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Integrating Spatio-Temporal Context with Multiview
Representation for Object Recognition

in Visual Surveillance
Xiaobai Liu, Liang Lin, Shuicheng Yan, Senior Member, IEEE, Hai Jin, Senior Member, IEEE, and Wenbing Tao

Abstract—We present in this paper an integrated solution to
rapidly recognizing dynamic objects in surveillance videos by
exploring various contextual information. This solution consists
of three components. The first one is a multi-view object rep-
resentation. It contains a set of deformable object templates,
each of which comprises an ensemble of active features for an
object category in a specific view/pose. The template can be
efficiently learned via a small set of roughly aligned positive
samples without negative samples. The second component is a
unified spatio-temporal context model, which integrates two types
of contextual information in a Bayesian way. One is the spatial
context, including main surface property (constraints on object
type and density) and camera geometric parameters (constraints
on object size at a specific location). The other is the temporal
context, containing the pixel-level and instance-level consistency
models, used to generate the foreground probability map and
local object trajectory prediction. We also combine the above
spatial and temporal contextual information to estimate the
object pose in scene and use it as a strong prior for inference. The
third component is a robust sampling-based inference procedure.
Taking the spatio-temporal contextual knowledge as the prior
model and deformable template matching as the likelihood model,
we formulate the problem of object category recognition as
a maximum-a-posteriori problem. The probabilistic inference
can be achieved by a simple Markov chain Mento Carlo sam-
pler, owing to the informative spatio-temporal context model
which is able to greatly reduce the computation complexity
and the category ambiguities. The system performance and
benefit gain from the spatio-temporal contextual information
are quantitatively evaluated on several challenging datasets and
the comparison results clearly demonstrate that our proposed
algorithm outperforms other state-of-the-art algorithms.
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I. Introduction

V ISUAL SURVEILLANCE is a hot research topic in
computer vision owing to its great industrial application

potentials. One of the core tasks for a surveillance system
is to rapidly recognize objects in video sequences with the
presence of various challenges, such as sudden light changing,
occluding, and so on. Many related efforts [7], [13], [25] have
been proposed from two major aspects: 1) how to develop
efficient and effective appearance features, and 2) how to
integrate scene contextual knowledge as prior cues.

In this paper, we address the above two problems and
particularly highlight the contextual information for visual
surveillance applications. The advantages of harnessing spatial
and temporal context are illustrated in Fig. 1. Given an ob-
served scene, the patches of interest (highlighted as the patches
“a,” “b,” and “c”) can be recognized based on the valuable
cues from spatial context (camera geometry, scene surface
knowledge, or other surrounding objects). For the case with
object occlusions (the tth frame and last frame), the recogni-
tion task for the patches “d” and “e” can only be achieved
based on the temporal context from the deferred observations,
e.g., the temporal consistence of appearance over the consecu-
tive frames from t−τ to t+τ. Taking full advantage of various
contextual information, we present in this paper a flexible solu-
tion to real-time recognizing and localizing moving objects in
videos, by integrating spatio-temporal contextual information
with a novel object detector via deformable template matching.

A. Related Works

There has been a wide variety of works for rapid object
category recognition in videos. According to the information
sources used for this task, we roughly divide these previous
efforts into two categories, namely, the appearance information
and the contextual information.

Appearance information is captured by various appearance
features, including texture-based features, such as scale invari-
ant points/patches [9], [21], texton filter responses [15], and
colorized distributions [3], and structure(shape)-based features,
such as shape filter responses [22], edge/ridge fragments [8],
active contour, and deformable templates [34]. Based on those
features, quite a number of category recognition approaches
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Fig. 1. Illustration of the benefit from contextual information. It is generally
impossible to recognize the (a) bike, (b) pedestrian, or (c) lawn separately.
We can, however, take them together to form a coherent visual story and
combine with the camera and scene surface knowledge to achieve these
missions. Furthermore, for the case with occlusions, the recognition of (d)
patch is infeasible without the additional temporal context from the (e)
deferred observations. Therefore, both spatial and temporal contexts are very
useful for object category recognition in low-resolution surveillance videos.

have been well studied, such as the bag-of-words model [30],
K-fans model [8], constellation model [24], [26], and boosting
family [2], [22], [33], [36]. However, they often fail in
surveillance applications, because: 1) the scenes/objects in
the surveillance systems are usually in low-resolution, and
thus neither local appearance nor part-based configuration
are informative enough [31], and 2) moving objects usually
undergo with pose/view changes, and thus the classifiers (such
as the deformable template matching) need to be re-activated
from the classifier ensemble (dictionary). Addressing these two
difficulties, in this paper, we proposes to use a multiview
representation via deformable object template for category
recognition task in realtime videos.

Contextual information has proved to be a critical compo-
nent in object recognition task, with strong psychophysical
evidence. In the computer vision literature, several classic
approaches [18] model the relation between the objects of
interest and the scene configuration in a graphic representation,
(e.g., the knowledge on the location of a road may influence
the detection of vehicles [18]), learn implicit inter-related
features for objects co-occurrences (conditional/discriminative
random field family) [15], [29], or extract scene constraints
for false alarm pruning [10], [12]. These approaches have
been applied for objects detection/segmentation in cluttered
images and achieved impressive performances compared to
those ignoring contexts. To our best knowledge, the contextual
information has however not been extensively studied for
visual surveillance systems. Our current work aims to elicit
various contextual information for realtime recognition task,
motivated from the following observations.

1) The spatial context, e.g., camera geometry and ma-
jor surfaces properties etc., contains multiple semantic
knowledge and thus can provide prior constraint for rec-
ognizing objects in surveillance videos. Also, the context
information can be modeled efficiently in interactive
ways.

Fig. 2. Comprehensive illustration of the proposed solution for rapidly rec-
ognizing dynamic objects in surveillance videos. Within the Bayesian frame-
work, the stochastic inference combines four terms: location-size constraint
(from spatial context), pixel and instance-level consistence constraint (from
temporal context), object pose constraint (from both spatial and temporal
context), and matching verification (based on deformable templates).

2) The temporal context should be also accounted. For
example, the recognition in the current frame can be
influenced by the previous and the later observations.

3) The spatial and temporal contexts can be further com-
bined to produce more informative constraints on mov-
ing objects, e.g., the possible object pose at the spe-
cific location of the scene. It is worth noting that our
contextual model does not integrate the inter-object co-
occurrence relation, which is widely used in previous
works [1], [16], since the co-occurrence frequency usu-
ally contains little discriminative information for extract-
ing foreground objects in surveillance videos.

This paper focuses on a unified spatio-temporal contextual
modeling and view-independent object category representa-
tion. Two closest works to ours are the active basis theory
proposed by Wu et al. [34] and the perspective geometric
context model by Hoiem et al. [10]. The former is a generative
learning theory for image pattern modeling, and the proposed
detector in this paper is an extension. The latter is a framework
for placing local static object detection within the context of
the overall 3-D scene, and we extend it in a unified way for
visual surveillance system to improve context modeling.

B. Overview of Our Method

Given a frame from the observed video sequence, we
classify and localize moving objects by integrating the spatio-
temporal context model and deformable template matching. In
general, the context components can be viewed as informative
constraints or proposals, and the deformable template match-
ing component can be viewed as top-down verification. We
describe the entire solution from three aspects as below.

1) Multi-View Object Representation via Deformable Tem-
plates: We learn a deformable template for each object pose
and then obtain the complete template dictionary for different
poses of each object category. The template consists of a set
of Haar wavelet features, each of which is allowed to slightly
perturb at different scales and orientations to account for the
local structural deformation of each training sample. These
active features are linearly combined to generate the template,
or to fit to the image patch for the purpose of recognition.
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Compared with previous works [3], [9], [21], [22], this multi-
view object representation has following characters.

a) Each deformable template can be efficiently learned
via a small set of roughly aligned (in the same pose)
positive samples without negative samples, using the
shared sketch algorithm [34].

b) The proposed active Haar features can code the local
structure variations of objects and suppress the distur-
bances of scene noises and similar background structure.

c) Combining with the spatio-temporal contextual infor-
mation, we can roughly estimate the pose of object in
scene to propose the candidate template, which is able
to greatly reduce the computational cost in the matching
step.

