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Reconstructing Dynamic Objects via LiDAR Odometry
Oriented to Depth Fusion
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510006 China,
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Abstract. LiDAR odometry is the key component of LiDAR-based simultane-
ous localization and mapping (SLAM). However, the low vertical resolution of
LiDAR makes it difficult to produce pleasant mapping results. It is even more
challenging to reconstruct the surface of dynamic objects from the raw LiDAR
input. To address this problem, existing approaches typically divide it into sev-
eral subproblems like object detection and tracking and then solve them individ-
ually, which greatly increases the complexity of LiDAR odometry as well as the
SLAM framework. In this work, we propose to address this problem by improv-
ing LiDAR odometry with appropriate modifications to the depth fusion process
and several additional lightweight components. Extensive evaluations on KITTI
dataset and Velodyne HDL-16E laser scanner demonstrate the effectiveness of the
proposed method. The results of the improved LiDAR odometry include abundant
information about the dynamic objects, which can be used for many high-level
tasks such as object recognition and scene understanding.

Keywords: LiDAR odometry, Depth fusion, 3D reconstruction, Simultaneous
localization and mapping

1 INTRODUCTION

Simultaneous localization and mapping (SLAM) has been widely studied for years
because of its irreplaceable importance to robot perception. A general assumption of
LiDAR-based SLAM approaches [6, 10] is that the static scene is scanned by a moving
LiDAR, which is inaccurate when there are dynamic objects in the scene. Moreover, the
vertical resolution of LiDAR is very low (e.g. 32 lines), making it difficult to perform
surface reconstruction in mapping tasks.

To handle dynamic objects in the scene, researchers have made great efforts to
improve the SLAM principles from different aspects, such as object detection and
tracking. For example, LiDAR measurements on objects can be considered as outliers
of the scene measurements. Therefore, the random sample consensus (RANSAC) [5]
paradigm, which is originally designed for outlier detection, is widely used for object
detection and removal [4]. Specific cues for LiDAR data, such as occupancy grid [14]

⋆ The corresponding author. Email: chenchy47@mail.sysu.edu.cn
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and ray tracing [11], are also adopted for object detection in LiDAR scans. To handle
dynamic objects continuously, tracking methods are also employed. Moosmann et al. [8]
propose to jointly address tracking and self-localization, which typically requires dense
depth input (e.g. 64-line LiDAR data) and an additional component of track manage-
ment. Yang et al. [16] propose a specific RANSAC oriented to spatiotemporal consis-
tency to build links among moving object tracking, multi-scale segmentation, and Li-
DAR odometry. Although all the components work in a stable manner, the problem of
reconstructing dynamic objects remains unsolved due to the sparsity of the raw LiDAR
input. It can be observed that existing solutions tend to add more components to handle
dynamic scenes, which will increase the computation amounts. This is not preferred in
intelligent systems with limited computational resources.

In this paper, we study on the challenging problem of reconstructing dynamic ob-
jects from sparse depth data. The proposed solution, which is called L iDAR odometry
oriented to fusion (LOOF), is built upon standard LiDAR odometry with the orienta-
tion to depth fusion for dynamic objects. Several lightweight algorithms are employed
to fully exploit necessary information from the LiDAR odometry pipeline. In particu-
lar, spatial clustering and temporal association are employed to exploit spatiotemporal
consistency of dynamic objects. Parameters for rendering and fusing depth maps are
carefully chosen to be adaptive to the sensor characteristics. To the best of the authors’
knowledge, the proposed method is the first solution to reasonable surface reconstruc-
tion of dynamic objects from sparse LiDAR data. Evaluations on public datasets verify
the effectiveness of the proposed method from the aspects of reconstruction quality,
odometry accuracy, and computational efficiency. Abundant information about object
segmentations and trajectories can be easily extracted from the results of the proposed
solution, which can be used for many high-level tasks such as object recognition, object
tracking, and scene understanding.

2 PROPOSED FRAMEWORK

Fig. 1. The pipeline of the proposed LiDAR odometry oriented to fusion (LOOF).

In this section, we present our solution of employing lightweight algorithms to Li-
DAR odometry with orientation of depth fusion. As shown in Fig. 1, The employed
algorithms are mainly for foreground-background separation and depth processing.



