classification.

I. INTRODUCTION

DUE to the increasing computing power and availability of
large training data, there has been a resurgence of interest

in neural networks. Especially, the deep neural network (DNN)
learning framework [1]–[4] has drawn much attention recently,
which has achieved very promising performance on the kind
of vision tasks, e.g., image classification [5], [6], pedestrian
detection [7], and scene labeling [8]. The successes of
the DNN frameworks have largely been attributed to

Manuscript received January 25, 2015; revised May 4, 2015 and
July 12, 2015; accepted September 1, 2015. Date of publication September 11,
2015; date of current version December 2, 2016. This work was supported
in part by the National Natural Science Foundation of China under Grant
61572214 and Grant U1233119 and in part by the Australian Research Council
Discovery Projects Funding Scheme under Project DP140102270. This paper
was recommended by Associate Editor W. Zeng.

C. Xu was with the Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117583. She is now with the
School of Computer Science and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China (e-mail: xuchunyan01@gmail.com).

C. Lu, X. Liang, and S. Yan are with the Department of Electrical and
Computer Engineering, National University of Singapore, Singapore 117583
(e-mail: canyilu@gmail.com; xdliang328@gmail.com; eleyans@nus.edu.sg).

J. Gao is with the School of Computing and Mathematics, Charles Sturt
University, Bathurst, NSW 2795, Australia (e-mail: jbgao@csu.edu.au).

W. Zheng is with the Beijing Samsung Telecom Research and Development
Center, Beijing, China (e-mail: w0209.zheng@samsung.com).

T. Wang is with the School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China (e-mail:
tjwang@hust.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2015.2477937

a considerable number of model parameters in many
convolution layers. For example, the winner of ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2014
classification challenge, i.e., GoogLeNet [9], employed a
22-layer-deep network. Although the DNN with a large
number of parameters has a powerful machine learning
capability, it often suffers from overfitting.

In recent literature, some regularization techniques have
been proposed to prevent the heavy overfitting during train-
ing DNNs, such as data augmentation [10], [11], weight
decay [12], dropout [13], [14], dropconnect [15], and sto-
chastic pooling [16]. Specifically, the most simple method
to alleviate overfitting [10], [11] is to manually enlarge the
training images with label-preserving transformations, such as
horizontal/vertical reflection and image translation. The weight
decay [12] is also a technique to help prevent overfitting
by adding a penalty to the maximum likelihood. In [13]
and [14], the dropout technique stochastically sets half of the
activations within a layer to zero for each training sample
in the training stage, while the dropconnect method [15] is
proposed to regularize large fully connected (fc) layers in
neural networks. The stochastic pooling method [16], which
replaces the conventional deterministic pooling operation with
a stochastic procedure, randomly picks up the activations
within each pooling region according to a multinomial distri-
bution of the activations within the pooling region. However,
these approaches may suffer from a certain limitation
(e.g., overfitting) for a particular loss function. The optimiza-
tion target (e.g., loss function) of visual recognition has not
been well explored to prevent overfitting, which is truly critical
to the training of the network.

In this paper, we propose the multi-loss regularized
DNN (ML-DNN) framework to harness the regularizations
among a set of different loss functions. The intu-
ition behind this multi-loss framework is that the loss
functions (e.g., pairwise ranking loss and LambdaRank
loss) with different theoretical motivations may prevent
the algorithmic overfitting to one single-loss function
(e.g., softmax loss). Specifically, the softmax loss function [1]
can be used for minimizing the cross-entropy loss over all
training samples. The pairwise ranking loss [18] takes the
preference order of label pairs into count in classification
problems, while the LambdaRank loss function [19], [20] is
introduced for optimizing the top-k classification accuracy.
Our ML-DNN learning framework can effectively combine
all the valuable properties of these loss functions by the
cross-loss-function regularization. Each kind of loss function
in our ML-DNN is selected based on different theoretical
motivations. Multiple-loss functions of our ML-DNN can
constrain the parameters of a neural network from different

1051-8215 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

2274 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 12, DECEMBER 2016

Fig. 1. Illustration of the structure of the proposed ML-DNN. The shared NIN has a network structure similar to that in [4], except for the last loss layer.
We feed some given images into the shared NIN and pass the output feature maps from the shared NIN into multiple-loss branches. Each loss branch is
composed of an fc layer and a loss layer. Example images are from the CIFAR-10 dataset [17].

aspects and help to regularly learn a DNN for boosting its
discriminative capability.

As shown in Fig. 1, our proposed framework proposes to
use the cross-loss-function regularization in the output layers,
which combines the softmax, pairwise ranking LambdaRank
top-1, and LambdaRank top-2 loss functions. In this paper,
we instantiate our ML-DNN framework under the architecture
of network in network (NIN) [4], which is one of the most
popular architectures used in computer vision problems due
to its model discriminability for local patches within the
receptive field and its reduced number of parameters. During
the ML-DNN training, the training images are first fed into
the shared NIN and several parallel fc layers, each of which
corresponds to some different loss layers. We pretrain the
model with the single-loss function, and then warm start the
whole ML-DNN with the convolutional parameters transferred
from the pretrained model. We feed the convolutional feature
maps of the shared NIN into multiple branches of the loss
functions. Based on these multiple-loss functions, the network
is trained by simultaneously optimizing all loss functions
with backpropagation. In the testing stage, the outputs by the
ML-DNN from different loss functions are fused with average
pooling to produce the ultimate prediction.

The major contributions of this paper can be summarized
as follows.

1) We propose a novel ML-DNN framework, which grace-
fully optimizes the architecture of DNN based on the
cross-loss-function regularization.

2) For the image classification task, we present some loss
functions (e.g., pairwise loss and LambdaRank top-k
loss) for learning a DNN. Multiple-loss functions are
simultaneously optimized with the stochastic gradient
descent (SGD) learning method.