2) Spatio-Temporal Context: This is modeled indepen-
dently as the prior knowledge for recognizing objects via
both the current and the deferred observations in our unified
inference.

a) Spatial context contains the viewing (camera) position
and surface geometry. Note that we do not use the inter-object
configuration as in many algorithms for object detection in
images [10], [15], since objects usually move in a messy way
and the inter-object configuration is not reliable enough in
visual surveillance system. Actually, for each type of object,
we have strong prior about the possible occurring locations
and the object size at the specific location in the projected
image plane, namely location-size constraint, which can be
used to mitigate the false alarms for object recognition task.
For example, with the fixed viewing position (camera has been
roughly calibrated), the sizes of the objects in image plane can
be estimated in a relative short range by applying the cross-
ratio theorem. And the property of surface, like “ground,”
“sky,” or “planar,” also contributes to pruning false alarms.
In order to obtain accurate spatial context model, we develop
an annotation toolkit for viewpoint estimation and surface
property modeling in an interactive fashion, where manual
guidance is allowed to enhance the accuracy.

b) Temporal context is built up based on the pixel-level and
instance-level consistency. Instead of observing a static frame,
we cache a sequence of observations. For example, the tempo-
ral context at frame t is deduced on the [t−τ, t+τ] frames, with
τ as the parameter to define the period. For temporal context
modeling, we assume that both pixels and instance remain
consistent over a short period. Hence, at the pixel level, the
intensity-variance on observed frames can be calculated by a
background model [17], [32] (a constant probabilistic gray-
scale distribution). Intuitively, one pixel in the current frame
is proposed as foreground when it fits against the background
model over a few frames. In this paper, we also develop a
novel background modeling algorithm to obtain a more robust
foreground estimation. At the instance level, a selected feature
distribution is used to constrain moving objects, namely the
current foreground object is labeled when it accepts the
same label over frames. Therefore, we should first uncover
the correspondence between the foreground regions in consec-
utive frames and then apply this constraint to help recognize
the object category. This is mostly related to the traditional

object tracking algorithms whereas the difference is that we
only need recover the temporal correspondence within a short
period of observed frames, instead of the entire object trajec-
tory.

3) Stochastic Sampling: It is adopted for object recog-
nition, which integrates the spatio-temporal contextual infor-
mation with the deformable template matching. Within the
Bayesian inference framework, we formulate the problem of
object localization as a maximum-a-posteriori (MAP) problem,
in which we take the spatio-temporal contextual knowledge
as the prior term and deformable template matching as the
likelihood term. In this paper, the Markov chain Mento Carlo
(MCMC) sampler is used to search for the optimal solution
by simulating the Markov chain in the overall solution space.
Instead of exhaustive sampling, however, we use the spatio-
temporal contextual information to reduce the computational
ambiguities by narrowing the search space, as well as to drive
the stochastic search in Markov chain effectively.

The key contribution of this stochastic sampling procedure
is to design a set of reversible jumps and diffusions to simulate
the Markov chain. The algorithm follows the data-driven
MCMC principle [37], which has been proved to be able to
rapidly obtain the nearly globally optimal solution.

The entire solution is summarized in Fig. 2. The main
contributions of this paper include: 1) proposing a multi-
view category representation via deformable templates for
object representation and detection; 2) presenting a unified
and practical spatio-temporal contextual model for object
recognition in visual surveillance systems; and 3) developing
a flexible inference framework which integrates the above two
components into a real-time object recognition system.

The remainder of this paper is organized as follows. We
first introduce the object representation in Section II and then
introduce the Bayesian formulation of object recognition task
in Section III. Section IV details the inference procedure.
In Section V, we discuss the implementation details on the
spatio-temporal context model. Comparison experiments are
presented in Section VI and the paper is concluded in Section
VII with discussion on future work.

II. Multiview Object Representation via

Deformable Templates

A. Active Haar Features

Wu et al. [34] provided the original theory and methodology
for active basis model. The model is based on a linear
representation using Gabor wavelet elements, which are local-
ized, elongated, and oriented version of the original wavelet
functions. Each Gabor element is like a stroke in the sketch
of an object. In this paper, we replace the Gabor features
with Haar features [22] and set the number of orientations
as 8. Compared with the original method [34], the pursuit of
Haar templates is less time-consuming while retaining similar
performance. Fig. 3 shows the comparison of the templates
learned by the original Gabor features and our variant with
Haar features. Haar features are more computationally efficient
than Gabor features because it can borrow the strength of
integral image techniques in previous work [22].
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Fig. 3. Gabor features versus Haar features. (a), (c) Object templates using
Gabor features. Each line stroke represents a Gabor basis. (b), (d) Object
templates using Haar features.

Letting D denote the image lattice defined on the training
image and Hx,y denote the Haar matrix centered at position
(x, y), we can translate, rotate, and dilate Hx,y to obtain a
general form of the Haar wavelets

Bx′,y′,s,α = Hx′′/s,y′′/s/s
2 (1)

x′′ = (x′ − x)cosα − (y′ − y)sinα (2)

y′′ = (y′ − y)sinα + (y′ − y)cosα (3)

where the Haar feature Bx,y,s,α is centered at position (x, y),
s is the scale parameter, and α ∈ {kπ/K, k = 0, ..., K − 1}
(e.g., K = 8) is the orientation parameter. We normalize the
Haar components to have zero mean and unit l2 norm, and
introduce local inhibitions such that they are orthogonal to
each other. This constraint ensures that the strokes generated
from the basis in the object template do not overlap with each
other, and thus the selected elements are well connected to
form a shape template.

For an image J , we can project it onto a Haar wavelet
B = Bx,y,s,α, and the projection coefficient is represented as
r =< J, B >=

∑
u,v∈∧B

J(u, v)B(u, v), where ∧B indicates
the image region covered by feature B and (u, v) denotes the
coordinate within ∧B. Intuitively, if | < J, B > |2 is the local
maximum within a neighborhood window, there is an edge
segment at (x, y) with orientation α and the size of the segment
is related to the scale s. Thus, we can represent an image using
a set of weighted Haar basis {Bi = Bx,y,s,α, wi; i = 1, 2, . . . , n}
where wi is the weight of the ith feature and n is the
number of basis in the template. We further introduce a
whitening transformation for each feature response, namely,
h(r) = threshold(r) = min(r, Twhiten), where Twhiten is a
threshold (e.g., Twhiten = 16). This operation ensures that
heterogeneous features are well-calibrated and comparable,
sharing the same distribution on natural image ensembles.

In order to code the structure variations of each training
image Jm, m = 1, . . . , M, we allow the selected base Bi

to locally shift its location and orientation. Thus, letting
wi denote the feature weight, we can obtain a deformable
template {Bi, wi} as

Bxi,yi,s,αi
≈ Bxm,i,ym,i,s,αm,i

wi =
M∑

m=1

rm,i/M (4)

if there exists (δm,i, λm,i), and xm,i = xi + δm,isinα, ym,i = yi +
δm,icosα, αm,i = αi +λm,i, where δm,i ∈ [−a, a], λm,i ∈ [−b, b],
and a and b are the bounds for the displacement in location
and the turning in orientation (e.g., a = 6 and b = π/K),
respectively. We call such element Bxi,yi,s,αi

as an active Haar
and δm,i, λm,i as the activity of the element Bxi,yi,s,αi

. When
deforming Bi to Bm,i, we have, Bm,i = arg maxB≈Bi

| < Jm,

B > |2, which subjects to the orthogonality constraint.

Algorithm 1. Shared sketch algorithm for template learning

- Input : Training samples {J1, . . . , JM};
- Output : Deformable template {Bi, wi}, i = 1, . . . , n ;

1) For each Jm ∈ {J1, . . . , JM}, and for every (x, y, α),
compute feature response,

rm,x,y,s,α = h(|< Jm, Bm,x,y,s,α >|2);

Set i ← 0.
2) For each Jm ∈ {J1, . . . , JM}, compute the local maxi-

mum value for each feature:

r̃x,y,α = max
δ∈[−a,a],λ∈[−b,b]

rm,x+δ sin α,y+δ cos α,s,α+λ.

Let (δ̄, λ̄) be the (δ, λ) which achieves the maximum.
3) From the feature bank �f ,

a) Choose the shared feature Bi that maximizes
r̄x,y,s,α =

∑M
m=1 r̃m,x,y,s,α/M,

b) Compute the perturbed version of each shared
feature.
For m=1 to M, let δ = δ̄m,i and λ = λ̄m,i; calculate
Bm,i and its response rm,i.
Set wi =

∑M
m=1 rm,i/M.

4) Enforcing approximate non-overlapping constraint. For
m = 1 to M, for each Bm,j , j = 1, ..., n, j �= i, if
〈Bm,i, Bm,j〉 > ζ, then set rm,x,y,s,α=0. Here, 〈〉 returns
the geometrical distance between two features and ζ is
a threshold.

5) Stop if i = n, and normalize {wi} such that ‖ w ‖2= 1.
Otherwise let i ← i + 1, and go to (3).