Rec. Dynamic Objs via LiDAR Odometry Oriented to Depth Fusion 3

2.1 LiDAR odometry

Starting with standard LiDAR odometry, the proposed method takes as input a sequence
of depth measurements. The set of depth measurements obtained at the same time is
defined as a data frame. By exploiting the coordinate information from LiDAR data,
we build a multi-dimension map Di for each data frame, where i is the frame number.
In this section, we denote a data point in Di as p(u, v) = {x, y, z, d}, where v is the
measurement number related to the scanning azimuth, u ∈ {1, . . . , umax} is the number
of scanning line, d is the depth value, and {x, y, z} represents the 3D coordinates of the
point in the global coordinate system. For the data provided by mainstream LiDAR,
typical values of umax are 16, 32, and 64. Small value of umax brings in difficulties to
both accurate frame registration and reasonable surface reconstruction.

For the registration between two sequential frames Di and Di+1, classical point-to-
point iterative closest point (ICP) method [1] may produce incorrect registration results.
The main reason is that the same LiDAR scanning line is probably on different posi-
tions of the object surface in sequential frames, while in computational point of view,
the points on the same scanning line will probably be considered as correspondences
between two frames. Therefore, we connect the 3D points in Di as a mesh with normals
and adopt standard point-to-plane ICP method [3] for frame registration.

2.2 Foreground-background separation for LiDAR data

To reconstruct dynamic objects, we separate the object measurements from the scene
measurements, which is done by an improved RANSAC paradigm with spatial cluster-
ing and temporal association.

Adaptive spatial clustering of outliers In the registration between frames of LiDAR
data, the depth measurements from the ground usually affects the registration accuracy.
Therefore, in this work, we adopt the RANSAC paradigm for two purposes, i.e., ground
measurement removal as described in [2] and dynamic object detection. In particular,
we divide the data frame into n point sets {P1, . . . , Pn}. For every point set Pk, we
apply ICP individually to obtain a rigid transforms Tk. After applying Tk to all 3D
points, the dynamic points are then detected by exploiting their distances with the cor-
responding points. In this work, the distance threshold is set to 0.05 m for the frame rate
of 10 fps, aiming at detecting dynamic points with a speed no less than 0.5 m/s. The
RANSAC iterations stop within 10 iterations. During the iterations, if the average error
is smaller than the distance threshold, the iterations will stop immediately.

After the detection of outliers, we cluster the outlier points in the spatial domain,
resulting in a preliminary estimation of foreground objects. The density-based spatial
clustering of applications with noise (DBSCAN) [15] is employed because of its nice
ability in preserving object continuity. There are two key parameters of DBSCAN, i.e.,
radius of search window rwin and the minimal number of points within the searching
radius which is denoted as nmin. Since the density of laser-scanned measurements de-
creases as the depth increases, both rwin and nmin have to be adaptive to depth. In this
work, we propose to compute rwin for the current point as:

rwin(d2) = s ∗ rwin(d1) (1)
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Fig. 2. The relationship between scanning range and object-LiDAR distance with a fixed scanning
area.

where the scale

s =
arctan2(1/d1)

arctan2(1/d2)
,

rwin(d1) = 0.5 m is the searching radius for the depth of d1 = 10 m, d2 is the depth
of the current 3D point. The reason for using Eq. (1) that the number of LiDAR mea-
surements for the same scanning area become smaller as the distance increase. As illus-
trated in Fig. 2, for the same scanning area of πr2, there are θ1/θint measurements for
the distance of d1, while there are θ2/θint measurements for the distance of d2, where
the scanning interval θint is a fixed value for a given LiDAR device.

It should be noticed that these separation results are not perfect that some fore-
ground points will be considered as background and vice versa. An example of incorrect
labelling is illustrated in Fig. 3 (a) and (b).