3) Our ML-DNN is a very general framework for alle-
viating the overfitting during learning a DNN. Any
CNN architectures and any loss functions for different
vision tasks can be conveniently incorporated into our
framework.

4) The classification results on several standard datasets
well verify the effectiveness of our proposed ML-DNN
framework.

II. RELATED WORK

DNN learning has long been studied and applied in the
field of computer vision [1], [21]–[24]. More than a decade
ago, LeCun et al. [2] trained multilayer neural networks
with the back-propagation algorithm and the gradient learning
technique, and then demonstrated its effectiveness on the
handwritten digit recognition task. Recently, there has been
a resurgence of research interest in neural networks.

A. Neural Network Structure of Deep Learning
A classic convolutional network is composed of

alternatively stacked convolutional layers and spatial pooling
layers. The convolutional layer is to extract feature maps by
linear convolutional filters followed by nonlinear activation
functions (e.g., rectifier, sigmoid, and tanh) Spatial pooling is
to group the local features together from spatially adjacent
pixels, which is typically done to improve the robustness
to slight deformations of objects. The convolutional neural
network (CNN) [1] is a special type of neural network
that consists of five convolution layers, some of which are
followed by max-pooling layers, and three fc layers with
a final 1000-way softmax. The deep CNN has exhibited
good generalization power in image-related applications.
Recently, Krizhevsky et al. [1] has achieved a breakthrough,
outperforming the existing handcrafted features on ILSVRC
2012, which contains 1000 object classes. Another deep
network structure, namely, NIN [4], is proposed to build
a micronetwork with more complex structures to abstract
the data within the receptive field. It enhances model
discriminability for local patches within the receptive field.

B. Regularization Techniques of Deep Learning
Learning neural network models is prone to overfitting

because of the large number of parameters of the models.
Some regularization techniques [11]–[13] are necessary for
learning DNNs. Specifically, some data augmentation tech-
niques [10], [11] are usually used to enlarge the training
data, such as image translations, horizontal reflections, and
image rotation and scaling. Dropout, recently proposed in [13],
is another regularization approach that stochastically sets half
the activations within a layer to zero for each training sample

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ML-DNN 2275

during training. Wan et al. [15] proposed the dropconnect reg-
ularization, which sets a randomly selected subset of weights
within the network to zero. Weight decay [12] was also
proposed to prevent overfitting by adding a penalty to the
maximum likelihood. The stochastic pooling method [16] was
proposed to randomly select the pooled map responses by
sampling from a multinomial distribution formed from the
activations of each pooling region.

C. Loss Functions of Deep Learning

Some loss functions have also been introduced for learning
a single DNN, e.g., softmax loss function for the classification
task [4], [5], �2-norm loss function for the detection task,
and sigmoid cross-entropy loss function for the multilabel
classification task. Recently, Gkioxari et al. [25] have trained
a single CNN [1] jointly for solving person detection, pose
estimation, and action classification tasks, where each task is
associated with a loss function. Li et al. [26] simultaneously
learned a pose-joint regressor and a sliding-window body-part
detector in a DNN, which can be seen as a heterogeneous
multitask learning method. The above works can be classified
into two categories: 1) single-task learning with a single-loss
function and 2) multitask learning with multiple-loss functions,
both in a single DNN. Recently, Szegedy et al. [9] also
proposed a deep CNN architecture, in which three softmax
loss functions are adopted, one is a total loss of the network
and the other two can be regarded as the auxiliary classifiers in
the training process. At the testing state, the two auxiliary loss
functions and their corresponding subnetworks are discarded.
This work mainly improves the discriminative capability of
a neural network by appending multiple same loss functions
in different stages of neural network, which alleviates the
problem of vanishing gradient in a deeper CNN architecture
to some extent. However, different from their usage of same
loss functions, we use multiple different loss functions with
different theoretical motivations at the end of a neural network,
which allow each training sample to impose much more
constraint on the parameters of a neural network and prevent
the neural network from being too sure. From the aspect of
regularization, it also should be noted that our ML-DNN can
be posed as a good regularizer for preventing overfitting using
multiple-loss functions in one network.

III. MULTI-LOSS REGULARIZED DNN

In this section, we first introduce the network structure of
the proposed ML-DNN. Second, several loss functions are
investigated for cross-loss-function regularization. Third, we
show how to learn an ML-DNN by simultaneously optimizing
multiple-loss functions. Finally, testing with the ML-DNN is
conducted with the average pooling algorithm.

A. Network Structure

The structure of the overall ML-DNN framework is mainly
composed of two parts, namely, the shared NIN and multiple-
loss branches, as shown in Fig. 1.

1) Shared NIN: The shared NIN has a similar network
architecture as NIN [4]. By building microneural networks
with more complex structures to abstract the data within the
receptive field, Lin et al. [4] proposed a novel deep network

structure called NIN to enhance model discriminability for
local patches within the receptive field. As shown in Fig. 1,
the microneural network is instantiated with a multilayer
preceptron (MLP), which is a potent function approximator.
The feature maps are obtained by sliding the micronetworks
over the input in a similar way as CNN [1], [2]. The multilayer
perceptron convolution (MLP-conv) maps the input local patch
to the output feature vector with an MLP, which consists of
multiple fc layers with nonlinear activation functions. The
shared NIN is implemented by stacking the above three MLP-
conv layers. For different loss functions, we use one shared
NIN in the structure of the ML-DNN. The reason is that
the MLP-conv layers form the general hierarchical feature
representation for image data, which should be shared by all
loss functions.