B. Template Learning and Matching via Active Haar Features
Given a set of training samples in the same pose, denoted

as {J1, . . . , JM}, we adopt the shared sketch algorithm [34] to
pursuit the Haar template {Bi, wi} from the complete feature
bank �f . Here, the samples are the image regions covered by
foreground objects and are cropped from the training videos.
The pursuit algorithm runs in a sequential fashion, and each
step introduces a Haar feature to maximize the log-likelihood
defined as follows:

log
p(Jm|Bi, wi)

q(Jm)
=

n∑
i=1

[λih(rm,i) − log Z(λi)] (5)

where p(·) indicates the foreground distribution over the
responses of the selected basis and q() indicates the refer-
ence distribution pooled from background structures. Herein,
λm,i = |wm,i| = | < Jm, Bm,i > |2, and the normalizing constant
is defined as Z(λ) = Eq[exp{λh(r)}]. The score of (5) is a
weighted sum of h(rm,i). It evaluates the matching similarity
between the image Im and the deformed template. Here, we use
the shared matching pursuit algorithm in [34]. In this parallel
algorithm, each selected features Bi will be shared by all the
training images, namely, for each m, a deformed feature Bm,i is
also selected to encode Jm. Algorithm 1 illustrates the details
of this learning procedure.

Given the current input frame, we first apply the background
model to propose the foreground regions, each of which is a
candidate moving object. Then, we crop the foreground region
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Fig. 4. Active Haar templates for the category of (a) cars and (b) pedestrians. The pose of one object in the image plane is usually determined by the tile
angle and orientation angle. This figure shows the templates which are learned for the fixed title angle 45° and 8 orientation angles 0°, 45°, 90°, 135°, 180°,
225°, 270°, and 315°. (a) Haar templates of cars. (b) Haar templates of pedestrians.

Algorithm 2. Object category recognition algorithm using deformable
template matching

- Input: The testing image I; object template {Bi, wi};
- Output: Matching score S;

1) For each (x, y), for all α’s, compute the feature response,
rx,y,s,α = h(|< I, Bx,y,s,α >|2).

2) For each (x, y), for all α’s, compute the local maximum
response

r̃x,y,α = max
δ∈[−a,a],λ∈[−b,b]

rx+δ sin α,y+δ cos α,s,α+λ.

Let (δ̄, λ̄) be the (δ, λ) which achieves the maximum, and
denote the correspondent position as (x̄, ȳ) = (x+δ̄, y+λ̄).

3) For each Haar base Bi = {xi, yi, si, αi}, retrieve the local
maximum response, Si = r̃x̄+xi,ȳ+yi,α.

4) Compute the matching score, S =
∑n

i=1 wi × Si.

as testing image and use the learned template to recognize its
category. Letting I denote the cropped image, we assume the
bounding box of object is centered at position (x = 0, y = 0),
and scan the object template over image I to fit the active
Haar features into the image within the bounding box centered
at each position (x, y). In each scanning step, we calculate
the fitting response, namely the log-likelihood score defined
in (5), and finally obtain the score map that measures the
confidence of template matching. Algorithm 2 gives the details
of this recognition algorithm. In implementation, we apply the
above algorithm at multiple resolutions of the testing image,
and choose the resolution that achieves the maximum score as
the optimal one.

C. Multiview Template Dictionary

The proposed object model for each object category consists
of a set of active Haar templates in different poses (views).
In surveillance videos, the object pose is mainly determined
by the orientation angle and tilt angle, namely the object view

in frames. In order to create the complete multiview template
dictionary, we quantize the angle space into linear bins, n1

bins for 90° tilt range, and n2 bins for 360° orientation range,
to obtain totally n1 ×n2 templates of different views and then
build the template dictionary �l. For each pose, an object
template is trained using the Algorithm 1 from a set of roughly
aligned positive images.

It is worth noting that the choice of the angle number
is essentially a tradeoff between performance and efficiency.
Increasing the number of templates will reduce the intra-
view varieties and thus boosts discriminating power of the
template-based classifier, but at the same time increase the
computational cost. In this paper, for each object category,
we take one single tilt angle 45° and 8 orientation angles,
including 0° (front), 45° (front-left), 90° (left), 135° (left-
back), 180° (back), 225° (back-right), 270° (right), and 315°
(right-front). Fig. 4 shows the learned template dictionaries for
the categories of cars and pedestrians in images (a) and (b),
respectively.

III. Contextual Modeling

In this section, we introduce the Bayesian formulation for
object recognition with the spatial-temporal context modeling.
Here, the objective is to compute the solution W based on the
observed image I

W = {K, R0, Oi = {Vi, Ri, Li}, i = 1, ..., K} (6)

where K denotes the object number in the current observed
scene and Oi denotes the object instance characterized by
three parameters: Vi (object view, or pose), Ri (instance patch),
and Li (the object label). Therein, R0 denotes the background
region.

Assuming that the object moves on the projected image
plane, the observed object pose is mainly determined by
the orientation angle and the vertical position. Given the
scene camera calibration, the vertical position can be used to
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Fig. 5. Directed graphical model representing the joint probability distribu-
tion over the variables contained in the solution configuration W , as defined in
(6). This model asserts that the variables Oi = {Vi, Ri, Li} are conditionally
independent and identically distributed given variables Cspa and Ctem. The
object number K is determined according to the current system time T .

compute the tilt angle between the ground plane and the line
from the camera center to the object center. Thus, we represent
the object pose Vi as

Vi = (ηori, ηtilt) (7)

where ηori and ηtilt denote the orientation and the tilt angle,
respectively. We also denote image region covered by the ith
object as Ri

Ri = {xi, yi, wi, hi, 	i = ∂Ri} (8)

where (x, y) is the center of object region in the image, w and
h are the width and height of the bounding box, and ∂R is
the shape region, which consists of the pixels with the same
category label. Thus, the goal of this paper is to recognize the
categories of foreground regions.

The object category label Li, e.g., cars, bikes, and pedestri-
ans, denotes the recognition result for the foreground region
Ri. In our method, each category is represented by a set of de-
formable templates, namely, the template dictionary denoted as
�Li

. Thus, we can formulate the problem of object recognition
as maximizing a posteriori within the Bayesian framework.
Letting Cspa denote the observed evidence of the spatial/scene
context, Ctem denote the evidence of temporal context and T

denote the current system time T , the optimal solution W∗ can
then be solved as

W∗ = arg max
W

P(W |I, Cspa, Ctem, T )

= arg max
W

P(I|W, Cspa, Ctem; β)P(W |Cspa, Ctem, T ; θ)

where β and θ are the parameters for the likelihood and
prior models, respectively. Fig. 5 shows the graphical model
which illustrates the dependencies of the variables in Bayesian
inference.

A. Prior Model

In our proposed framework, the spatial and temporal con-
texts are the key prior knowledge for inference. The former
includes camera geometry and main surface property, and the
latter determines the pixel-level and instance-level consistence.
In this paper, we derive the prior model either using single type

Fig. 6. Semantic scene modeling. (a) One observed frame captured in
videos. (b) Major surfaces annotated by the interactive annotation tool,
providing spatial contextual knowledge for scene understanding. (c) Vehicle
density distribution over surfaces learned from the scene in image (a) by
simply counting from 7:00 AM to 6:00 PM. (d) Object category density
learned from the surfaces A, B, C, and D denoted in image (b). The dis-
tribution is conditional on surface semantic property. For example, on the
zebra surface A, pedestrians occur in a relatively higher probability than the
cars.

of contextual information or using both types. Thus, the prior
model is defined as the joint product of the following terms:

P(W |Cspa, Ctem, T ; θ) ∝ P(K|T )
K∏
i=1

P(Ri, Li|Cspa) ·

P(Ri, Li|Ctem)P(Vi|Ri, Li, Cspa, Ctem). (9)

Herein, the first term denotes the object density prior, the sec-
ond one indicates the joint distribution of object location and
object category/recognition given the observed spatial scene
knowledge, the third term P(Ri, Li|Ctem) uses the temporal
contextual information for object recognition and the last one
P(Vi|·) denotes the pose prior term, which utilizes both the
spatial and temporal information. Besides, since it is usually
difficult to directly sample the joint distribution in inference,
we further decompose P(Ri, Li|Cspa) as

P(Ri, Li|Cspa) ∝ P(Li|Ri, Cspa)P(Ri|Cspa) (10)

or

P(Ri, Li|Cspa) ∝ P(Ri|Li, Cspa)P(Li|Cspa). (11)

We assume the two prior terms, namely P(Ri|Cspa) and
P(Li|Cspa), follow with the uniform distribution. Thus, by it-
eratively sampling from P(Li|Ri, Cspa) and P(Ri|Li, Cspa), we
can approximately approach the distribution of P(Ri, Li|Cspa).
The first step is equivalent to predicting object density for each
possible location in the imaging plane and the second step
is equivalent to imposing the location-size constraint for the
specific category of objects. In implementation, we set the iter-
ation number empirically (e.g., five times) to make a tradeoff
between the computation efficiency and the performance.

