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Weighted Low-Rank Decomposition for Robust
Grayscale-Thermal Foreground Detection

Chenglong Li, Xiao Wang, Lei Zhang, Jin Tang, Hejun Wu, and Liang Lin

Abstract— This paper investigates how to fuse grayscale
and thermal video data for detecting foreground objects in
challenging scenarios. To this end, we propose an intuitive
yet effective method called weighted low-rank decomposi-
tion (WELD), which adaptively pursues the cross-modality
low-rank representation. Specifically, we form two data matrices
by accumulating sequential frames from the grayscale and the
thermal videos, respectively. Within these two observing matrices,
WELD detects moving foreground pixels as sparse outliers
against the low-rank structure background and incorporates
the weight variables to make the models of two modalities
complementary to each other. The smoothness constraints of
object motion are also introduced in WELD to further improve
the robustness to noises. For optimization, we propose an
iterative algorithm to efficiently solve the low-rank models with
three subproblems. Moreover, we utilize an edge-preserving
filtering-based method to substantially speed up WELD while
preserving its accuracy. To provide a comprehensive evaluation
benchmark of grayscale-thermal foreground detection, we create
a new data set including 25 aligned grayscale-thermal video
pairs with high diversity. Our extensive experiments on both the
newly created data set and the public data set OSU3 suggest
that WELD achieves superior performance and comparable
efficiency against other state-of-the-art approaches.

Index Terms— Adaptive fusion, foreground detection,
grayscale-thermal processing, low-rank representation, video
surveillance.

I. INTRODUCTION

FOREGROUND detection (sometimes called moving
object detection) is a fundamental problem in computer

vision, and plays a critical role in numerous vision
applications, such as object tracking, activity recognition, and
video indexing. Although much progress has been made in
recent years, it is still a challenging problem in complex and
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challenging scenarios, like low illumination (LI), background
clutter (BC), as well as bad weather (BW).

Fortunately, thermal infrared sensors can provide
complementary information for visible spectrum sensors
to alleviate the effects of the above factors [1]. Thermal
sensors are a kind of passive sensors that capture the infrared
radiation emitted by all objects with a temperature above
absolute zero, and thus the imaging procedure is not sensitive
to light conditions. In addition, this type of sensor, originally
developed for military use (e.g., surveillance during night),
has recently opened up a broader field of applications due
to decrease in its price [1], [2]. Meanwhile, visible spectrum
sensors may be more effective to separate objects from the
background when they have similar temperatures [also called
thermal crossover (TC)]. Therefore, grayscale and thermal
data can complement information to each other to achieve
more robust moving object detection in challenging scenarios.

This paper will address the following issues in
grayscale-thermal foreground detection through existing
works.

1) How to collaboratively employ grayscale-thermal
information to achieve robust foreground detection.
In many scenarios, grayscale and thermal data can
complement each other, and thus the effective fusion of
these two modalities is important to detect foreground
objects robustly. Existing approaches [3]–[6] employed
some cues, such as contour and saliency, to integrate
grayscale and thermal data for detecting moving objects.
These methods were difficult to handle challenging
scenarios. The others preferred to exploit thermal
information to assist in grayscale detection and ignored
the complementary benefit of the grayscale source when
the thermal information was crossover.

2) How to efficiently and robustly detect moving objects
in challenging scenarios. Foreground detection is
always cast as a prerequisite step for subsequent
applications, which demands an efficient and robust
solution. Some fast methods, such as Gaussian mixture
model (GMM) [7], [8], ViBe [9], and nonparametric
models [10], [11], have been applied to many practical
systems due to their efficient solutions. However, they
are easy to produce poor performance in challenging
scenarios. Other complex approaches [12]–[15] can
obtain robust foreground detection results in various
challenging scenarios, but usually have long latencies.

3) How to create a comprehensive grayscale-thermal
benchmark for moving object detection. Given the
potentials of grayscale-thermal data, however, the related
research is limited by the lack of a comprehensive video
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Fig. 1. Typical results generated by WELD. (a) and (b) First row: grayscale and thermal frames, respectively, and second row: WELD results with
equal quality weights and WELD results, respectively. The optimized quality weights of grayscale and thermal videos in (a) are 0.32 and 1.81, while in
(b) are 0.43 and 0.36, respectively.

benchmark. On the one hand, existing grayscale-thermal
data sets, like OSU Color-Thermal [16] and
LITIV [17], [18], contain a small number of videos with
less challenge and induce a significant bias. In addition,
these data sets are used for different computer vision
tasks, such as registration, fusion, and tracking, and
thus are not suitable for addressing different challenges
in moving object detection. On the other hand, the lack
of a grayscale-thermal evaluation platform also limits
the research progress of grayscale-thermal foreground
detection.

Aiming at addressing the above issues and motivated by
the effectiveness of low-rank representation on background
modeling, we propose a general algorithm, called weighted
low-rank decomposition (WELD), which integrates grayscale
and thermal data for robust moving object detection. Given
two data matrices by accumulating sequential frames from
the grayscale and thermal videos, WELD adaptively pursues a
cross-modality low-rank representation. More specifically, the
foreground object pixels are jointly detected as sparse outliers
in grayscale-thermal videos against the low-rank structure
backgrounds. In addition, we also integrate the contiguous
constraints, which are usually employed for modeling the
spatial distribution of moving objects into WELD to improve
its robustness to noise.