2) Multi-Loss Regularization: The multiple-loss func-
tions correspond to multiple-loss branches of our proposed
ML-DNN framework. Multiple-loss functions may be able to
prevent the algorithm away from overfitting to one single-loss
function, which may occur with only one loss function used.
As shown in Fig. 1, multiple-loss branches are embedded into
the shared NIN. For each loss branch, one fc layer and one
output layer are included. The fc layer is followed by the
Rectified Linear Units (ReLu) nonlinearity and 0.5 dropout.
We optimize each output layer with different loss functions.
During the network training, we feed the convolutional feature
maps of the shared NIN into multiple branches of the loss
functions. Based on these multiple-loss functions, the network
is trained by simultaneously optimizing all loss functions with
backpropagation. The last convolution layer in the shared NIN
is connected to multiple fc layers. The parameter gradients
from different loss functions can thus be conveniently used to
optimize the parameters of the shared NIN. Different kinds
of loss functions are based on different theoretical motiva-
tions. For example, the softmax loss, pairwise ranking loss,
and LambdaRank top-1 loss belong to the top-1 loss, while
the LambdaRank top-2 loss is a kind of top-2 loss. Thus,
different loss functions have certain complementariness and
the gradients brought by them help iteratively learn parameters
from different aspects. In this way, the whole ML-DNN is able
to consider all these multiple-loss functions simultaneously
and avoid the overfitting problem during training. It is worth
noting that our framework can be instantiated by any CNN
architectures and any loss functions that may be designed
for different application scenarios in computer vision. In this
paper, we used several most widely used loss functions for
visual recognition.

B. Loss Functions

In this section, we introduce several widely used loss
functions in our proposed multi-loss regularization with
more details. We use the softmax loss, pairwise ranking
loss, and LambdaRank loss, which enjoy quite different reg-
ularization properties to regularize the training of DNNs.
It is expected that using these loss functions will effectively
alleviate the overfitting issue in the previous DNNs.

For clarity, some notations used in the following are intro-
duced here. We use c+

i and c−
i to denote the positive and

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

2276 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 12, DECEMBER 2016

negative labels of the image Xi , i = 1, . . . , N , where N is
the total number of training images and |c+

i | is the number
of positive labels. We use q j (Xi) to specify the discrete
probability distribution of the image Xi in the j th class,
j = 1, . . . , C , where C is the number of possible classes.

1) Softmax Loss: Most of previous DNNs [1], [4], [5]
employ the softmax loss function for optimizing DNN para-
meters. With the softmax function, the normalized probability
of the image Xi in the j th class can be computed by

pi, j = exp(q j (Xi))
∑C

j=1 exp(q j (Xi))
. (1)

To minimize the Kullback Leibler divergence between the
predictions and the ground-truth probabilities, the softmax cost
function is defined as

Jsoftmax = − 1

N

N∑

i=1

C∑

j=1

p̄i, j log(pi, j) (2)

where p̄i, j denotes the ground-truth probability between the
image Xi in class j . Each image Xi corresponds to a label
vector yi, j ∈ R

C , with yi, j = 1 and p̄i, j = 1 indicating the
presence of a label for the image Xi , and yi, j = 0 and p̄i, j = 0
indicating the absence of a label for the image Xi .

2) Pairwise Ranking Loss: The second loss function we
consider is the pairwise ranking loss [18], [27]. The pairwise
ranking method can transform the classification problem into
a task of classifying the preference order of label pairs:
given any two labels, it will decide which label should be
ranked first. The pairwise ranking loss method minimizes the
classification error on the pairs of labels. Specifically, the goal
of the pairwise ranking method is to rank all the labels so
that positive labels always have higher prediction scores than
negative labels. The pairwise ranking loss Jpairwise is defined as

Jpairwise = 1

N

N∑

i=1

c+
i∑

m=1

c−
i∑

n=1

max(0, 1 − qm(Xi) + qn(Xi)) (3)

where m = 1, . . . , c+
i and n = 1, . . . , c−

i represent the indexes
of the positive labels and negative labels, respectively. By min-
imizing Jpairwise, we compute the subgradient of this loss
function during the training of the ML-DNN.

3) LambdaRank Loss: In order to directly optimize
the top-k classification accuracy, the third loss function,
LambdaRank loss, is introduced to learn an ML-DNN. The
LambdaRank method [28] obtains the desired gradients
directly, rather than deriving them from a cost loss function.
In this way, it can bypass the difficulties brought by the ranking
loss function. The key observation of LambdaRank is that
in order to train a DNN model, we do not need the losses
themselves; we need only the gradients of the losses with
respect to the DNN model outputs.

Before discussing the LambdaRank loss function, we first
introduce some information about RankNet [19]. For a given
image Xi , the set of the label pairs is denoted by S, (m, n) ∈ S
if and only if m ∈ c+

i and n ∈ c−
i . The two outputs qm(Xi)

and qn(Xi) are mapped to a learned probability that the

mth label is ranked higher than the nth label by a sigmoid
function, and thus

pm,n = 1

1 + exp(−γ (qm(Xi) − qn(Xi)))
(4)

where the parameter γ is directly related to scaling. We adopt
the cross-entropy loss function, which penalizes the deviation
of the model output probabilities from the desired probabili-
ties. Then the cost is

Jmn = log(1 + exp(−γ (qm(Xi) − qn(Xi))). (5)

The gradient of the above loss function is

∂ Jmn

∂qm(Xi)
= −γ

1 + exp(−γ (qm(Xi) − qn(Xi))
∂ Jmn

∂qn(Xi)
= − ∂ Jmn

∂qm(Xi)
. (6)

From the RankNet to LambdaRank loss, the gradient is
multiplied by ηmn , which calculates the changes in evaluation
measures by swapping the rank position of the mth label and
the nth label.