1) Object Density Prior P(K|T ): Object density prior
P(K|T ) is defined on the distribution of object number over
time, accounting for how busy the scene is. The distribution is
discrete, and can be counted from the observed data directly

P(K|T ) ∝ histo(K|T ). (12)
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Fig. 7. Location-size constraint. (a) Without wall behind the object, the
object size can be directly estimated by using the homograph between the
imaging plane and the ground plane. (b) If wall exists, using only ground
plane and imaging plane will result in seeing object behind the wall, which
should be removed as false alarm. (c) Minimal blob size map which is pre-
computed using (15) and used to provide the object size. (d) For the objects
on the vertical surface, the homograph between vertical plane and imaging
plane is used to suppress false alarms. The expected pedestrians height BC

in (d) is larger than in (c).

In Fig. 6, the image (c) illustrates the object density histogram
learned from the scene in image (a) based on the observations
during the time from 7:00 AM to 6:00 PM.

2) Recognition Prior P(Li|Ri, Cspa): We simply learn the
object category density in videos and model the recognition
prior as

P(Li|Ri, Cspa) ∝ histr(Li) (13)

where histr(·) denotes the learned histogram of category
density. We first set the histogram histr to an initial histogram
at the beginning and then adapt it from time to time. Thus,
this term becomes a Dirichlet distribution, which can be used
as the prior model. The distribution of object type is surface-
related, means that we distinguish the categories of local image
regions and collect a histogram of object density over different
categories. Fig. 6(d) shows the object type histograms learned
from the scene in Fig. 6(a) for four different major surfaces.
One can observe that, pedestrians appear on footpath with
a high probability while on freeway with a low probability.
Therefore, using the surface knowledge can further boost the
discriminating power of the proposed model.

3) Location-Size Prior P(Ri|Li, Cspa): In visual surveil-
lance system, each type of objects, e.g., pedestrians, vehicles
and bikes, has its own strong prior distribution about both
the possible locations and the physical size at each location
in observed images. For example, a pedestrian cannot be off
the ground without the other support surfaces. Given camera
calibration and ground-plane estimation, we can predict the
expected physical size of each foreground blob in the image.

We model each type of object with a cuboid and make
the following assumptions: 1) human beings can touch the
ground plane, horizontal surfaces, or stair surfaces with bottom
line, but can only touch vertical surface with side lines, and
2) vehicles and bikes can touch the ground plane, horizontal
surfaces or stair surfaces with bottom line. Thus, the object
size in the image plane can be directly estimated by projecting
the cuboid on the touching surface.

Integrating scene geometry information, the location-size
constraints can be defined as

P(Ri|Li, Cspa) ∝ P(xi, yi|Li) × P(hi, wi|xi, yi, Li) (14)

where the first term measures the location distribution of each
category and the second term predicts the box size given the
position and category label. Both terms can be calculated using
a global 2-D map, which provides the minimal blob size at
each location and orientation for each category [as illustrated
in Fig. 7(c)]. The map can be pre-computed when system is
initialized, and thus almost no additional burden is introduced
in the inference stage.

Fig. 7 illustrates the calculation of the location-size con-
straint. Let B and C denote the pedestrian’s head and feet,
respectively, A denote the intersection of pedestrian and hori-
zon line in the imaging plane, D denote the intersection of
pedestrian and the vertical surfaces baseline, and E denote
the vertical vanishing point. Also let hp denote the height of
pedestrian and hc denote the height of camera. The expected
size of an observed pedestrian on the ground-plane can be
predicted as follows.

a) If there does not exist vertical surface behind the pedes-
trian, the human height BC can be predicted by (simply
following the cross ratio theorem)

BC

BA
/
EC

EA
=

hp

hp − hc

. (15)

b) If there exists vertical surface, the human height BC

should be calculated by the following joint equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

BC

BA
/
EC

EA
=

hp

hp − hc

AD

AC
/
ED

EC
=

hc

hf

(16)

where hf is the vertical distance from the camera center
to the human feet and can be canceled from above
equations.

4) Temporal Context Prior P(Ri, Li|Ctem): We define two
temporal prior terms in our framework based on pixel-level
and instance-level consistency over the deferred observations

P(Ri, Li|Ctem) ∝ Ppix(Ri, Li|Ctem) × Pins(Ri, Li|Ctem). (17)

a) Pixel-level consistency: In our model, all the pixels
in the current observed image I are proposed to be foreground
(moving) region based on a learned background modeling
(e.g., [17]), which is initially obtained and updated frame by
frame. Letting θB be the model parameter, we denote the model
as Lpix(x; θB), which describes how likely a pixel x belongs
to background (further details are introduced in Section V).
Thus, we use the following equation to model the pixel-level
temporal prior:

Ppix(Ri, Li|Ctem) ∝ Ppix(Ri|Ctem) (18)

∝ 1

Zpix

× e
−∑x∈Ri

Lpix(x;θB)

where Zpix is the normalizing constant. We develop a
novel background modeling method to robustly estimate the
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Fig. 8. Object pose estimation by combining spatio-temporal information.
With the camera viewpoint fixed, the pose of each object in the scene is mainly
determined by two parameters: 1) orientation angle on the ground-plane, and
2) the angle between the ground plane and the line from the object center to
the camera center. (a) Input frame. (b) Ground-plane projection of image (a)
from reconstructed top view. The arrows represent the motion directions of
the moving objects. Q denotes the camera center, G the object center, �GP

the predicted motion direction, and ηori the orientation angle of the object.

background distribution for the challenging video clips (see
Section V).

b) Instance-level consistency: It is assumed in this paper
that an object instance should be consistent over time in
both motion and appearance properties. We detect objects
in each frame independently and make association between
them in consecutive frames using the tracking algorithm (see
Section V). Let Rt denote the current instance proposed,
{Rt−τ, . . . , Rt−1} denote the detection results in the previous
frames within the sliding window of size τ (e.g., τ = 6).
We can thus maintain the following instance-level temporal
context knowledge:

Pins(Ri, Li|Ctem) ∝ 1

Zins

e−∑τ
k=1 Lins(Rt

i,R
t−k
i ) (19)

Lins(R
t
i, R

t−k
i ) = δ(Lt

i �= Lt−k
i ) · (20)

×Df (Fins(R
t
i), Fins(R

t−k
i ))

where Zins is the normalizing parameter, function δ(x) maps a
real value variable x to {1, 0}, Fins(R) denotes the appearance
features collected from region R, and the function Df (·, ·)
returns the similarity distance between two feature descriptors.
In practice, we collect the local binary pattern (LBP) descrip-
tor [19] as the appearance model, and have Df (·, ·) defined
as

Df (F1, F2) =
KL(F1‖F2) + KL(F2‖F1)

2
(21)

where KL() denotes the Kullback-Leibler divergence.
5) Pose Prior P(Vi|Ri, Li, Cspa, Ctem): We combine the

spatial and temporal contextual information to introduce an-
other type of prior over the object pose in scene. Object pose
(view) is a very important cue to assist template selection when
performing matching in the recognition step.

The prior distribution over object pose at each location can
be defined as follows:

P(Vi|Ri, Li, Cspa, Ctem) ∝ histp(Vi|Ri, Li) (22)

where histp is the 2-D histogram over object pose for the
category Li at location Ri. Given the object location Ri

and category label Li, the object pose Vi = {ηi
tilt , η

i
ori} can

be calculated by integrating the spatio-temporal contextual
information.

In order to compute the tilt angle, we project the 2-D
location of the observed blob onto the ground plane in image
according to the estimated camera parameters. As illustrated
in Fig. 8, we denote Q and G as the camera center and
object center, and QG as the horizontal distance between the
object and the camera in world coordinate (WC). Also, let hc

denote the height of camera. Both hc and QG can be estimated
from rough camera calibration. The tilt angle ηtilt can thus be
calculated by

ηtilt = arctan(hc/QG). (23)

For the orientation angle, we first trace the observed object
frame by frame using the object correspondence method
proposed (see Section V) to generate the 2-D trajectory, and
then project the trajectory onto the ground-plane. Fig. 8(b)
illustrates the constructed top view for the scene in Fig. 8(a).
Letting P denote the point on the trajectory along the motion
direction, the orientation angle ηori can be directly calculated
from the two vectors, �QG and �GP .