Temporal association of object candidates The reconstruction of object surface usu-
ally requires continuous scanning from different views. Therefore, we need to build
the links for the 3D points from the same object across different frames. Although the
spatial clustering results are not perfect, they still provide nice object candidates when
being applied to individual frames. Given the imperfect object candidates, we propse
to exploit temporal consistency for linking object candidates across frames. In particu-
lar, we first divide the sequence into several segments of identical length. Then, close
cluster centers across sequential frames are linked together, so that each cluster corre-
sponds to a trajectory. The trajectories that lasts for more than 0.5 second (5 frames)
with a breakup smaller than 0.5 second are preserved and marked as foreground. Other
trajectories will be removed and the related clusters are marked as background. Then,
we compass the points in cubes respectively determined by the maximum and mini-
mum coordinate of the points with foreground label , by doing which the foreground
labels are propagated to the surrounding 3D points,resulting in more labeled foreground
points. An example of the objects extracted by applying spatial clustering and temporal
association is shown in Fig. 3 (c). It is shown that considering the temporal consistency
can lead to more accurate foreground separation.

2.3 Depth interpolation and fusion

Inspired by the success of KinectFusion [9], we resort to depth fusion in the form of
truncated signed distance function (TSDF) for reconstructing the surface of dynamic
objects. All the foreground points are used to produce depth maps in an object-wise
manner.
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(a) RANSAC based detection (b) After spatial clustering

(c) After exploiting temporal consistency

Fig. 3. Dynamic object detection after different steps, in which blue points represent the scene
points and dots in other colors represent dynamic points. There are two moving object in the
scene, which are marked by black rectangles. All frames of point clouds are shown in (c), with
different colors indicating dynamic points from different frames. It can be observed that the pro-
posed method with temporal considerations can well detect the moving objects while sorting out
most points with incorrect labels.

Depth interpolation Considering that the depth measurements are sparse in the ver-
tical direction, we propose to interpolate depth values in the index domain. That is, as
for points p(u, v) = {x, y, z, d} in a data frame Di, in every vertical line, we firstly in-
terpolate the vertical scanning line index u uniformly and acquire the expected vertical
index u∗, then we use the initial index u, expected index u∗ and the depth d corre-
sponding to index u as the input of the cubic spline interpolation promising the first and
second derivative of the curve and get a denser data frame. As we can see in Fig. 4, the
raw object points are very sparse in vertical direction. By applying depth interpolation,
we can acquire denser point cloud about the object.

After interpolation, we compute the 3D coordinates for every interpolated point,
resulting in a denser version of data frame. These denser point clouds bridge the gap
between the depth measurements from LiDAR scan and depth camera, paving the way
to utilize existing techniques for depth fusion.
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Fig. 4. Depth interpolation for the object surface.

Depth rendering Given a sequence of interpolated 3D points for the dynamic objects,
we have to convert them to depth maps before surface reconstruction. In this work, we
propose to generate depth maps by placing a virtual camera pointing at every object. The
coordinate system of the virtual camera is shown in Fig. 5 (a). Note that we only have
to rotate the virtual camera around the y-axis to make z-axis point at the object because
the LiDAR is usually placed on a horizontal plane and thus its x-axis is horizontal. The
rotating angle is determined by exploiting the LiDAR coordinate system. For example,
the Velodyne Laser scanner ihas 64 lines in the vertical direction and 4, 000 points for
every scanning line. It can be computed that the angle interval between neighboring
scanning points (i.e. the horizontal precision) is θint = 360◦/4000 = 0.09◦. Therefore,
the rotating angle can be computed by θ = 0.09ū, where ū is the median index of the
LiDAR measurements on the object.

With a virtual camera pointing at the object, we can generate a depth map by pro-
jecting the 3D points to 2D image plane according to the perspective imaging model.
There are several considerations for choosing the focal length fx and fy and the reso-
lution of the depth map H ×W :

1. The focal lengths fx and fy can be neither too small or too large because the gen-
erated depth maps will be either too dense or too sparse;

2. The width W and the height H of the depth map should be large enough so that the
object can be completely shown;

3. The resolution H × W cannot be too large due to the limitations of computation
and storage resources.

Let θl denote the vertical precision of LiDAR measurement. We propose to set fx,
fy , W , and H with respect to the constraints described by the following approxima-
tions:

W

H
≈ fx

fy
≈ θint ∗ k

θl
(2)

where k is an adaptive coefficient which is in inverse proportional to the LiDAR-object
distance while in proportional to the object size. Fig. 5 (b) shows an example of the
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(a) The coordinate system of the virtual camera.