The model can directly optimize the evaluation mea-
sures [20], and the gradient of qm(Xi) is

∂ Jmn

∂qm(Xi)
=

∑

(m,n)∈S
ηmn

−γ

1 + exp(γ (qm(Xi) − qn(Xi))
. (7)

Similarly

∂ Jmn

∂qn(Xi)
=

∑

(m,n)∈S
ηmn

γ

1 + exp(γ (qm(Xi) − qn(Xi))
. (8)

In order to optimize the loss function with top-k evaluation
measures, ηmn(k) is defined as the order change in top-k. It
is easily observed that ηmn(k) = (1/|c+

i |), if m is in the top-k
prediction (m ≤ k) and n is not in the top-k prediction (n > k).
Otherwise, η(m, n) is zero. In this paper, we consider only the
top-1 and top-2 evaluation measures, and then name them as
LambdaRank top-1 loss function and LambdaRank top-2 loss
function, respectively.

C. Parameter Learning of an ML-DNN

The DNN with a large number of parameters has a
powerful machine learning capability, but it is difficult
to prevent it from overfitting. To address this problem,
some regularization techniques are proposed for training
DNNs, such as data augmentation [10], [11], weight
decay [12], dropout [13], [14], dropconnected [15],
and stochastic pooling [16]. These approaches may suffer
from a certain limitation for a particular loss function. The
optimization of loss functions has not been well explored
to prevent the overfitting problem, which is truly critical to
learning parameters.

In order to alleviate overfitting, we propose to train an
ML-DNN model with the multiple-loss functions in this paper.
For learning an ML-DNN, we adopt four kinds of loss
functions, including softmax loss, pairwise loss, LambdaRank
top-1 loss, and LambdaRank top-2 loss. The motivation of this
ML-DNN framework is that other loss functions, e.g., pairwise

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ML-DNN 2277

ranking loss and LambdaRank loss, may have the potential to
prevent the algorithm overfitting to one softmax loss function.
Therefore, the key idea of our ML-DNN learning framework
is to use the cross-loss-function regularization for boosting the
generalization capability of the ML-DNN model. Based on the
above loss functions, we propose the multi-loss regularization
method for learning an effective ML-DNN model.

First, we warm start the shared NIN by initializing it with
the pretrained parameters in [4]. In order to improve the gen-
eralization capability of DNNs, fine tuning is then performed
to adjust the parameters of the ML-DNN with the cross-loss-
function regularization method. We learn an ML-DNN model
by simultaneously optimizing multiple-loss functions in the
training stage. The underlying reason for warm start is that
our offline experiments show that when the step size is large
in the early stages, the gradients from different objects are
quite diverse, which makes the optimization quite slow in
convergence. Warm start can well avoid this issue. We then use
the back-propagation technique [2] to update the parameters
of the ML-DNN model. Given some training images, the
predicted probabilities from the multiple-loss functions are
calculated and the corresponding gradients are obtained by
backpropagation through the network. For the shared NIN,
the gradients from the fc layers are summed together for
parameter updating. In each iteration, the neurons in dropout
layers will be stochastically selected with a probability of 0.5
to forward their activation to the output units and only the
selected neurons will participate in the backpropagation during
this iteration. Similarly, we adopt all the neurons for prediction
with their activation value multiplied by 0.5 for normalization.

D. Testing With Average Pooling

For each test image, we feed it into our ML-DNN frame-
work and output several probability outputs corresponding to
the different loss functions in the training. We then fuse the
probabilities from the different loss functions. We adopt the
average pooling technique to produce the ultimate prediction
of the testing image. The probability of the image Xi with the
j th label is given by

Pj (Xi) =
∑L

l=1 Pl, j (Xi)

L
(9)

where L is the total number of loss functions and Pl, j (Xi)
denotes the probability of the image Xi from the lth loss
function.

Our testing process with the ML-DNN model is different
from simply combining the predictions of several DNNs.
We can analyze their differences from three characteristics.

1) Previous combination methods often separately train
different DNNs with same/different loss functions, and
their predictions are then combined with the pooling
technique in the testing. It is difficult to alleviate the
overfitting problem for learning DNNs.

2) The training time of training one multi-loss convolu-
tional neural network is only slightly more than training
a DNN with a single-loss function, that is, only the
additional fc layer and output layers are trained instead

of training all convolution layers many times for all lost
functions.

3) The ML-DNN uses the cross-loss-function regulariza-
tion, which can boost the generalization capability of the
DNN. The diverse properties of different loss functions
can be combined in our unified framework. Therefore,
learning the ML-DNN model is not only faster than
training multiple DNNs but also can improve the perfor-
mance of DNN by alleviating the overfitting problem.

IV. EXPERIMENTS

We evaluate the effectiveness of our proposed ML-DNN
method on four standard benchmark datasets: Cana-
dian Institute for Advanced Research-10 (CIFAR-10) [17],
Canadian Institute for Advanced Research-100 (CIFAR-
100) [17], Mixed National Institute of Standards and Tech-
nology (MNIST) [2], and Street View House Numbers
(SVHN) [31].

A. Experimental Settings
To ensure the fairness of comparisons with previous base-

lines, all experiments are conducted based on the following
experimental setups. Test error is used as the evaluation metric.
We use four different loss functions for learning an ML-DNN
model: softmax loss, pairwise ranking loss, LambdaRank
top-1, and LambdaRank top-2 loss functions. For the shared
NIN, we follow the same network definitions used in [4],
which are publicly available.1 For each loss branch of our
ML-DNN, the size of the fc layer is 256 for the CIFAR-10,
MNIST, and SVHN datasets, and 2560 for the CIFAR-100
dataset, followed by the ReLU nonlinearity and dropout (50%)
layer. For updating the ML-DNN parameters, we use the
SGD learning method with the minibatch size of 128 at a
fixed constant momentum value of 0.9. The weight decay
is set to 0.001. The global learning rate of learning the
ML-DNN model is set to 0.01. We decrease the learning rate
every 100k iterations by 10. For the parameter learning of
ML-DNN, the local learning rate of the shared NIN is set
to 0.01. For each loss branch, the learning rate for all fc layers
and all loss layers is the same and set to 1.0. The maximum
of iterations is set to 120 000.