For adaptively integrating information from different
modalities, we develop a quality-based fusion scheme to
detect moving objects robustly. In particular, we incorporate
the weight variables into WELD to make the models of
two modalities complementary to each other. The weight
variable of one modality represents its reliability, and thus
WELD achieves an adaptive fusion based on the reliabilities of
different modalities. The effectiveness of introducing quality
weights in WELD is shown in Fig. 1. For optimization,
we efficiently solve WELD by iteratively optimizing:
1) the background matrices by SOFT-IMPUTE algorithm [19];
2) the foreground matrix by graph cut [20], [21]; and 3) the
weight variables with closed-form solutions.

To further improve the practicality of WELD, we substan-
tially speed up WELD by an edge-preserving-based method
while preserving its accuracy. Specifically, we first perform
WELD on a gradient-driven-based downsampled video, and
then employ an edge-preserving upsampling [22]–[24] to
recover the full-resolution detection results. In this paper, we
call the fast version of WELD as F-WELD.

We also create a grayscale-thermal data set with 25 video
pairs (3 video pairs from [16], [17] for high diversity) recorded
under different challenging scenes. The ground truths of all the
frames are aligned and annotated by one person to ensure high
consistency.1 The annotated data set, implemented baselines,
and evaluation metrics provide a comprehensive benchmark
for grayscale-thermal foreground detection.

This paper makes the following contributions to video
processing and related applications.

1) It proposes a general framework for detecting moving
objects in multimodal videos. To the best of our
knowledge, we are the first to address the problem of
grayscale-thermal foreground detection in an adaptive
low-rank framework. Our framework is able to deal
with challenging scenarios by adaptively leveraging
complementary information about different modalities,
and substantially outperforms other moving object
detection approaches on both the newly created data set
and the public data set OSU3 [16].

2) It presents a fast algorithm to greatly speed up WELD.
In particular, this fast algorithm preserves the accuracy
by the advantage of utilizing the frame structural
information.

3) It creates a standard grayscale-thermal benchmark for
grayscale-thermal foreground detection. This benchmark
will be beneficial for further study of foreground
detection in grayscale-thermal videos. We will release
the evaluation platform online for free academic usage.

1Grayscale-thermal data set webpage: http://vision.sysu.edu.cn/projects/
grayscale_thermal_detection/.
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The rest of this paper is organized as follows. In Section II,
the methods relevant to our WELD are introduced.
We describe the details of WELD and F-WELD in
Sections III and IV, respectively. The creation of a grayscale-
thermal benchmark and the experiment results on this bench-
mark are shown in Sections V and VI, respectively. Section VII
concludes this paper.

II. RELATED WORK

This paper is closely related to the advances in research
streams and the development of a grayscale-thermal data set
for moving object detection.

Single-modality foreground detection has been extensively
studied over the past decades. The representative methods
include GMMs [7], nonparameter algorithms [9], fuzzy-based
methods [25], multiple features-based methods [26], low-rank
representation models [13], [27]–[30], and neural and neuro-
fuzzy methods [31]. These works focus on a single-modality
video sequence (thermal information can be viewed as the gray
value of image), and thus will suffer from the aforementioned
challenges, i.e., LI, BW, etc.

Multimodality foreground detection has drawn more and
more attention in the community [3], [4], [6], [16] with
the popularity of various sensors, such as depth sensors
and thermal infrared sensors [32]. Davis and Sharma [3]
provided a framework for effectively combining information
from thermal and visible videos. They first identified the initial
regions-of-interest in the thermal domain, and then propagated
it into the grayscale domain. The contour saliency map was
obtained by combining both thermal and grayscale information
on the detected regions-of-interest, and further flood-filled
to produce silhouettes. Han and Bhanu [4] proposed a
hierarchical scheme to automatically align synchronous
grayscale and thermal frames, and probabilistically combined
cues from registered grayscale-thermal frames for improving
human silhouette detection. Davis and Sharma [16] proposed
a new background-subtraction technique fusing contours
from thermal and grayscale videos for persistent object
detection in urban settings. Using the region saliency detection
method in [6], infrared and visible images were integrated
with different strategies applied for salient and nonsalient
regions. The background subtraction method is then employed
using GMM.

Low-rank representation has been recently applied to
background modeling and achieved impressive results in
challenging scenarios. The framework of robust principal
component analysis (RPCA) has drawn a lot of attention
in computer vision. The seminal work in [12] showed
that the low-rank model can be recovered from unknown
corruption patterns by principal component pursuit (PCP), a
convex program. The examples in [12] justify the superior
performance of PCP against the previous methods of RPCA
and its promising potential for background subtraction.
Zhou et al. [33] proposed stable PCP (SPCP), an extension
of PCP, to handle both sparse gross errors and small
entrywise noises. PCP and SPCP relaxed l0-penalty to
l1-penalty for convex optimization. However, the l0-penalty

TABLE I

CHALLENGES OF OUR DATA SET AGAINST OTHER PUBLIC
GRAYSCALE-THERMAL DATA SETS. HEREIN, THE

CHALLENGES INCLUDE IM, LI, BW, IS, DS, BC,
AND TC. FOR MORE DETAILS, PLEASE

REFER TO TABLE II

works effectively for sparse noise detection in regression,
while l1-penalty does not [34]. The work, DEtecting
Contiguous Outliers in the LOw-rank Representation
(DECOLOR), [13] keeps l0-penalty to preserve the robustness
to outliers, and also modeled the continuity earlier on
foreground masks to improve the accuracy of detecting
contiguous outliers.