(b) The depth map rendered by the virtual camera.

Fig. 5. An example of generating depth maps from 3D points of the object.

depth map rendered from a 16-line LiDAR input. In this example, we choose fx = 500,
fy = 100, W = 396, H = 96 for the object distance of 4.0 m, horizontal precision
of 0.2◦, and vertical precision of 2◦. It should be noted that for W and H that can be
exactly divided by 32, one can get a higher computational efficiency in GPU implemen-
tation.

Depth fusion Given the rendered depth maps for every dynamic object, we propose to
fuse them in the form of TSDF as described in KinectFusion [9]. Since the depth maps
from LiDAR are different from that from Kinect, adaptions for the fusion process are
necessary. Key issues include camera intrinsic parameters, volume size, and voxel size.
Similar to depth rendering, TSDF fusion also requires a virtual camera. To maintain the
rendering consistency, in depth fusion, we use a virtual camera with intrinsic parameters
identical to that of the camera for depth rendering. Different from KinectFusion that
uses a fixed volume with pre-defined voxel size, in this work, we use adaptive volume
size and voxel size for each object. That is, the volume should contain the whole object,
whose size is determined by the minimum and maximum coordinates of the object point
cloud. More importantly, the voxel size is set according to the precision along each axis
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direction. For example, the voxel length along z-direction should be smaller than that
along the y-direction because LiDAR has a low precision along the y-axis. Considering
the data density is dependent on the distance, we suggest that the voxel size should
increase as the distance between object and LiDAR increases. After determining these
key parameters, we enable surface reconstruction with given LiDAR data by the TSDF
module used in KinectFusion.
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Fig. 6. An example of depth fusion for a dynamic object of box. The point cloud is obtained by
Velodyne HDL-16E, which only has 16 scanning lines along the vertical direction. (a) shows 4
frames of the 10 frames of extracted LiDAR data. (b) is the fusion result of 10 frames. (c) is the
mesh constructed by triangulating the point clouds extracted from the TSDF. (d), (e), and (f) are
showing the same objects of (a), (b), and (c) from another view, respectively.

Taking the LiDAR data from Velodyne HDL-16E as an example, we perform the
fusion process for an object, i.e. a box. The extracted data and fusion results are shown
in Fig. 6, which demonstrate that the object surface is successfully reconstructed. Note
that the triangulation algorithm [7] adopted for converting TSDF to mesh is also used
in KinectFusion.

3 Experiments

In this section, the proposed method is evaluated from the aspects of odometry accuracy,
reconstruction quality, and computational efficiency.
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3.1 The odometry accuracy and computational efficiency

The odometry accuracy is evaluatied by conducting quantitative experiments on the
KITTI odometry datasets. First, we conduct experiments using the adopted LiDAR
odometry on two sequences, Seq. #3 and #7. In Seq. #3, the LiDAR is moved from
an urban environment to a highway. In Seq. #7, the LiDAR keeps moving on a common
street. Related results are demonstrated in Fig. 7, in which (a) and (b) are for Seq. #3
and (c) and (d) are for Seq. #7, respectively. It is shown that the adopted LiDAR odom-
etry achieves nice accuracy on these two data sets. The relatively big error occurs in the
estimation of translation vector for Seq. #3 is caused by the scene change from urban
environment to a highway. In open environments such highway, the LiDAR measure-
ments will concentrate on far distances and thus ICP based odometry will be inaccurate.
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Fig. 7. Odometry results of the adopted LiDAR odometry on two data sets of the KITTI odometry
data. (a) Comparison of odometry trajectories on Seq. #3; (b) The translation errors on Seq. #3;
(c) Comparison of odometry trajectories on Seq. #7; (d) The translation errors on Seq. #7.