B. CIFAR-10
The CIFAR-10 dataset [17] consists of 60 000 32×32 color

images of ten classes, with 6000 images per class. There are
50 000 training images and 10 000 test images. The dataset is
divided into five training batches and one test batch, each with
10 000 images. The test batch contains 1000 randomly selected
images from each class. Following the same experiment set-
tings used in [5], we process the data with the same global
contrast normalization and zero component analysis whitening.
To fairly compare with the other previous algorithms [4], [5],
we have conducted extensive experiments under two settings
(i.e., without data augmentation and with data augmentation).
In terms of data augmentation, we augment the images by zero
padding 4 pixels on each direction and then perform corner
cropping and random flipping during training.

1https://github.com/mavenlin/cuda-convnet/tree/master/NIN

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

2278 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 12, DECEMBER 2016

TABLE I

CIFAR-10 CLASSIFICATION ERRORS OF VARIOUS METHODS

Under above two settings, we compare our proposed
ML-DNN method with previous DNN regularization
techniques, including stochastic pooling [16], maxout
networks [5], NIN [4], and probabilistic maxout units [29].
The detailed classification error results are shown in Table I.
The comparison results on CIFAR-10 indicate that the
proposed ML-DNN method achieves 9.55% test errors
without data augmentation and 8.12% test error with data
augmentation, both of which perform better than all the
baselines. The ML-DNN improves the performance of
the NIN [4] of 10.41% by more than 0.8% without data
augmentation and that of 8.81% by higher than 0.69%
with data augmentation. The baseline methods achieve the
classification error of 15.13% for the stochastic pooling
method [16], 11.68% for maxout networks [5], and 11.35%
for maxout units [29], all of which are much higher than
the test error of our ML-DNN without data augmentation.
Similarly, we also improve a test error by 0.69%, compared
with the baseline NIN [4]. This well verifies the superiority of
our ML-DNN method, which is very effective for achieving
better generalization capability during the ML-DNN training.

C. CIFAR-100

This CIFAR-100 dataset [17] has the same number of
images as the CIFAR-10 database, but contains 100 classes,
with only one tenth as labeled examples per class. There are
500 training images and 100 testing images per class. For
the CIFAR-100 dataset, we adopt the same network settings
and data preprocessing (including the data augmentation tech-
nique) as the CIFAR-10, described in [4].

Table II shows the performances of our proposed ML-DNN
and other state-of-the-art methods. It can be seen that the
ML-DNN method gets a misclassification test error of 34.18%,
which significantly improves the performance over the NIN [4]
by less 1.5% errors. In particular, our method also beats all
other regularization methods with a large margin, e.g., 42.51%,
38.57%, and 38.14% for stochastic pooling [16], maxout
networks [5], and probabilistic maxout units [29], respectively.
Moreover, we also have conducted an experiment with data
augmentation and achieved a test error of 31.47%, which is
lower than NIN [4] by 2.06%. Our proposed ML-DNN method
can obtain better performances over other state-of-the-art
methods on classifying 100 classes.

TABLE II

CIFAR-100 CLASSIFICATION ERRORS OF VARIOUS METHODS

TABLE III

MNIST CLASSIFICATION ERRORS OF VARIOUS METHODS

TABLE IV

SVHN CLASSIFICATION ERRORS OF VARIOUS METHODS

D. MNIST

The MNIST handwritten digit classification dataset [2]
consists of 28 × 28 pixel grayscale images of handwritten
digits (from 0 to 9). There are 60 000 training images and
10 000 testing images in total.

The comparison results are presented in Table III. It can
be observed that our proposed method outperforms the com-
peting methods on the MNIST dataset. It is noted that the
test error of our ML-DNN is lower than all the competing
methods (such as NIN [4], maxout networks [5], and 2 layer
CNN + 2 layer NN and stochastic pooling [16]). Our
ML-DNN method gets 0.42% classification error and gets a
lower classification error than the baseline method NIN
by 0.05%. The performance on MNIST also demonstrates the
advantage of the ML-DNN method.

E. SVHN

The SVHN dataset [31] is composed of 73 257 images for
training, 26 032 images for testing, and 531 131 extra training
color images of 32 × 32. The task of the dataset is to classify
the digit located at the center of each image. Following [5],
we select out 400 samples per class from the training set
and 200 samples per class from the extra set. The rest of
the training set and the extra set are used for training.
We preprocess the dataset by local contrast normalization.

As reported in Table IV, the classification error of the
ML-DNN significantly outperforms the other state-of-the-
art methods including the stochastic pooling [16], maxout

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ML-DNN 2279

networks [5], multidigit number recognition method [30],
and NIN [4]. The proposed ML-DNN method improves the
performance by 0.24% and 0.43% over the state-of-the-art
methods [30] and [4], respectively. Compared with the existing
stochastic pooling and maxout networks methods, the
ML-DNN significantly improves the performance by 0.88%
and 0.55%, respectively. It demonstrates that the method
effectively works for boosting the generalization capability of
the ML-DNN model.

F. Algorithm Analysis

As observed from Tables I–IV, the classification errors
achieved by our ML-DNN method are reported on the above
four datasets, 9.55% for CIFAR-10, 34.18% for CIFAR-100,
0.42% for MNIST, and 1.92% for SVHN. The following can
be concluded from Tables I–IV.

1) The ML-DNN method does improve the performance
of the current DNN classification framework and even
on the difficult CIFAR-100 dataset.