B. Likelihood Model

In general, our contextual model can be combined with
any window-based object detectors, which output the class-
conditional log-likelihood ratio c. The likelihood term in our
framework can be thus formulated as

P(I|W, Ctem, Cspa; β) ∝
K∏
i=1

P(I|Oi, Ctem, Cspa)

∝
K∏
i=1

eλlike·ci (24)

ci = log
P(I|L = l, R = r, V = v)

P(I|L �= l, R = r, V = v)
(25)

where λlike denotes the constant factor and l, r, v denote
category label, bounding box, and object pose, respectively,
as defined in Section III.

In this paper, we use the multiview object detector via
deformable template as discussed in Section II. We first build
a template dictionary with different poses for each object cat-
egory to create a multiview classifier. Then, the object view or
pose is heuristically selected by integrating the spatio-temporal
contextual information. Finally, based on the template in the
selected pose, we scan the testing window in the observed
image I, and calculate the matching score, which includes both
the feature fitting score and the global deformable energy, to
compute the log-likelihood term defined in (25).

IV. Stochastic Inference

We present in this section a MCMC sampler to optimize the
posterior probability as formulated in Section III. Benefiting
from the contextual information, the valid solution space can
be largely condensed. Thus, it is possible to apply the stochas-
tic sampling algorithm for real-time recognition task. Com-
pared with other energy minimization methods, such as graph-
cut and belief propagation, MCMC [37] is the only known
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general procedure to search for nearly globally optimal so-
lution for a complex problem. To draw samples from the
probability P(W |I), it simulates a Markov chain which visits
a sequence of states πn in the solution space �π.

The Markov chain MC =< ν(π0),K > consists of an
initial state ν(π0) and one transition kernel K(πA, πB) which
measures the conditional probability for moving from the state
πA = P(WA|I) to πB = P(WB|I). A MCMC sampler is
designed to explore the dynamics K(πA, πB) = Q(WB → WA)
on the chain with the acceptance probability

α(πA, πB) = min

(
1,

P(WA|I) × Q(WB → WA)

P(WB|I) × Q(WA → WB)

)
. (26)

In our framework, four reversible dynamics are designed as
follows:

A. Object Addition

This move includes the foreground blob proposal Rq and
category proposal Lq

Q1(WB → WA) = Qfore(Rq|WB, IB) (27)

×Qrecog(Lq|Rq, WB, IB)

Qfore(Rq|WB, IB) = Pw × P(Rq|WB, IB) (28)

Qrecog(Lq|Rq, WB, IB) = P(Lq|Rq, IB) (29)

where Pw is the empirical probability for selecting an attention
window in the image, P(Rfore|·) is the foreground blob pro-
posal as defined in (14), and P(Lq|·) is the blob recognition
proposal as defined in (13). Here, Pw is defined as the uniform
distribution, i.e., Pw = Punif .

B. Object Removal

It randomly selects and deletes one existing object Oq in
the current solution

Q2(WB → WA) = P(Oq|WB) ∝ Punif . (30)

C. Object Type Change

It randomly selects one existing object Oq and assigns it to
the label proposed by using the spatial context knowledge

Q3(WB → WA) = P(Oq|WB) × P(Lq|Rq, I) (31)

where P(Lq|·) is the object type proposal as defined in (13).

D. Object Pose (Template) Change

This move changes the pose (template) for the randomly
selected object Oq

Q4(WB → WA) = P(Oq|WB) × P(Vq|Qq, I) (32)

where P(Vq|·) denotes the object template proposal with the
context defined in (22).

The first and second moves are referred to as jump dynamics
while the third and fourth are referred to as diffusion dynam-
ics, and thus the Markov chain is irreducible and aperiodic.
Unlike the exhaustive Gibbs sampler, the above dynamics are
integrated with the learned contexts for sampling proposal,
inspirited by the data-driven MCMC principle in [37]. At the
beginning of MCMC inference, we can obtain the initial state
v(π0) as follows: 1) set K as the number of the foreground

Fig. 9. Interactive viewpoint calibration in video.

regions (subtracted by a background modeling module over the
current frame) and Ri as the ith foreground region; 2) set R0

as the background region; and 3) set L and R as the randomly
selected values.

V. Implementation

A. Spatial Context Modeling

The explored spatial context includes the camera viewpoint
and surface information. We develop an interactive toolkit for
spatial context modeling, which comprises two components:
1) viewpoint estimation in the scene, and 2) surface property
estimation.

1) Viewpoint Estimation: As discussed in Section III, the
camera (viewpoint) should be roughly estimated to obtain
the object location-size and pose prior. As in previous litera-
ture [20] on camera calibration, the projection matrix P that
connects the world coordinate (WC) with camera coordinate
(CC) using five intrinsic parameters [focal length fP , principal
point(uP , vP ), aspect ratio αP and skew sP ] and six extrinsic
parameters (X-Y-Z-translations and pan/orientation ϕpan, tilt
ϕtilt , and roll ϕroll). In this paper, as illustrated in Fig. 7(a),
the camera is fixed with only one degree of freedom, namely
the height Hc, and the aspect ratio and skew rest assumed as
αP = 1, and sP = 0, respectively. The rest parameters (fP ,
ϕpan, ϕtilt , ϕroll, Hc) can be solved by assigning the vanishing
points and the principal point. The related theory and proof
are detailed in [20].

Therefore, the viewpoint estimation problem is cast as
the problem of accurately estimating the vanishing point
(VPX, VPY , VPZ). Here we develop the toolkit for interac-
tively calculating vanishing points from real input videos. We
first manually select and label one moving object in the initial
frame, and then label it in the following two frames. Since the
objects in three different frames are in the same actual height,1

the vanishing points (VPX, VPY , VPZ) can be calculated by
manually labeled poles in a video, as illustrated in Fig. 9. In
order to improve the accuracy, in practice, the calculation can
be carried out based on a few moving objects simultaneously
using embedded tracking function, inspired of the RANSAC
principle [11].

2) Surface Property Estimation: Another piece of impor-
tant prior knowledge for object recognition is the scene surface
property. As analyzed in Section III, the object recognition
prior is modeled as a learned distribution co-related with the
surface evidence. In addition, after calibrating the viewpoint

1We assume the instances of the identical pedestrian in different frames
have the same “actual height.” Although different “actual heights” could
be measured due to the oscillatory movement of the head, we obtain the
satisfactory system performance from this roughly camera calibration.
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Fig. 10. Sketch detection results refined by Gaussian filtering and edge
linking. The primal sketch algorithm [6] is applied to obtain the sketchable
regions (light color) and the unsketchable regions (dark color)..

point, we can estimate the surface in the rough 3-D coordi-
nates, as illustrated in Fig. 6(b). In this paper, we adopts the
scene understanding method in [12] and [15] to develop an
interactive annotation toolkit, which allows users to correct the
results manually for enhancing both accuracy and efficiency.

B. Temporal Context Modeling

The temporal context includes two items: the pixel-level
and instance-level consistency. The former is related with the
background modeling and the latter is related with the classical
object correspondence (tracking) task.

1) Background Modeling using Image Primitives: We
develop a novel background modeling algorithm based on
the information scaling theory proposed in [35]. The theory
explains that the same object appearing at different scales
produces image data with different statistical properties. In
visual surveillance, objects appear at a wide range of scales
in the images due to the change of viewing distance as well
as the camera resolution. Accordingly, image patches with
different scale have different properties and we decompose
the observed image into two parts: sketchable region and
unsketchable region. The former is mainly composed of blobs,
end points, bars, junctions, corners and crosses of different
degrees, and the later is composed of textured and flat regions.
Formally, letting ∧ denote the lattice defined on current image
I, we have

∧ = ∧ske ∪ ∧unske (33)

where ∧ske denotes the patches within the sketchable region
and ∧unske denotes the patches within the unsketchable region.
Here, the patches are collected from the image lattice ∧ with
a fixed size (e.g., 10 × 10 pixels). We apply the primal sketch
algorithm [6] to obtain the sketchable regions. Fig. 10 shows
an exemplar result of the sketch detection after refinement by
Gaussian filtering and edge linking. The sketchable parts are
shown in light color and the unsketchable parts are with dark
color. Thus, each patch unit can be labeled as sketchable or
unsketchable areas. We adopt different methods to describe
each type of patch as follows.