There have been several grayscale-thermal video data sets
for various vision tasks. For example, the OSU color-thermal
data set [16] contains six thermal/color video sequence
pairs recorded from two different locations with only people
moving. Two other grayscale-thermal data sets are collected
in [17] and [18]. Most of them, however, suffer from their
limited size, low diversity, and high bias. This paper addresses
this issue and creates a reasonable size grayscale-thermal
video data set that provides comprehensive evaluations. Table I
presents the challenges of our data set against other public
grayscale-thermal data sets.

III. WELD ALGORITHM

Given a grayscale-thermal video pair, we solve the moving
object detection in a batch way and adaptively incorporate the
information from different modalities by their respective video
quality.

A. Model Formulation

We formulate the problem of grayscale-thermal foreground
detection in a low-rank representation framework due to
its robustness to noise. For the kth modal video, we stack
each frame as column vectors into a matrix, i.e., Dk =
[dk

1, dk
2, . . . , dk

n] ∈ Rg×n , where g is the number of pixels in
one frame and n is the number of frames in one modal video.
Herein, we consider the K modalities for general formulation
and grayscale-thermal data in this paper is a special case with
K = 2. Our goal is to discover the object mask S from data
matrices D[1,...,K ], which is an abbreviation of the matrix set
{D1, D2, . . . , DK }. S ∈ {0, 1}g×n is a binary matrix denoting
the foreground mask as

Si j =
{

0, if i j is background

1, if i j is foreground.
(1)

To this end, we assume that single-modal underlying
background images are linearly correlated and foregrounds
are sparse. This assumption has been successfully applied
in background modeling [13], [27]. Thus, based on this
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assumption, the low-rank representation model can be
formulated as

min
Bk ,Sk

1

2
‖ fS̄k (Dk − Bk)‖2

F + β‖vec(Sk)‖0

s.t. rank(Bk) ≤ rk, k = 1, 2, . . . , K (2)

where Bk ∈ Rg×n denotes the underlying background images
and β is a balance parameter. vec(·) is a vectorize operator on a
matrix. ‖·‖F and ‖·‖0 indicate the Frobenius norm of a matrix
and the l0 norm of a vector, respectively. fS(X) represents the
orthogonal projection of a matrix X onto the linear space of
matrices supported by S

fS(X)(i, j) =
{

0, Si j = 0

Xi j , Si j = 1
(3)

and fS̄(X) is its complementary projection,
i.e., fS(X) + fS̄(X) = X.

To make the rank constraints tractable, we relax it with
the nuclear norm, which has been proved to be an effective
convex surrogate of the rank operator [35]. Thus, we can
reformulate (2) as

min
Bk ,Sk

1

2
‖ fS̄k (Dk − Bk)‖2

F + λ‖Bk‖∗ + β‖vec(Sk)‖0

k = 1, 2, . . . , K (4)

where ‖ · ‖∗ denotes the nuclear norm of a matrix and λ
is a balance parameter. Though minimizing l0 norm of the
foreground mask Sk is also nonconvex, we can optimize it
through introducing the contiguous constraint on Sk , which is
a prior that foreground objects should be contiguous pieces,
and naturally model it by a Markov Random Field (MRF) [13],
[36]. In this way, l0 norm of Sk can be converted into a unary
term in the MRF minimization function (see Section III-B
for more details). We denote Ek as the edge set connecting
spatially neighboring pixels in the kth modality. It is worth
mentioning that the edges in the temporally neighboring pixels
are ignored for reducing the computational complexity. This
contiguous constraint is formulated as∑

(i j,kl)∈Ek

∣∣Sk
i j − Sk

kl

∣∣ = ‖Ak vec(Sk)‖1 (5)

where Ak is the node-edge incidence matrix denoting
the connecting relationship among pixels in kth modality.
Therefore, we enforce contiguous constraint into (4) as

min
Bk ,Sk

1

2
‖ fS̄k (Dk − Bk)‖2

F + λ‖Bk‖∗ + β‖vec(Sk)‖0

+ γ ‖Ak vec(Sk)‖1, k = 1, 2, . . . , K (6)

where γ is a balance parameter.
In (6), it is inherently indicated that the available

modalities are independent and contribute equally. This
may significantly limit the performance in dealing with
occasional perturbation or malfunction of individual sources.
Therefore, we propose a novel collaborative model for
robustly detecting moving objects that: 1) adaptively recovers
the low-rank backgrounds based on their respective modal
qualities; 2) collaboratively computes one sparse foreground

Algorithm 1 Optimization Procedure to (7)

Input: Dk, (k = 1, . . . , K ).
Set Bk = Dk (k = 1, 2, . . . , K ), S = 0, λk =
1
K , max I ter = 20, ε = 1e − 4.

Output: S, Bk, δk, (k = 1, 2, . . . , K ).
1: for i = 1 : max I ter do
2: if i == 1 then
3: φδk = ‖ fS̄(Dk − Bk)‖2

F , k = 1, 2, . . . , K .
4: end if
5: Parallelly update {Bk} by Eq. (8);
6: Update S by Eq. (9);
7: Update {δk} by Eq. (10);
8: Check the convergence condition: if the maximum

objective change between two consecutive iterations is
less than ε, then terminate the loop.