2) Our regularized technique with the cross-loss function
plays an important role in alleviating overfitting problem
for learning a capable DNN model and the resulting
ML-DNN can obviously improve the classification per-
formance.

3) Compared with some existing regularization techniques
(e.g., dropout, stochastic pooling, and maxout network),
the ML-DNN does improve the capability of the DNN
model by multi-loss regularization.

To validate the regularization capability of the ML-DNN,
we show the comparison results of different DNNs using
different single-loss functions, their combined average results
(namely as Average results from four model combination),
and our ML-DNN results, which are presented in Table V.
The architecture of single-loss DNNs also utilizes the NIN
architecture, followed by a single-loss function. The difference
between the single-loss DNNs (e.g., NIN + softmax loss,
NIN + pairwise ranking loss, NIN + LambdaRank top-1
loss, and NIN + LambdaRank top-2 loss) and the ML-DNN
model is the strategy of using loss function (e.g., single loss
or multiple different loss functions). The ML-DNN method
outperforms the four kinds of the single-loss DNNs and
even surpasses the most popular softmax loss for learning
a DNN model. Moreover, our ML-DNN outperforms the
average results by combining the four DNNs with single loss
by 0.03% and 0.6% over CIFAR10 and CIFAR-100 without
data augmentation, and 0.22% and 0.98% over CIFAR10 and
CIFAR-100 with data augmentation. This superiority can be
observed in different datasets, which can further validate the
effectiveness of the ML-DNN.

We furthermore analyze the results of each loss branch in
the framework of our ML-DNN. Each loss branch of the
ML-DNN corresponds to a fc layer and a loss layer.
The detailed classification test errors are shown in Table VI.
The result of our ML-DNN, which combines the classification
results of four branches, is better than the results from each
branch of the ML-DNN. Compared the results of the single-
loss DNN in Table V, each branch of the ML-DNN can get

Fig. 2. Exemplar test images from CIFAR-10 [17]. These images are wrongly
classified by the NIN, but correctly classified by the ML-DNN. There are
two label names marked below each images: the wrong classification by the
NIN, in black, and the right classification by the ML-DNN, in red.

a higher classification result. For example, the softmax loss
branch of our ML-DNN outperforms the single-loss DNN with
softmax loss, e.g., 10.41% versus 9.66% on CIFAR-10 without
data augmentation and 33.53% versus 32.34% on CIFAR-100
with data augmentation. It demonstrates that compared with
the single-loss DNN, the ML-DNN method can boost the per-
formance for the image classification task on four benchmark
datasets.

Some test images from the CIFAR-10 dataset [17] are shown
in Fig. 2. These images are wrongly classified by the NIN,
but correctly classified by the ML-DNN. There are two label
names marked below each image, one of which is its wrong
class with black font by the NIN and the other is its right label
(i.e., the ground-truth label) by the ML-DNN. For example,
the bird and airplane have the blue sky, two wings, and a
similar color. The automobile and truck are also similar in
appearance (such as wheels, seat, and color). Our proposed
ML-DNN learning employs cross-loss-function regularization,
while the NIN learns the parameters with only a softmax loss
function. The effectiveness of our proposed ML-DNN again
speaks well that our method can successfully recognize the
confusing and difficult objects.

As shown in Fig. 3, we further report some predicted
probabilities from the four different loss functions and the
fused results using the ML-DNN model. The output lay-
ers predict different label probabilities, due to the intrinsic
properties of different loss functions. For example, for the
image of the first column, the predicted label by the softmax
loss and pairwise ranking loss are different from that of
the LambdaRank top-1 loss and the LambdaRank top-1 loss
functions, while the ultimate predicted label is the same with
that of the LambdaRank top-1 loss and the LambdaRank top-1
loss functions. By employing the average pooling technique to
fuse all the probabilities from all loss layers, we can achieve
the best results by balancing their probabilities. The average
pooling results can overall be considered the outputs of the
ML-DNN from four different loss functions and improve the
generalization capability of the ML-DNN.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

2280 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 12, DECEMBER 2016

TABLE V

CLASSIFICATION ERROR COMPARISONS BETWEEN THE SINGLE-LOSS DNNs AND THE ML-DNN

TABLE VI

CLASSIFICATION ERRORS OF EACH BRANCH OF THE ML-DNN AND THE ML-DNN

Fig. 3. Exemplar images with the predicted probabilities on the CIFAR-100 test dataset [17] using the ML-DNN. Some testing images and 100 predicted
probabilities for all labels are shown. The predictions from the second to fifth rows are from four different loss functions. The ultimate results in the last row
are produced by fusing the predictions from four different loss functions with the average pooling technique. In addition, the red points in the last row are
marked for the ground-truth label of the corresponding test images.

To further analyze the complementary among multiple-loss
functions, we show the gradient values brought by the four dif-
ferent loss functions in our ML-DNN framework. As can be
observed in Fig. 4, the four different curves represent the gradi-
ent values brought by the four different loss branches, such as
softmax loss (blue curve), pairwise ranking loss (green curve),
LambdaRank top-1 loss (magenta curve), and LambdaRank
top-2 loss (light blue curve). The light blue curve, which
presents the gradient values brought from the LambdaRank
top-2 loss branch, is different from other three curves of top-1
loss branches (e.g., softmax loss, pairwise ranking loss and

LambdaRank top-1 loss). We can thus say that the top-2 loss
function is complementary to these top-1 loss functions to
some extent. Moreover, it can be observed that the gradient
values (blue, green, and magenta curves) brought by the three
top-1 loss functions also have a certain degree of difference.
Therefore, multiple-loss functions of our ML-DNN can help
constrain the parameters of a neural network from different
aspects. From the above analyses and the practical numerical
experiments conducted in this paper, we can conclude that the
multi-loss can actually guide learning a better network and
improve the classification performance of it.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ML-DNN 2281

Fig. 4. Gradient values brought by four loss branches on the CIFAR-100 dataset. In order to conveniently present the gradient values (y) brought by the
four loss branches, we just show some gradient values (i.e., the first gradient values of the upper left corner of each feature maps over all channels) in the
100th iteration of the optimization process. The horizontal axis (x = 192) is the number of channels. The four different curves (blue, green, magenta, and
light blue curves) denote the gradient values brought by four different loss branches, e.g., softmax loss, pairwise ranking loss, LambdaRank top-1 loss, and
LambdaRank top-2 loss, respectively.