First, we design a set of primitive prototypes filters to
represent the sketchable patches and use the GMM of filter

Fig. 11. Image primitives including blobs, end points, bars, junctions, cor-
ners and crosses of different degrees. Image primitives are composed of +1
(dark area) and −1 (light area), and allowed to rotate in 8 directions.

response values as the background model. Fig. 11 shows the
six primitive prototypes used in this paper. For each patch unit,
one of the six prototypes is selected as the filter by using the
primal sketch algorithm [35]. The filter response is defined as
the convolution of the specific primitive prototype [35] and the
observed image region. In order to suppress scene noise and
the disturbance of camera jitter, we also allow each primitive to
locally shift its location to code the local structural variations.
Let Bske

�x denote the primitive prototypes at position �xi ∈ ∧ske,
and ∧�x indicate the region covered by Bske

�x . Thus, the response
of primitive Bske

�x can be calculated by

rB(�x) = max
�x′∈∂�x

∑
(u,v)∈∧�x′

Bske
�x′ (u, v) × I(u, v) (34)

where ∂�x denotes the neighborhood area of the position �x.
We assume the primitive response of each sketchable patch

follow with the mixture of Mb Gaussian distributions, like
the GMM background modeling method proposed in [5].
For a certain primitive B�x, the probability of belonging to
background region can be computed as

Lske(�x; θske
k (�x)) =

Mb∑
k=1

wk(�x) × N (rB(�x); µk(�x), σske
k (�x)) (35)

where N (·) indicates the Normal distribution of the kth
component, θske

k indicates the model parameter which includes
mean value µk and variance σske

k , and wk denotes the weight
of the kth component. All above notations are parameterized
by the location �x. For each position �x in the tth frame, we
first calculate the primitive response value rt according to 34,
and then update the Gaussian components that match rt by the
following equations:

wt
k ≈ (1 − αske) × wt−1

k + αske × pδ(r
t; θske

k ) (36)

µt
k ≈ (1 − αske) × µt−1

k + ρske × rt (37)

σt
k ≈ (1 − αske) × σt−1 + ρske × (rt − µt

k)2 (38)

ρske = αske × N (rt; µt−1
k , σt−1

k ) (39)

where αske is a forgotten parameter. The term pδ(rt; θske
k ) is

defined as a delta function, namely, if θske
k is the first matched

Gaussian component, pδ(rt; θske
k ) = 1; otherwise, 0. If none

of the Mb components match the primitive response rt , the
least probable component is replaced by a distribution with
the value rt as its mean, an initially high variance, and a low
weight parameter.

Second, we represent the unsketchable patches using the
local binary pattern descriptor (LBP) [19] and also describe
each patch using GMM model. Letting H�x denote the bi-
nary histogram computed from the image patch centered at
�x ∈ ∧unske, we can define the background model for the
unsketchable area using a single Gaussian distribution as

Lunske(�x; θunske) = N (H(�x); Hm(�x), �unske(�x)) (40)
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where the parameter θunske includes mean histogram Hm and
the covariance matrix �unske. For each position �x in the
tth frame, we collect the LBP descriptor Ht , and use it to
update the learned Gaussian distribution N (; Hm, �unske) by
the following equations:

Ht
m = (1 − αunske) × Ht−1

m + ρunske × Ht (41)

�t = (1 − αunske) × �t−1 + αunske × (Ht − Ht−1
m )

× (Ht − Ht−1
m )T (42)

ρunske = αunske × N (Ht; Ht−1
m , �t−1) (43)

where αunske is the forgotten factor.
In summary, for current observed video sequence, we define

the background model Lpix(�x; θB) as

Lpix(�x; θB)=

⎧⎪⎪⎨
⎪⎪⎩

Mb∑
k=1

wk(�x)N (rB(�x); µk(�x), σske
k (�x)), �x ∈ ∧ske

N (H(�x); Hm(�x), �unske(�x)) �x ∈ ∧unske.

(44)

2) Object Correspondence: In order to obtain the corre-
spondence between the moving blobs (foreground region) in
consecutive frames, we use the tracking algorithm in [27],
which proposes to perform mean-shift with scale-space kernel
to optimize for blob location and scale. Then, the correspon-
dence is used as the instance-level temporal prior as defined in
Section III. Note that we use the correspondence as the initial
proposal, and this way of using the algorithm [27] makes our
approach less vulnerable to the quality of this tracking step.

VI. Experiments

We evaluate the proposed framework in four aspects:
1) deformable template learning; 2) background modeling;
3) benefit verification for contextual information; and 4) object
category recognition as well as localization. The average
system speed is around 7–10 frames/s on a Pentium-IV
2.2 GHZ computer without code optimization in the C++
platform.

We use two public datasets to evaluate the algorithmic
effectiveness. The first one is the LHI Dataset [4]. We choose
9 video clips of different scenes, each of which is of about 10
minutes with the frame rate of 25 frames/s and the frame size
of 352×288 pixels. The bounding boxes of foreground objects
are manually annotated for each frame. The second one is the
PETs dataset, from which we select 3 video clips and manually
annotate the foreground objects. Thus, we finally obtain a
total of 12 videos. For each video clip, we use the first 1000
frames for training and the remaining frames for testing. These
videos provide challenging scenes with heavy occlusions, scale
changes or complex background structure. In order to create
the positive training samples for building multiview template
dictionaries, we also manually crop 60 object patches in the
same pose for each category from the above videos.

A. Experiment I: Deformable Template Learning Using Active
Haar Features

This experiment illustrates the results from the shared sketch
algorithm based on active Haar features. In all tests, the

Fig. 12. Learned deformable templates using active Haar features. The first
plot in each row shows the learned object template via active Haar features
and the rest plots show the training samples. Each Haar element is represented
by a bar. These elements can locally perturb their locations and orientations,
such that the template becomes deformable.

Fig. 13. Comparison of the background modeling results. We plot the fore-
ground mask images generated by the standard GMM [5] and our proposed
method. Top row: original images; Middle row: background subtraction results
of our method; Bottom row: background subtraction results of GMM.

threshold of whitening operation takes Twhiten = 16. The size
of Haar features is set as 8 × 8 pixels. (x, y) is sub-sampled
every 2 pixels in both horizontal and vertical directions.
The orthogonality tolerance of the Haar elements for local
inhibition is set as ζ = 0.1. The shift along the normal
direction is set as δm,i ∈ [−a, a] = [−6, 6] pixels. The shift
of orientation is set as λm,i ∈ [−b, b] = {−1, 0, 1} angles
out of K = 8 angles. There are two tuning parameters in
our experiments. One is the number of elements, n, which
is usually different for different category: 60 for bikes, 80
for cars, and 20 for pedestrians. The other parameter is the
resolution of the training images, which is also different for
each category: 110 × 90 pixels for bikes, 120 × 90 pixels for
cars and 60 × 80 pixels for pedestrians.

We apply the sketch algorithm to a set of M = 60 roughly
training aligned images in the specific pose for each category.
In Fig. 12, we sketch and plot the Haar templates {Bi; i =
1, . . . , n} in the first column, and shows the corresponding
training samples in other columns. The intensity of the bar
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Fig. 14. ROC curve comparison for background modeling between GMM [5] and our method. Experiments are conducted on three surveillance videos.
(a) Scene #1. (b) Scene #2. (c) Scene #3.

Fig. 15. Object recognition with different priors for the categories of (a) pedestrians, (b) bikes, and (c) cars. Black curves represent the recognition accuracies
without context information, red curves represent the recognition accuracies using spatial context only, and blue curves denote the results by using integrated
spatio-temporal contexts.

Bi is the average value
∑M

m=1 h(Bm,i)/M. It is worth noting
that for the second sample of the bikes (the third row in
Fig. 12), the strong edges in the background are not sketched,
because these edges are not shared by other examples and
hence ignored. Fig. 4 shows more object templates learned
for multiview object representation.

B. Experiment II: Background Modeling for Observed Videos

In this experiment, we evaluate the proposed background
modeling method. The learning rate α (for both sketchable
and unsketchable regions) is set as 0.005 and the number of
Gaussian components for modeling sketchable region is set as
Mb = 16. The patch size takes 10×10 pixels. For comparison,
we implement the popular GMM [5] as the baseline and set
its parameters the same as in [5]. Fig. 13 shows some mask
images generated by these two algorithms. From the results,
we can observe that GMM produces more false alarms than
our method, especially when there exist reflection, shadows,
or intersection of moving objects in scenes.

We also quantitatively compare these two algorithms
and show the ROC curves of foreground detection results
in Fig. 14. In this test, we use three different challenging
scenes, in which the areas of sketchable regions are 52.1%,
44.5% and 47.5%, respectively. Our method achieves higher
detection accuracy compared to the GMM algorithm over all
the three scenes.