9: end for

mask shared by all modalities; and 3) efficiently optimizes the
quality weights of all modalities with closed-form solutions.
In this way, we can detect moving objects by adaptively
leveraging the information about different modalities based on
their reliabilities. The formulation of the WELD algorithm is
proposed as

min
{Bk },S,{δk}

K∑
k=1

(δk)m

2
‖ fS̄(Dk − Bk)‖2

F + λ‖Bk‖∗

+ β‖vec(S)‖0 + γ ‖A vec(S)‖1 +
K∑

k=1

φδk (1 − δk)m (7)

with the constraints δk > 0 (k = 1, . . . , K ), where
δk is the quality weight of the kth modality and
m ∈ (1,∞) is a fuzzifier parameter, similar to the formulation
of fuzzy c-means clustering [37]. S is the shared foreground
mask matrix by all the modalities. φδk is determined by
the reconstruction error of the kth modality after the first
iteration, as shown in Algorithm 1. The last term in (7) is a
possibility-like constraint to avoid degenerate solutions of {δk},
similar to the possibilistic fuzzy c-means clustering [38],
allowing the weights of different modalities to be specified
independently.

B. Optimization

Although (7) seems complex, we can efficiently solve it
by the alternating optimization algorithm. Given {δk} and S,
the minimization of {Bk} in (7) can be transformed to be the
matrix completion problem [19]

min
{Bk }

K∑
k=1

(δk)m

2
‖ fS̄(Dk − Bk)‖2

F + λ‖Bk‖∗. (8)

This is to learn a low-rank background matrix from
partial observations. The optimal Bk in (8) can be
efficiently computed by the SOFT-IMPUTE algorithm whose
convergence property has been proved in [19]. Note that the
computations of {Bk} are independent in (8). Thus, we can
optimize them in a parallel way for efficiency.
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Given {δk} and {Bk}, (7) can be rewritten as

min
S

K∑
k=1

(δk)m

2
‖ fS̄(Dk −Bk)‖2

F +β‖vec(S)‖0+γ ‖A vec(S)‖1

= min
S

K∑
k=1

(δk)m

2

∑
i j

(
Dk

i j − Bk
i j

)2
(1 − Si j ) + β

∑
i j

Si j

+ γ ‖A vec(S)‖1

= min
S

∑
i j

[
β − 1

2

K∑
k=1

(δk)2(Dk
i j − Bk

i j

)2

]
Si j

+ γ ‖A vec(S)‖1 + C

= min
S

∑
i j

[
β − 1

2

K∑
k=1

(δk)2(Dk
i j − Bk

i j

)2

]
Si j

+ γ ‖A vec(S)‖1 (9)

where C = (1/2)
∑K

k=1(δ
k)2 ∑

i j (D
k
i j − Bk

i j )
2 is a constant

with respect to S. Therefore, the minimization of S can be
converted to the first-order MRFs problem, which can be
efficiently solved by graph cut algorithm [20], [21].

Given {Bk} and S, the quality weights in (7) can be
written as

min
{δk}

K∑
k=1

{
‖ fS̄(Dk − Bk)‖2

F

2
(δk)m + φδk (1 − δk)m

}

δk > 0 (k = 1, . . . , K ) (10)

which has a closed-form solution

δk = 1

1 +
(

‖ fS̄(Dk−Bk)‖2
F

φδk

) 1
m−1

, k = 1, 2, . . . , K . (11)

A suboptimal solution can be obtained by alternating the
optimization to {Bk}, S, and {δk}; the algorithm is summarized
in Algorithm 1. The convergence of WELD can be guaranteed
obviously, as each subproblem converges to an optimal
solution.

IV. F-WELD: FAST IMPLEMENTATION

In this section, we will present an edge-preserving
filtering-based method to improve the efficiency of WELD
while preserving its accuracy, using F-WELD.

Instead of processing the full-resolution videos, we perform
WELD algorithm on the low-resolution videos subsampled
from the original videos in a gradient-driven way. More
specifically, we pick the pixel with the largest gradient
magnitude from a 3 × 3 patch on every frame to form
the low-resolution videos. In this way, we can obtain
the low-resolution detection maps. For each low-resolution
detection map, we employ it to recover the full-resolution one
with the edge-preserving upsampling technique. Herein, we
regard the reliable modal frame, which has a higher quality
weight, as the guidance image. It can produce a smoothly
varying dense detection map without blurring the edges of
objects. In this paper, the edge-preserving upsampling method
consists of two steps:

Algorithm 2 Summarization of Our System
Input: One grayscale-thermal video pair.
Output: Full-resolution foreground detection maps.
1: Run gradient-driven downsampling on video pair to obtain

the low-resolution video pair;
2: Run Alg. 1 on the low-resolution video pair to obtain the

low-resolution foreground detection maps;
3: For each foreground detection map, run edge-preserving

upsampling to recover the full-resolution one.

Fig. 2. Generating a pixelwise shape-adaptive region of CLMF [23] (see text
for more details).