TABLE VII

CLASSIFICATION ERRORS OF VARIOUS METHODS

ON THE ImageNet DATASET

To evaluate the performance of our ML-DNN on the com-
pelling and significantly harder vision task, we perform an
experiment on the ImageNet dataset [32]. For the ImageNet
dataset, we adopt the same setting with [33], which extracted
random 224 × 224 patches from 256 × 256 training images
and then trained a DNN on these patches. In the training
process, we also crop 224 × 224 patches from the middle
of test images. As described in Section III, the structure of
the ML-DNN framework is composed of the shared NIN and
multiple-loss branches, while our ML-DNN on this compelling
problem also employs the same multiple-loss branches,
but adopts a deeper DNN structure, i.e., Visual Geometry
Group (VGG) (deep16) network [33]. Following [33], we
also evaluate the performance from two aspects, the top-1
test error and the top-5 test error. The detailed test error of
various methods on the ImageNet dataset can be observed
in Table VII. Our ML-DNN slightly ourperforms the VGG
(deep16) network with single loss: 28.46% versus 28.97% for
the top-1 test error and 9.8% versus 10.15% for the top-5
test error. The main reason for these improvements on this
challenging task may be that the ML-DNN can well boost
its discriminative capability by considering cross-loss-function
regularization, even with the deeper network architecture.

V. CONCLUSION

In this paper, we proposed a general multi-loss regularized
DNN framework for alleviating the overfitting issue of DNN.

To boost the generalization capability of DNN, this general
scheme allows us to learn an ML-DNN model by simul-
taneously optimizing multiple-loss functions. For the image
classification task, we studied the loss functions, pairwise loss,
and LambdaRank top-k loss, for learning the ML-DNN model.
With the average pooling technique, the final prediction can
be simply computed from the outputs of the ML-DNN model
from different loss functions. Extensive experimental results
on the CIFAR-10, CIFAR-100, MNIST, and SVHN datasets
clearly demonstrate that the proposed ML-DNN framework
achieved the state-of-the-art performances. In the future, we
plan to further explore the performance of the ML-DNN with
other vision tasks, e.g., object detection, image retrieval, and
image annotation.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[3] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009,
pp. 609–616.

[4] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proc. Int. Conf.
Learn. Represent., 2014.

[5] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. (2013). “Maxout networks.” [Online]. Available:
http://arxiv.org/abs/1302.4389

[6] Y. Wei et al. (2014). “CNN: Single-label to multi-label.” [Online].
Available: http://arxiv.org/abs/1406.5726

[7] X. Zeng, W. Ouyang, M. Wang, and X. Wang, “Deep learning of scene-
specific classifier for pedestrian detection,” in Proc. 13th Eur. Conf.
Comput. Vis., 2014, pp. 472–487.

[8] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical
features for scene labeling,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[9] C. Szegedy et al. (2014). “Going deeper with convolutions.” [Online].
Available: http://arxiv.org/abs/1409.4842

[10] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3642–3649.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

2282 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 12, DECEMBER 2016

[11] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convo-
lutional neural networks applied to visual document analysis,” in Proc.
7th Int. Conf. Document Anal. Recognit., vol. 2. 2003, pp. 958–963.

[12] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Clarendon, 1995.

[13] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. (2012). “Improving neural networks by pre-
venting co-adaptation of feature detectors.” [Online]. Available:
http://arxiv.org/abs/1207.0580

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[15] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization
of neural networks using DropConnect,” in Proc. 30th Int. Conf. Mach.
Learn., 2013, pp. 1058–1066.

[16] M. D. Zeiler and R. Fergus. (2013). “Stochastic pooling for regular-
ization of deep convolutional neural networks.” [Online]. Available:
http://arxiv.org/abs/1301.3557

[17] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, 2009.

[18] T. Joachims, “Optimizing search engines using clickthrough data,” in
Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2002, pp. 133–142.

[19] C. Burges et al., “Learning to rank using gradient descent,” in Proc.
22nd Int. Conf. Mach. Learn., 2005, pp. 89–96.

[20] P. Donmez, K. M. Svore, and C. J. C. Burges, “On the local optimality
of LambdaRank,” in Proc. 32nd Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr., 2009, pp. 460–467.

[21] S. Mohamed and G. Rubino, “A study of real-time packet video
quality using random neural networks,” IEEE Trans. Circuits Syst. Video
Technol., vol. 12, no. 12, pp. 1071–1083, Dec. 2002.

[22] H. Choi and C. Lee, “Motion adaptive deinterlacing with modular neural
networks,” IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 6,
pp. 844–849, Jun. 2011.

[23] K. Kim, S. Lee, J.-Y. Kim, M. Kim, and H.-J. Yoo, “A configurable
heterogeneous multicore architecture with cellular neural network for
real-time object recognition,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 19, no. 11, pp. 1612–1622, Nov. 2009.

[24] N. Sudha, A. R. Mohan, and P. K. Meher, “A self-configurable systolic
architecture for face recognition system based on principal component
neural network,” IEEE Trans. Circuits Syst. Video Technol., vol. 21,
no. 8, pp. 1071–1084, Aug. 2011.