C. Experiment III: Benefit Verification for Contextual Infor-
mation

In order to quantitatively analyze the improvement brought
by different context components, we run the proposed method
three times using different contextual information: 1) without
context information, namely we use the uniform distribu-
tion for all the prior model terms defined in Section III-A;

2) with spatial context, including the object density prior term
[see (12)] and recognition prior term [see (13)]; and 3) with
spatio-temporal context. We perform the evaluations on the
12 video clips and plot the ROC curves for the categories
of pedestrians, cars, and bikes in Fig. 15. Each black curve
represents the recognition results without context information,
each red curve represents the recognition results using spatial
context only, and each blue curve represents the recognition
results for using the integrated spatio-temporal context. From
these results, we can observe that: 1) for all the categories, both
the spatial and temporal contextual information contribute a
lot, and 2) vehicles are reasonably influenced by the temporal
context more than other two categories, since they move in
a more predictable way. Besides, we also observe that, the
more complex the scene is (e.g., with frequent occlusion
or lighting changing), the more important role the context
plays.

D. Experiment IV: Object Category Recognition and Local-
ization

We test our method for the task of object detection and seg-
mentation. In this experiment, we use the template dictionaries
learned in Experiment I, which includes n1 × n2 = 1 × 8 = 8
templates for each category. We run the recognition algorithm
on 8 resolutions of the observed image. The scaling factor is
from 0.5 to 1.2. Fig. 4 shows the template dictionaries for the
categories of cars and pedestrians, and Fig. 16 shows 10 rep-
resentative scenes with the recognition results. Although there
exist large intra-class variations, heavily occluded objects, and
viewpoint/scale variations in the video clips, the performance
of our proposed method is encouraging.

We compare our approach with the popular algorithm
proposed by Viola et al. in [23], which describes a pedes-
trian detection system by integrating intensity information
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Fig. 16. Some representative results on selected videos. Each result shows: the observed scene (left), foreground mask (middle), and matching verification
(right).

Fig. 17. Comparison ROC curve results with [23] for the categories of (a) pedestrians, (b) bikes, and (c) cars.

with motion information. Also, we apply their algorithm for
detecting other object categories including cars and bikes. In
order to train the classifier for each category, we collect a set
of 450 positive examples and 450 negative examples. Each
positive training example is a pair of patches cropped from
two consecutive frames that contains the specific category
of object. Negative samples are similar patch-pairs which do
not contain the specific objects. Here, the patch size is set
as the same as in Experiment I for each category. We keep
other parameter settings the same as in [23]. Fig. 17 shows
the evaluating ROC curves for different categories, where
the red and blue curves denote the results of our method
and the algorithm [23], respectively. These results show that
our method outperforms the algorithm in [23] for all tests.
However, the improvement for the pedestrian detection is
higher than that for car detection. A possible explanation is

that the intra-class variance of the cars is higher than that for
pedestrians, and it is predictable that the detection accuracy
can be further improved by introducing more templates.

We also show the multi-class object recognition results with
comparison to TextonBoost [15]. In these tests, we consider
3 types of objects, i.e., cars, pedestrians and bikes. For labeling
images, the method of TextonBoost constructs a discriminative
model by exploiting three types of information: appearance,
shape and local spatial configuration. Object classification and
feature selection are achieved by using shared boosting to give
an efficient classifier which can also be applied to a large
number of classes. For comparison, the TextonBoost classifier
of each category is obtained using 60 positive samples and
500 negatives, which are manually cropped from the training
video sequence. We set the parameters as the same as in
[15]. Fig. 18 illustrates the confusion matrix, in which the
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Fig. 18. Confusion matrix with percentages row-normalized.We compare
our method (in red) and TextonBoost [15] (in black). Our method achieved
a higher overall accuracy of 90.67% compared to TextBoost algorithm of
85.35%.

red number denotes the result from our method and the
black number for that from TextonBoost. The overall average
accuracy of our method is 90.67% and that of TextonBoost is
85.35%. Therefore, our method achieves higher accuracy and
less false alarms compared to TextonBoost, by benefiting from
the unified spatio-temporal context information combined in
the inference process.

VII. Conclusion and Future Work

In order to detect and localize objects in visual surveil-
lance, this paper presented a flexible framework that com-
bines the spatio-temporal contextual information with a novel
deformable template matching procedure. In the proposed
method, various spatio-temporal cues were explored for the
top-down verification and the solution was achieved by the
stochastic MCMC method. Comparison experiments showed
that our proposed method outperformed those state-of-the-art
algorithms.

In this paper, the context modeling was scene-specific and
thus not flexible enough for moveable visual surveillance
system. We are planning to further study this problem in our
future work.

Acknowledgment

The authors would like to thank Prof. Y. Wu for providing
the source code for active basis learning, and thank Prof.
S.-C. Zhu for extensive discussions. The data used in this paper
were provided by the Lotus Hill Annotation Project [4].

References

[1] A. Singhal, J. Luo, and W. Zhu, “Probabilistic spatial context models for
scene content understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., vol. 1. Jun. 2003, pp. 235–241.

[2] A. Torralba, “Sharing visual features for multiclass and multiview object
detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 5,
pp. 854–869, May 2007.

[3] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,”
ACM Trans. Graph., vol. 23, no. 3, pp. 689–694, 2004.

[4] B. Yao, X. Yang, and S. Zhu, “Introduction to a large scale gen-
eral purpose groundtruth dataset: Methodology, annotation tool, and
benchmarks,” in Proc. Energy Minization Method Comput. Vis. Pattern
Recognit., LNCS 4697. 2007, pp. 169–183.

[5] C. Stauffer and W. Grimson, “Adaptive background mixture models for
real-time tracking,” in Proc. Int. Conf. Comput. Anal. Images Patterns,
vol. 2. 1999, pp. 2246–2254.

[6] C. Guo, S. Zhu, and Y. Wu, “Primal sketch: Integrating texture and
structure,” Comput. Vision Image Understanding, vol. 106, no. 1, pp.
5–19, 2007.

[7] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-
time tracking of the human body,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 7, pp. 780–785, Jul. 1997.

[8] D. Crandall, P. Felzenszwalb, and D. Huttenlocher, “Spatial priors for
part-based recognition using statistical models,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., vol. 1. Jun. 2005, pp. 10–17.

[9] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[10] D. Hoiem, A. Efros, and M. Hebert, “Putting objects in perspective,” in
Proc. IEEE Conf. Comput. Vision Pattern Recognit., vol. 2. Oct. 2006,
pp. 2137–2144.

[11] D. Nister, “Preemptive RANSAC for live structure and motion estima-
tion,” in Proc. Int. Conf. Comput. Vis., vol. 1. 2003, pp. 199–206.

[12] D. Hoiem, A. Efros, and M. Hebert, “Geometric context from a single
image,” in Proc. Int. Conf. Comput. Version, vol. 1. 2005, pp. 654–661.

[13] I. Haritaoglu, D. Harwood, and L. Davis, “W4: Real-time surveillance
of people and their activities,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 22, no. 8, pp. 809–830, Aug. 2000.

[14] J. Daugman, “Uncertainty relation for resolution in space, spatial fre-
quency, and orientation optimized by two-dimensional visual cortical
filters,” J. Opt. Soc. Am., vol. 2, pp. 1160–1169, Jul. 1985.

[15] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost: Joint
appearance, shape and context modeling for multiclass object recogni-
tion and segmentation,” in Proc. Eur. Conf. Comput. Vision, vol. 1. 2006,
pp. 1–15.

[16] K. Murphy, A. Torralba, and W. Freeman, “Using the forest to see the
trees: A graphical model for recognizing scenes and objects,” in Proc.
Neural Inform. Process. Syst. Conf., 2003.

[17] L. Li, W. Huang, Y. Gu, and Q. Tian, “Statistical modeling of complex
backgrounds for foreground object detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 13, no. 11, pp. 1459–1472, Nov. 2004.

[18] L. Wolf and S. Bileschi, “A critical view of context,” Int. J. Comput.
Vision, vol. 69, no. 2, pp. 251–261, 2006.

[19] M. Heikkil and M. Pietikainen, “A texture-based method for modeling
the background and detecting moving objects,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 4, pp. 657–662, Apr. 2006.

[20] N. Krahnstoever and P. Mendonca, “Bayesian autocalibration for surveil-
lance,” in Proc. Int. Conf. Comput. Vision, vol. 2. 2005, pp. 1858–1865.

[21] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented
histograms of flow and appearance,” in Proc. Eur. Conf. Comput. Vision,
vol. 2. 2006, pp. 428–441.