1) Shape-Adaptive Region Generation: We first obtain an
arbitrary-shaped observation region for each pixel in an
image. Specifically, for a pixel p centered at a square
window Wp , the color similarity criterion for a pixel q is
defined as

|Ic(q) − Ic(p)| ≤ τ, c ∈ {R, G, B}, q ∈ Wp (12)

where Ic is the intensity of the color band c of the
3×3 median smoothed guidance image I and L denotes
the preset maximum arm length of the observation
window Wp centered at pixel p of size (2L + 1) ×
(2L + 1). τ controls the confidence level of the color
similarity. The details of generating the shape-adaptive
region 	p are presented in cross-based local multipoint
filtering (CLMF) [23] and we briefly review the main
idea for clarity. CLMF decides a pixelwise adaptive
cross with four arms (left, right, top, bottom) for
every pixel p. These arms record the largest left/right
horizontal and top/bottom vertical span of the anchor
pixel p, where all the pixels covered by the arms
satisfies 12. Let H (p) and V (p) denote all the pixels
covered by the horizontal and vertical arms of p,
respectively, as shown in Fig. 2. Let q denote any pixel
covered by the vertical arms of p, i.e., q ∈ V (p) and
we can construct the arbitrary-shaped region of p by
integrating multiple H (q) sliding along V (p): 	p =⋃

q∈V (p) H (q).

2) Edge-Preserving Upsampling: Given the low-resolution
input image J l , we can upsample it to the full-resolution
image J without perturbing the object edges by the
edge-preserving filtering. For the pixel p ∈ J , similar
to the joint bilateral upsampling [22], its value is
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Fig. 3. Edge-preserving filtering for F-WELD. Herein, one modality is shown for clarity. (a) Original frame. (b) Gradient-driven downsampling.
(c) WELD result. (d) Edge-preserving upsampling. (e) Ground truth. (f) Bilinear downsampling. (g) WELD result. (h) Bilinear upsampling.
(c) and (g) Results of WELD running on (b) and (f), respectively. One can see that the edge-preserving filtering-based F-WELD achieves better accuracy than
the general resize operation.

estimated by

J (p) = 1

|	k|
∑

k∈	k

ωp,k J l(k) (13)

where 	k is the shape-adaptive region generated by
the guidance image I of pixel k ∈ J l , as shown
in Fig. 2. |	k | denotes the number of pixels in 	k

and ωp,k = exp(−‖xp, xk‖/σ), where xp indicates the
position of p. In this way, the pixel values are weighted
average by the spatial distance in the homogeneous
regions of the guidance image to form the full-resolution
one without perturbing the edges of objects. Overall,
our complete system of grayscale-thermal foreground
detection is summarized in Algorithm 2.

There are several commonly used downsampling and
upsampling techniques. On the one hand, the interpolation-
based methods usually generated bad performance, as it
employed less information. In particular, the bilinear interpo-
lation is one of the commonly used interpolation methods, and
thus we demonstrate the effectiveness of the proposed method
against the bilinear interpolation in Fig. 3. On the other hand,
the filtering-based methods regarded the original-resolution
images as guidance and had the advantage of utilizing the
structural information about the original-resolution images for
detection recovery. For the filters using piecewise constant
modeling [39], [40], they usually cannot preserve the image
gradient information well. Although using piecewise linear
local modeling in the guided filter (GF) [41], our used filter is a
more generalized form, which performs local averaging over a
shape-adaptive support region, rather than within a fixed-sized
square window in the GF.

V. GRAYSCALE-THERMAL BENCHMARK

This section introduces a new grayscale-thermal video
benchmark for moving object detection and presents some
essential analyses.

A. Data Set

Our recording system consists of an online thermal
image (MAG32) and a charge-coupled device cam-
era (SONY TD-2073). We mount these two cameras on
tripods and make their views overlapped as much as possible
for convenient alignment.

Unlike the industry registration in RGBD sensor, which
consists of one RGB sensor and one depth sensor, which
consists of one RGB sensor and one depth sensor, we manually
construct the recording system and develop an annotation tool
to align grayscale-thermal videos in the following way. We
uniformly select a number of point correspondences in the
keyframe of the video pair and compute the homography
matrix by the least-square method. Then, the video pair can
be aligned by applying the computed homography matrix to
transform the remaining frame pairs. This registration method
can accurately align video pairs due to two main reasons.
First, we carefully choose the planar and nonplanar scenes
to make the homography assumption effective. Second, since
two camera views are almost coincident as we made, the
transformation between two views is simple.

We annotate the ground truths of the data set using the
more distinguishable modality. In addition, all the frames are
manually annotated by one person to keep a high consistency.
When occlusion occurs, the ground truth is annotated by the
visible portion of the target. Fig. 4 presents some typical frame
samples of our data set. The following main aspects are taken
into account in creating the grayscale-thermal video.

1) Scene Category: We captured video pairs in 15 scenes,
including laboratory rooms, campus roads, play grounds,
water pools, etc.

2) Object Category: Our grayscale-thermal data set
includes rigid and nonrigid objects, such as vehicles,
pedestrians, and animals.

3) Intermittent Motion (IM): When the objects move
slowly or stop at one or more frames, many detection
methods easily tend to classify them as background.
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Fig. 4. Sample pairs and the corresponding annotated challenges of our data set. The grayscale frames, thermal frames, and their corresponding ground
truths are shown in the first row, second row, and third row, respectively. We only present one frame pair of each video pair for clarity.

TABLE II

CHALLENGES ANNOTATED TO OUR
GRAYSCALE-THERMAL DATA SET

4) Shadow Effect: The shadows cast by foregrounds or
backgrounds with varying ambient lighting usually cause
fake motions in the background. They increase the
difficulty to detect the intact foregrounds.