[25] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. (2014).
“R-CNNs for pose estimation and action detection.” [Online]. Available:
http://arxiv.org/abs/1406.5212

[26] S. Li, Z.-Q. Liu, and A. B. Chan, “Heterogeneous multi-task learning
for human pose estimation with deep convolutional neural network,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014,
pp. 488–495.

[27] J. Li, Y. Tian, T. Huang, and W. Gao, “Multi-task rank learning for
visual saliency estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 21, no. 5, pp. 623–636, May 2011.

[28] C. J. C. Burges, “From RankNet to LambdaRank to LambdaMart:
An overview,” Learning, vol. 11, pp. 523–581, 2010.

[29] J. T. Springenberg and M. Riedmiller. (2013). “Improving deep
neural networks with probabilistic maxout units.” [Online]. Available:
http://arxiv.org/abs/1312.6116

[30] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet.
(2013). “Multi-digit number recognition from street view imagery
using deep convolutional neural networks.” [Online]. Available:
http://arxiv.org/abs/1312.6082

[31] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011,
pp. 4–12.

[32] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. CVPR,
Jun. 2009, pp. 248–255.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2014.

[34] A. Berg, J. Deng, and F. F. Li. (2010). ImagNet Large-Scale
Visual Recognition Challenge. [Online]. Available: http://image-
net.org/challenges/LSVRC/2010/

[35] J. Sanchez and F. Perronnin, “High-dimensional signature compression
for large-scale image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2011, pp. 1665–1672.

Chunyan Xu received the B.Sc. degree from
Shandong Normal University, Jinan, China, in 2007,
the M.Sc. degree from Huazhong Normal University,
Wuhan, China, in 2010, and the Ph.D. degree from
the School of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, in 2015.

She was a Visiting Scholar with the National
University of Singapore, Singapore, from 2013 to
2015. She is currently a Lecturer with the School of
Computer Science and Engineering, Nanjing Univer-

sity of Science and Technology, Nanjing, China. Her current research interests
include deep neural network, computer vision, manifold learning, and kernel
methods.

Canyi Lu received the bachelor of mathematics
from Fuzhou University, in 2009, and the mas-
ter’s degree from the University of Science and
Technology of China in the pattern recognition and
intelligent system in 2012. From August 2013, he
was a Ph.D. Student with the Department of Electri-
cal and Computer Engineering, National University
of Singapore. His research interests include com-
puter vision and machine learning. His homepage
is https://sites.google.com/site/canyilu.

Xiaodan Liang is currently pursuing the
Ph.D. degree with the School of Information
Science and Technology, Sun Yat-sen University,
Guangzhou, China.

She is with the National University of Singapore,
Singapore, as a Research Intern. Her current
research interests include semantic segmentation,
object/action recognition, and medical image
analysis.

Junbin Gao received the B.Sc. degree in compu-
tational mathematics from the Huazhong University
of Science and Technology (HUST), Wuhan, China,
in 1982, and the Ph.D. degree from the Dalian
University of Technology, Dalian, China, in 1991.

He was an Associate Lecturer, a Lecturer,
an Associate Professor, and a Professor with
the Department of Mathematics, HUST, from
1982 to 2001. He was a Senior Lecturer and
Lecturer in Computer Science with the University
of New England, Armidale, NSW, Australia, from

2001 to 2005. He is currently a Professor of Computing Science with the
School of Computing and Mathematics, Charles Sturt University, Bathurst,
NSW, Australia. His current research interests include machine learning, data
mining, Bayesian learning and inference, and image analysis.

Wei Zheng received the bachelor’s degree from
Tsinghua University, Beijing, China, in 2006, and
the Ph.D. degree from the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
in 2013.

He is currently a Researcher with the Beijing
Samsung Telecom Research and Development Cen-
ter, Beijing. His current research interests include
image categorization, object detection, and scene
analysis.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ML-DNN 2283

Tianjiang Wang received the B.Sc. degree in com-
putational mathematics and the Ph.D. degree in
computer science from the Huazhong University of
Science and Technology (HUST), Wuhan, China, in
1982 and 1999, respectively.

He is currently a Professor with the School of
Computer Science, HUST. He has finished some
related projects and authored over 20 related papers.
His current research interests include machine learn-
ing, computer vision, and data mining.

Shuicheng Yan was an ISI Highly Cited Researcher
in 2014. He is currently an Associate Professor
with the Department of Electrical and Computer
Engineering, National University of Singapore,
Singapore, and the Founding Leader of the Learning
and Vision Research Group. He has authored or
co-authored hundreds of technical papers over a
wide range of research topics, with Google Scholar
citation >15 000 times and an H-index of 51. His
current research interests include machine learning,
computer vision, and multimedia.

Dr. Yan was a fellow of the International Association for Pattern Recognition
in 2014. He received best paper awards from ACM Multimedia (ACM MM)
(Best Paper and Best Student Paper) in 2013, ACM MM (Best Demo) in
2012, the Pacific-Rim Conference on Multimedia in 2011, ACM MM in
2010, the International Conference on Multimedia and Expo in 2010, and
the International Conference on Internet Multimedia Computing and Service
in 2009, the Runner-Up Prize in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2013, the winner prize of the detection task in
ILSVRC in 2014, the winner prizes of the classification task in PASCAL
VOC from 2010 to 2012, the winner prize of the segmentation task in
PASCAL VOC in 2012, the honorable mention prize of the detection task
in PASCAL VOC in 2010, the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS FOR VIDEO TECHNOLOGY Best Associate Editor Award in 2010,
the Young Faculty Research Award in 2010, the Singapore Young Scientist
Award in 2011, and the NUS Young Researcher Award in 2012.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:57:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