[22] P. Viola and M. Jones, “Robust real-time face detection,” Int. J. Comput.
Vision, vol. 57, no. 2, pp. 137–154, 2004.

[23] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns
of motion and appearance,” Int. J. Comput. Vision, vol. 63, no. 2, pp.
153–161, 2005.

[24] P. Felzenszwalb and D. Huttenlocher, “Pictorial structures for object
recognition,” Int. J. Comput. Vision, vol. 61, pp. 55–79, Jan. 2005.

[25] R. Collins, A. Lipton, T. Kanade, T. Kanade, H. Fujiyoshi, D. Duggins,
Y. Tsin, D. Tolliver, N. Enomoto, and O. Hasegawa, “A system for
video surveillance and monitoring,” Robot. Inst., Carnegie Mellon Univ.,
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-00-12, May 2000.

[26] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by
unsupervised scale-invariant learning,” in Proc. IEEE Conf. Comput.
Vision Patt. Recog., vol. 1. Jul. 2003, pp. 264–271.

[27] R. Collins, “Mean-shift blob tracking through scale space,” in Proc.
IEEE Conf. Comput. Vision Pattern Recognit., vol. 1. Jul. 2003, pp.
235–241.

[28] S. Mallat and Z. Zhang, “Matching pursuit in a time-frequency dic-
tionary,” IEEE Signal Process., vol. 41, no. 12, pp. 3397–3415, Dec.
1993.

[29] S. Avidan, “SpatialBoost: Adding spatial reasoning to AdaBoost,” in
Proc. Eur. Conf. Comput. Vision, vol. 4. 2006, pp. 386–396.

[30] S. Ullman, E. Sali, and M. Vidal-Naquet, “A fragment-based approach
to object representation and classification,” in Proc. Int. Workshop Visual
Form, 2001, pp. 1–4.

[31] S. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and
recognition using appearance-adaptive models in particle filters,” IEEE
Trans. Image Process., vol. 13, no. 11, pp. 1491–1506, Nov. 2004.

[32] W. Hu, H. Gong, S. Zhu, and Y. Wang, “An integrated background model
for video surveillance based on primal sketch and 3-D scene geometry,”



LIU et al.: INTEGRATING SPATIO-TEMPORAL CONTEXT WITH MULTIVIEW REPRESENTATION FOR OBJECT RECOGNITION 407

in Proc. IEEE Conf. Comput. Vision Pattern Recognit., Jul. 2008, pp.
1–3.

[33] W. Zhang, B. Yu, G. Zelinsky, and D. Samaras, “Object class recognition
using multiple layer boosting with multiple features,” in Proc. IEEE
Conf. Comput. Vision Pattern Recognit., vol. 2. Jul. 2005, pp. 323–330.

[34] Y. Wu, Z. Si, C. Fleming, and S. Zhu, “Deformable template as active
basis,” in Proc. Int. Conf. Comput. Vision, 2007, pp. 1–8.

[35] Y. Wu, S. Zhu, and C. Guo, “From information scaling of natural images
to regimes of statistical models,” Quart. Appl. Math., vol. 66, no. 1, pp.
81–122, 2007.

[36] Z. Tu, “Probabilistic boosting tree: Learning discriminative models for
classification, recognition and clustering,” in Proc. Int. Conf. Comput.
Vision, vol. 2. 2005, pp. 1589–1596.

[37] Z. Tu and S. Zhu, “Image segmentation by data-driven Markov chain
Monte Carlo,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5,
pp. 657–673, May 2002.

Xiaobai Liu has been pursuing the Ph.D. degree
from the School of Computer Science and Technol-
ogy, Huazhong University of Science and Technol-
ogy, Wuhan, China, since September 2006.

Since December 2008, he has been a Research
Associate, under Prof. S. Yan, with the Learning
and Vision Group, National University of Singapore,
Singapore. He spent one year as a Research As-
sociate with the Lotus Hill Institute, Wuhan, under
the supervision of Professor S.-C. Zhu from 2007 to
2008. He has published more than 12 articles over

a series of research topics. His research interests include computer vision,
machine learning, and large scale image retrieval.

Liang Lin received the B.S. and Ph.D. degrees from
the Beijing Institute of Technology (BIT), Beijing,
China, in 1999 and 2008, respectively. He was a joint
Ph.D Student at the Statistics Department, University
of California, Los Angeles (UCLA), from 2006 to
2007.

He was a Post-Doctoral Research Fellow with the
Center for Image and Vision Science, UCLA, as
well as a Senior Research Scientist with the Lotus
Hill Research Institute, Wuhan, China, from 2007
to 2009. He is currently an Associate Professor with

the School of Software, Sun Yat-Sen University, Guangzhou, China. He has
published more than 30 academic papers. His current research interests include
but not limited to computer vision, pattern recognition, computer graphics, and
virtual reality.

Dr. Lin has received a number of honors, including several scholarships in
his Ph.D. study, Beijing Excellent Students Awards in 2007, the Excellent
Ph.D. Thesis Award of BIT in 2008, and the Best Paper Runners-Up Award
in NPAR 2010, as well as others.

Shuicheng Yan (M’06–SM’09) received the Ph.D.
degree from the School of Mathematical Sciences,
Peking University, Beijing, China, in 2004.

He spent three years as a Post-Doctoral Fellow
with the Chinese University of Hong Kong, Shatin,
Hong Kong, and then with the University of Illinois
at Urbana-Champaign, Urbana. He is currently an
Assistant Professor with the Department of Electri-
cal and Computer Engineering, National University
of Singapore, Singapore. He has authored or co-
authored over 140 technical papers over a wide range

of research topics. In recent years, his research interests have focused on
computer vision (biometrics, surveillance, and internet vision), multimedia
(video event analysis, image annotation, and media search), machine learning
(feature extraction, sparsity/non-negativity analysis, and large-scale machine
learning), and medical image analysis.

Dr. Yan has served on the editorial board of the International Journal of
Computer Mathematics, has served as a Guest Editor of a special issue for
Pattern Recognition Letters, and has been serving as the Guest Editor of a
special issue for Computer Vision and Image Understanding. He has served as
a Co-Chair of the IEEE International Workshop on Video-Oriented Object and
Event Classification (VOEC’09) held in conjunction with ICCV’09. He was
the Special Session Chair of the Pacific-Rim Symposium on Image and Video
Technology in 2010. He is an Associate Editor of the IEEE Transactions

on Circuits and Systems for Video Technology.

Hai Jin (M’98–SM’06) received the Ph.D. degree in
computer engineering from the Huazhong University
of Science and Technology (HUST), Wuhan, China,
in 1994.

He is currently a Professor of Computer Science
and Engineering with HUST. He is the Dean of
the School of Computer Science and Technology,
HUST. He was with the University of Hong Kong,
Shatin, Hong Kong, from 1998 to 2000, and was
a Visiting Scholar with the University of Southern
California, Los Angeles, from 1999 to 2000. He is

the Chief Scientist with ChinaGrid, the largest grid computing project in
China. He has co-authored 15 books and published over 400 research papers.
His current research interests include computer architecture, virtualization
technology, cluster computing and grid computing, peer-to-peer computing,
network storage, and network security.

Dr. Jin received the German Academic Exchange Service Fellowship to
visit the Technical University of Chemnitz, Chemnitz, Germany, in 1996. He
received the Excellent Youth Award from the National Science Foundation of
China in 2001. He is a member of the Association for Computing Machinery
(ACM) and the Grid Forum Steering Group. He is the Steering Committee
Chair of the International Conference on Grid and Pervasive Computing and
the Asia-Pacific Services Computing Conference. He is a member of the
Steering Committee of the IEEE/ACM International Symposium on Cluster
Computing and the Grid, the IFIP International Conference on Network
and Parallel Computing, the International Conference on Grid and Cooper-
ative Computing, the International Conference on Autonomic and Trusted
Computing, and the International Conference on Ubiquitous Intelligence and
Computing.

Wenbing Tao received the Ph.D. degree in pat-
tern recognition and intelligent systems from the
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2004.

Since 2005, he has been with the School of Com-
puter Science and Technology, HUST, where he is
currently an Associate Professor. He was a Research
Fellow with the Division of Mathematical Sciences,
Nanyang Technological University, Singapore, from
March 2008 to March 2009. He has published nu-
merous journal and conference papers in the area

of image processing and object recognition. His current research interests
include the area of computer vision, image segmentation, object recognition
and tracking, image search engines, and multimedia retrieval.

Dr. Tao serves as a Reviewer for many journals, such as the International
Journal of Computer Vision, IEEE Transactions on Image Processing,
Pattern Recognition, Image Vision Computing, Pattern Recognition Letters,
and others.