5) Illumination Condition: The video sequences are
captured under different light conditions (sunny, rainy,
and nighttime, etc). The LI and illumination variation
caused by different light conditions usually bring big
challenges in grayscale videos.

6) Background Factor: First, a similar background to
the moving objects in appearance or temperature
will introduce ambiguous information, and bring big
challenges to detection methods. Second, it is difficult to
separate objects accurately from a cluttered background.
Third, the dynamic scene (DS) is also a challenge in
moving object detection, such as swaying leaves and
waving water surfaces.

Table II summarizes the challenges of the newly built video
data sets. We present the challenge distribution in Fig. 5 and
the challenges of all the video sequences in Table III.

B. Baseline Approaches

To evaluate the proposed approach and providing a
comprehensive evaluation platform, we add some popular
methods as baselines as a part of our benchmarks. Specifically,

TABLE III

ANNOTATED CHALLENGES OF ALL VIDEO SEQUENCES, WHERE �
INDICATES THE VIDEO PAIR AND INCLUDES

THE CORRESPONDING CHALLENGE

we implement three kinds of baselines, including grayscale,
thermal, and grayscale-thermal detection methods.

1) Eleven grayscale baselines are included in the
benchmark, including DEtecting Contiguous Outliers
in the LOw-rank Representation (DECOLOR) [13],
Motion-Assisted Matrix Restoration (MAMR) [29],
Local Adaptive Sensitivity (LAS) [26], Adaptive
Self-Organizing Model (ASOM) [42], Fusing Color
and Texture Features (FCTF) [43], Smoothness and
Arbitrariness Constraints (SAC) [14], Principle
Component Pursuit (PCP) [12], Three Term
Decomposition (TTD) [45], Adaptive Pixelwise
Kernel Variances (APKV) [44], Gaussian Mixture
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TABLE IV

AVERAGE PRECISION, RECALL, AND F-MEASURE OF OUR METHOD AGAINST DIFFERENT KINDS OF BASELINE METHODS ON
THE NEWLY CREATED DATA SET. CODE TYPE AND FRAMES PER SECOND ARE ALSO PRESENTED.

BOLD FONTS OF THE RESULTS INDICATE THE BEST PERFORMANCE

Fig. 5. Challenge distribution on the entire data set. The vertical ordinate
indicates the number of video pairs.

Model (GMM) [7], and Visual Background Extractor
(ViBe) [9].

2) Regarding thermal modality as input in the above
methods, we obtain 11 thermal baselines.

3) To the best of our knowledge, none of the grayscale-
thermal methods release the codes online. Thus, we
implement two grayscale-thermal baselines for compre-
hensive evaluation, including GMM-GT and JSC [5].
In particular, GMM-GT fuses the detection results of
GMM [7] with grayscale and thermal inputs.

It is worth mentioning that two variants of the proposed
approach can also be regarded as additional baseline
approaches in the benchmark (see Section VI-C for more
details).

C. Evaluation Metrics

For the quantitative evaluation, we employ precision, recall,
and F-measure as evaluation metrics, denoting P , R, and F ,

respectively. Their calculations are

P = TP

TP + FP

R = TP

TP + FN

F = 2PR

P + R
(14)

where TP, FP, and FN denote true positive, false positive, and
false negative, respectively.

VI. EXPERIMENTS

We present empirical evaluation and analysis of the
proposed method against several baseline methods on both
the newly created data set and the public OSU3 data set [16].
We further analyze the component contributions and efficiency
of the proposed method. Finally, we discuss our limitations
through failure cases.

A. Evaluation Settings

1) Datasets: We evaluate the proposed method on two
data sets, the newly created one and the public one [16].
Our (OSU3) data set includes 25 (6) video sequence pairs
and 1067 (8544) frame pairs in total, where the shortest
and the longest video lengths are 24 (601) and 131 (2031),
respectively. The video sequence pairs in the newly created
data set are with three resolutions: 1) 320×240; 2) 384×288;
and 3) 400 × 296, while the video sequence pairs in OSU3
are with the resolution 320 × 240. More details of the newly
created data set are presented in Section V. For OSU3, its
main challenges are shadow, IM, and DS. Since the original
data set reported in [16] does not include the detection ground
truths, we manually annotate the ground truths with 30 frame
intervals for facilitating the evaluations.
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Fig. 6. Sample results of our method against other methods. The odd rows indicate the grayscale frames and the corresponding detection results generated
by grayscale methods, and the even rows denote the thermal frames and the corresponding detection results generated by thermal methods, except for the last
two columns. Herein, (i) and (j) indicate the detection results of grayscale-thermal methods (GMM-GT and JSC) and our methods (WELD and F-WELD),
respectively.

2) Parameters: Although the proposed method has many
parameters, we only need to set some of them, and fix them
on both the newly created data set and the OSU3 data set for
fair comparisons.

1) The parameter λ controls the complexity of the
background model. We first give a rough estimate to
the rank of the background model, denoting r for all
modalities. Then, we initialize λ with a large value, the
mean of the second largest singular values of {Dk} in our
implementation, and run the SOFT-IMPUTE algorithm.
If the existing k is subject to rank(Bk) ≤ r , we reduce
λ by a factor (1/

√
2 in our implementation) and repeat

the SOFT-IMPUTE algorithm until rank(Bk) > r for
all k = 1, 2, . . . , K . Thus, we just need to set r to
control the complexity of the background model in the
experiments. Note that the shortest video length of two
data sets is 24, and the longest video length of two data
sets is 2031. r should be adjusted by the video length
to adapt its variation. Therefore, we empirically set it to
be

√
n, where n denotes the video length.