For further evaluations, we compare the adopted LiDAR odometry with two state-
of-the-art methods are compared, generalized iterative closest point (GICP) [12] and
collar line segments (CLS) [13]. Note that the CLS method can be improved by pro-
cessing multiple scans. This improved version, named CLS-M, is also included in our
evaluations. Table. 1 illustrate the overall odometry results and computational efficien-
cies of the compared methods on 7 data sets, where bold fonts indicate the state-of-
the-art results. It is shown that the proposed method can achieve comparable odometry
accuracy while keeping the lowest computational complexity. Note the failure cases,
i.e., Seq. #1 and Seq. #2, of the adopted LiDAR odometry are not reported because
these cases only include open environments. Considering other data sets are obtained
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Data set Frame number GICP [12] CLS [13] CLS-M [13] Proposed
Seq. #0 4540 0.0315 0.0622 0.0529 0.0931
Seq. #3 800 0.0218 0.0275 0.2390 0.0442
Seq. #4 270 0.0497 0.0316 0.0394 0.2320
Seq. #5 2760 0.0228 0.0726 0.0413 0.0884
Seq. #6 1100 0.0362 0.0327 0.0383 0.0384
Seq. #7 1100 0.0132 0.0222 0.0117 0.0208
Seq. #8 4070 0.0626 0.1001 0.0643 0.0451

Avg. time/frame / 25.68 s 2.36 s 28.56 s 1.58 s

Table 1. Quantitative evaluation of the odometry accuracy and computational efficiency.

from common urban environments, the reported results are believed to be sufficiently
representative.

3.2 Computational efficiency

Besides the LiDAR odometry, our solution also employ several lightweight algorithms.
The employed algorithms are implemented in C/C++ without any code optimization. By
analyzing the execution time of these algorithms on a common PC with a 3.6 GHz CPU
using a small subset of the KITTI dataset, we obtain the following efficiency results.

1. The spatial clustering consumes 42 ms on average;
2. The temporal association consumes 0.35 ms on average;
3. The partial GPU implementation of depth fusion consumes 131 ms for fusing every

depth map with around 7×103 non-zero pixels.

Note that all these employed algorithms are only applied on the short sequence of dy-
namic objects. They can be done in a separated thread and thus do not affect the real-
time performance of the LiDAR odometry.

3.3 Surface reconstruction for objects

To verify the effectiveness of the proposed depth fusion, we take as an example a dy-
namic object extracted by the employed algorithms from Seq.#3. As shown in Fig. 8,
the extracted object is a car at the distances ranging from 15 m to 18 m. According to
the principles described in Eq. (2), we use a voxel size of 0.035×0.07×0.035 m3. The
depth maps are rendered with a virtual camera whose focal lengths are fx = 500 mm
and fy = 180 mm and a depth resolution of 352 × 96. Note that both 352 and 96 can
be exactly divided by 32. The visual comparison between Fig. 8 (a) and (b) indicates
that, with proper parameter setup, the adopted TSDF depth fusion successfully merge
the depth maps constructed from the sparse LiDAR data. The point cloud extracted
from the TSDF representation is denser compared to the raw LiDAR input. Although
the reconstructed surfaces are with artifacts, they still illustrate the major shape of the
whole object. It is believed that when the object is closer or there are more LiDAR
measurements, the reconstruction quality can be further improved.
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(a) Representative frames of raw LiDAR data (b) Point cloud after depth fu-
sion

(c) Frontal view (d) Side view (e) Vertical view

Fig. 8. The result of surface reconstruction on a dynamic object (car) extracted from Seq. #3.
(a) The 1st, 3rd, 6th, and 9th frames of LiDAR data on the object; (b) The point cloud of the
object constructed by fusing 10 frames of LiDAR data via depth fusion; (c), (d), and (e) illustrate
different views of the reconstructed object surface.

4 CONCLUSIONS

In this paper, we have studied the challenging problem of reconstructing dynamic ob-
jects from sparse LiDAR data and proposed a pioneer solution named LiDAR odometry
oriented to fusion (LOOF). Several lightweight algorithms are employed to exploit the
information about dynamic objects from classical ICP-based odometry framework. It is
shown that the extracted information is sufficient to reconstruct reasonable object sur-
faces without adding complex components. It is believed that LOOF can achieve better
reconstruction when the depth input is denser. Future works may include faster imple-
mentation of the employed algorithms and integrating LOOF and LiDAR-SLAM in a
multi-thread framework.
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