2) The parameter β controls the sparsity of the foreground
masks. We typically set β = 4.5σ 2, where σ is
estimated online by the mean variance of {Dk − Bk}.

Since the estimation of {Bk} and σ is biased at
the beginning iterations, similar to λ, we start our
algorithm with a large β and then reduce it by a factor
(0.5 in our implementation) after each iteration until it
reaches 4.5σ 2.

3) The parameter γ controls the spatial smoothness of
the foreground and background, and can be adaptively
adjusted by β. We empirically set it to be 6β.

4) The parameters {φδk } are determined by the
reconstruction error after the first iteration, as shown
in Algorithm 1.

5) The above parameter settings are for WELD.
In F-WELD, we empirically set {r, γ , β} =
{(√n/3), 4β, 2.7σ 2}, and set the window size L and
the similarity threshold τ to be 20 and 16, respectively.

B. Comparison Results

1) Overall Performance: We first report the overall
performance of both the newly created and the public data
sets. The quantitative and qualitative comparison results of the
proposed approach on the newly created data set with three
other kinds of baselines are presented in Table IV and Fig. 6.
Here, we input the same modal data into WELD and F-WELD
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Fig. 7. (a) and (b) Two sequential results of our method. The left-top number indicates the frame index. The grayscale frame, thermal frame, F-WELD
results, and ground truth are presented in the first, second, third, and fourth rows, respectively.

to obtain their respective results on the single modality. From
Table IV and Fig. 6, we can see that our F-WELD achieves a
superior performance over other methods with different inputs,
demonstrating the effectiveness of the proposed approach. We
can further make the following main conclusions through the
comparison results.

1) F-WELD and WELD achieve a superior performance
than the grayscale and thermal methods. This
observation not only demonstrates that fusing grayscale
and thermal data can obtain more robust results than
single modality, but it also identifies the importance
of thermal information in foreground detection under
challenging scenarios.

2) F-WELD and WELD substantially outperform other
grayscale-thermal methods, justifying that the proposed
methods can adaptively integrate grayscale and thermal
information to achieve robust foreground detection.

3) F-WELD, WELD, and DECOLOR obtain a big
superiority in recall. It validates the effectiveness

of introducing the contiguous constraints of moving
objects.

4) The superior performance of F-WELD on a single
modality against other state-of-the-art approaches further
demonstrates the effectiveness of the proposed approach.

5) The low-rank methods usually achieve promising
detection results in challenging scenarios, such as
F-WELD, WELD, MAMR, and DECOLOR. This
may be attributed to the robustness to noises of the
low-rank model. In addition, we also present the
sequential results generated by our F-WELD in Fig. 7.

To further validate the effectiveness of the proposed methods,
we evaluate them with other baseline methods on the public
data set OSU3 [16]. The comparison results are shown in
Fig. 8, which mainly accord with the observations on the newly
created data set. In particular, the performance of F-WELD is
slightly worse than WELD and significantly outperforms three
other kinds of baseline approaches. Comparing the results
on two data sets, we can find that many methods have a
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Fig. 8. Evaluation results of the proposed methods against other baseline
methods on the public data set OSU3. G and T in the brackets indicate the
grayscale data and the thermal data, respectively.

TABLE V

CHALLENGE-BASED RESULTS OF F-WELD AGAINST ITS RESULTS ON A

SINGLE MODALITY, WHERE G INDICATES THAT WE ONLY INPUT THE
GRAYSCALE DATA INTO F-WELD, WHILE T INDICATES THAT

WE ONLY INPUT THE THERMAL DATA INTO F-WELD

bad performance in the newly created data set, but obtain
good results in the OSU3, such as ASOM, FCFT, LAS, TTD,
and PCP. It suggests that the proposed data set has bigger
challenges than the public one, and will be helpful to promote
the progress in grayscale-thermal foreground detection.

2) Challenge-Based Performance: To quantify the
complementarity between the two modalities, we present the
challenge-based comparison results in Fig. 9, including LI,
intense shadow (IS), BC, and TC. For LI and IS, grayscale
data are affected by the lighting condition, while thermal
data are not. The results show that most of the compared
methods have a higher performance on thermal data, as
shown in Fig. 9(a) and (b). In BC, the moving objects are
easier to be influenced by clutter backgrounds in grayscale
data than in thermal data. Fig. 9(c) shows this point, i.e., most
compared methods obtain a superior performance on thermal
data than on grayscale data. In contrast, thermal videos
with TC usually make detection algorithms have a weaker
performance. In such a circumstance, grayscale information
may be effective to distinguish the moving objects from
the background, as demonstrated in Fig. 9(d). Note that our
methods achieve high performance in all the four challenges.
In addition, we also present the challenge-based results
of F-WELD against its results on a single modality, as
shown in Table V. The comparison results further justify the
complementarity of these two modalities. Therefore, we can
conclude that the proposed methods can complement each
other to achieve robust detection under challenging scenarios.

3) Other Discussions: We first discuss the influences of
the frame numbers on the performance and computational
efficiency. The F-measure and the runtime of different frame
numbers are shown in Fig. 10. Here, a different frame number

TABLE VI

PERFORMANCE AND RUNTIME OF DIFFERENT DOWNSAMPLING
SCALARS ON THE NEWLY CREATED DATA SET

TABLE VII

AVERAGE PRECISION, RECALL, AND F-MEASURE OF OUR METHOD AND

ITS VARIANTS ON THE ENTIRE DATA SET. BOLD FONTS

OF RESULTS INDICATE THE BEST PERFORMANCE

indicates the different partition of input videos. For example,
given a certain frame number n0, we partition the input video
into several video clips, in which each clip has n0 adjacent
frames. The detection results with the frame number n0 are
obtained by performing F-WELD on all video clips. From
Fig. 10, on the one hand, we can see that the performance
changes a little when the frame number is between 10 and 100
and the runtime increases slightly. Although F-WELD obtain
much gain in efficiency, its F-measure decreases greatly when
the frame number is 5. Therefore, we can conclude that at
least 10 frames are required in our algorithm to keep a high
performance. On the other hand, if we input all the frames of a
video at one time, the length that can be processed depends on
the memory of the computer used. However, if we temporally
partition the video into some video clips, in which each clip is
computable for the computer used, our algorithm can process
an arbitrarily long video.

Then, we present the influences of the downsampling
scalars on the performance and computational efficiency
in Table VI. From the results, we can see that the performance
decreases slightly, while the runtime decreases greatly when
the downsampling scalar becomes 3 from 2. When the
downsampling scalar is between 3 and 5, the results change
a little in both the performance and computational efficiency.
Therefore, we set the downsampling scalar to 3 in this paper
to balance the accuracy-efficiency tradeoff.

C. Component Analysis

To justify the component contributions of the proposed
approach, we further implement the following two variants.

1) WELD-I, which sets δk = 1/K , k = 1, 2, . . . , K ,
making each modality equal in reliable weights.

2) F-WELD-I, which replaces the gradient-driven
downsampling and edge-preserving upsampling with
the bilinear downsampling and bilinear upsampling,
respectively.
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Fig. 9. Challenge-based performance of the proposed methods against other baseline methods on the newly created data set. G and T in the brackets indicate
the grayscale data and the thermal data, respectively. (a) Low illumination. (b) Intense shadow. (c) Background clutter. (d) Thermal crossover.

Table VII shows the quantitative results on the newly created
data set and we can make the following observations.

1) F-WELD outperforms WELD in precision and
F-measure. It justifies the contribution of the proposed
accelerate algorithm. In F-WELD, we regard the
original-resolution frames as guidance and recover the
original-resolution results from the low-resolution ones
by employing edge-preserving filtering. This process
has the advantage of utilizing the structural information
about the original-resolution frames for detection
recovery.

2) WELD significantly outperforms WELD-I in precision
and F-measure, and is slightly worse in recall.
It demonstrates the importance of weights in the
proposed model to achieve adaptive fusion of different
modalities.

3) F-WELD substantially outperforms F-WELD-I in pre-
cision and F-measure, showing that the edge-preserving
filtering-based accelerate algorithm can greatly improve
the detection accuracy.

D. Efficiency Analysis

The experiments are carried out on a desktop with an
Intel i7 4.0-GHz CPU and 32-GB RAM, and implemented
on the mixing platform of C++ and MATLAB without any
code optimization. The runtime of our method against other
methods is presented in Table IV and all the frames are with
a 320 × 240 resolution. From Table IV, we can see that
F-WELD can speed up WELD by about 4 times (achieving
about 10 frames/s) while improving its accuracy by 6%.
Although ASOM, ViBe, GMM, FCFT, GMM-GT, and PCP

Fig. 10. F-measure and runtime of F-WELD of different number of frames,
which are computed from three videos in the newly created data set. Each
video has a length of 100 frames.

are much faster than ours, these methods are much worse
than F-WELD in precision, recall, and F-measure. LAS and
JSC are comparable with F-WELD in efficiency and also
have much worse accuracy than F-WELD. For MAMR and
DECOLOR, they have heavy computational burdens in spite
of obtaining good accuracies. These demonstrate that F-WELD
obtains a good balance in efficiency and accuracy. Note that
our F-WELD is near-real-time, and we can further reduce the
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Fig. 11. Unsatisfying results generated by our method. (a) Grayscale frame.
(b) Thermal frame. (c) WELD. (d) F-WELD.

computational burden by increasing the downsampling scalar
without losing much accuracy, as shown in Table VI.

E. Limitation

We also present the unsatisfying results generated by our
method, as shown in Fig. 11. When severe noises occur
in one modality, such as moving shadows, another modal
information can alleviate their effects. The detection results
of the third frame pair in Fig. 6 show that our method can
handle this situation well. However, when such noises occur
in both the modalities [see Fig. 11(a) and (b)], our method will
fail [see Fig. 11(c) and (d)]. This problem could be tackled by
incorporating shape or other high-level knowledge to remove
these noises.

VII. CONCLUSION

In this paper, we proposed a general algorithm for
robust foreground detection in challenging scenarios by
adaptively leveraging grayscale-thermal information and
also substantially sped up our algorithm while preserving
its accuracy by the edge-preserving filtering. Extensive
experiments on the newly created and public grayscale-thermal
data sets suggest that our approach achieved superior
performance against other state-of-the-art approaches. In the
future work, we will develop other priors on the foreground
or background into our framework to further improve the
robustness and extend our algorithm in a streaming or an
online fashion for processing arbitrarily long videos with
limited computational sources and spaces.
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