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SCAN: Self-and-Collaborative Attention Network
for Video Person Re-Identification

Ruimao Zhang, Jingyu Li, Hongbin Sun, Yuying Ge, Ping Luo, Member, IEEE, Xiaogang Wang, and Liang Lin

Abstract— Video person re-identification has attracted much
attention in recent years. It aims to match image sequences of
pedestrians from different camera views. Previous approaches
usually improve this task from three aspects, including: 1) select-
ing more discriminative frames; 2) generating more informative
temporal representations; and 3) developing more effective dis-
tance metrics. To address the above issues, we present a novel
and practical deep architecture for video person re-identification
termed self-and-collaborative attention network (SCAN), which
adopts the video pairs as the input and outputs their matching
scores. SCAN has several appealing properties. First, SCAN
adopts a non-parametric attention mechanism to refine the
intra-sequence and inter-sequence feature representation of
videos and outputs self-and-collaborative feature representa-
tion for each video, making the discriminative frames aligned
between the probe and gallery sequences. Second, beyond the
existing models, a generalized pairwise similarity measurement
is proposed to generate the similarity feature representation
of video pair by calculating the Hadamard product of their
self-representation difference and collaborative-representation
difference. Thus, the matching result can be predicted by the
binary classifier. Third, a dense clip segmentation strategy is also
introduced to generate rich probe-gallery pairs to optimize the
model. In the test phase, the final matching score of two videos
is determined by averaging the scores of top-ranked clip-pairs.
Extensive experiments demonstrate the effectiveness of SCAN,
which outperforms the top-1 accuracies of the best-performing
baselines on iLIDS-VID, PRID2011, and MARS datasets,
respectively.

Index Terms— Temporal modeling, similarity measurement,
collaborative representation, person re-identification, attention
mechanism.

I. INTRODUCTION

AS ONE of the core problems in intelligent surveillance
and multimedia application, person re-identification

attracts much attention in literature [1]–[7]. It aims to
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Fig. 1. A comparison between a standard deep video re-identification
pipeline (left) and the proposed Self-and-Collaborative Attention Network
(right). For example, in the left, the CNN adopts image sequence of two person
as input and outputs the feature representation of each frames for both probe
and gallery identity. Then frame selection and temporal pooling are carried
out in turn. Similarity measurement of two identities are conducted at last.
In contrast, our method contains two kinds of frames selection modules. The
self attention subnetwork (SAN) is used to select frames from the sequence
itself to enhance its feature representation, and the collaborative attention
subnetwork (CAN) is used to select frames from probe or gallery sequence
based on the representation of the other one. The sequence-level representation
is also generated in SAN and CAN. The similarity feature of two input
identities are computed in a similarity measurement module according to the
outputs of SAN and CAN.

re-identify individual persons across non-overlapping cameras
distributed at different physical locations. In practice, dra-
matic appearance changes caused by illumination, occlusions,
viewpoint and background clutter increases the difficulty of
re-id task. A lot of work have been proposed to deal with
these problems in still images [1]–[3], [8]–[11]. Beyond this,
there also exist several studies [4]–[6], [12], [13] discussing
the re-id task under image sequence (video) setting. Since an
image sequence usually contains rich temporal information,
it is more suitable to identify a person under complex envi-
ronment and large geometric variations.

As shown in Fig.1, besides extracting the feature repre-
sentation of each frame by convolutional neural networks
(CNN), existing deep video re-identification methods usually
include following steps: a) selecting the discriminative video
frames from probe and gallery video sequences respectively,
b) generating informative temporal representation of each
video, c) using video representations and learned similarity
measurement to rank the video sequences in the gallery set.
Most previous studies only pay attention to one or two above
steps independently.

On the other hand, inspired by [14], several studies [6], [12]
introduced the attention mechanism to video re-id task
for frame selection and temporal modeling. For example,
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TABLE I

THE PROPOSED SCAN INTEGRATES THE BENEFITS OF THE PREVIOUS
WORK INTO A UNIQUE FRAMEWORK, AND ALSO INTRODUCES SOME

ELABORATE MECHANISMS TO FURTHER IMPROVE TSHE PERFOR-
MANCE OF VIDEO RE-ID. ‘FRAME ALIGN.’, ‘P-G INTER.’,

‘VAR. DIM.’ AND ‘P-G PAIR AUG.’ ARE SHORT FOR
FRAME ALIGNMENT, PROBE-AND-GALLERY INTERAC-

TION, ACCEPTING TEMPORAL MODELING WITH

VARIOUS FEATURE DIMENSIONS (I.E. VARIOUS
NUMBER OF FRAMES AND FEATURE CHAN-

NELS) AND PROBE-AND-GALLERY

PAIR AUGMENTATION

Xu et al. [12] adopted the attention matrix to jointly extract
the discriminative frames from probe and gallery videos, and
calculated the coupled probe and gallery video representa-
tions by temporal pooling operation. Although these methods
achieved promising results, the attention networks are still
not fully and effectively explored for temporal modeling. It
can be summarized in the following aspects. First, existing
methods usually generate the sequence representations after
aligning probe and gallery frames (i.e. assigning attention
weight to each frame), thus the video representation cannot in
turn refine the frame selection. For example, if the probe video
from person-1 has some occlusion frames with the similar
appearance to the gallery video from person-2, these occlusion
frames will obtain great attention in the frame alignment,
and further affect final video representations. Second, some
combinations of similarity measurements and loss functions in
previous studies are not suitable for the attention mechanism to
discover discriminative frames. Third, the attention mechanism
in existing methods is usually parametric, making the length
of the input sequence or the feature dimension of frames need
to be fixed.

In order to address the above issues, we propose a simple
but effective architecture termed Self-and-Collaborative Atten-
tion Network (SCAN) to jointly deal with frame selection,
temporal modeling and similarity measurement for video
re-identification task. As shown in Table I, it has several
benefits that existing methods do not have. a) Compared with
the recurrent neural network (RNN) based attention models,
SCAN adopts attention mechanism to refine the intra-sequence
and inter-sequence feature representation of videos. Such
process can efficiently align discriminative frames between
the probe and gallery image sequences. The output self
and collaborative feature representations leverage the global
temporal information and local discriminative information. b)
We propose a generalized pairwise similarity measurement
in SCAN, which adopts self and collaborative video repre-
sentations to calculate the similarity features of video-pairs.
Thus the matching problem can be transformed into a binary

classification problem, and the label of an identity pair is used
to optimize the classifier. Such module encourages the video
features from the same identity to be similar, and enlarges the
distance between informative frames and noisy frames in the
same video. Moreover, different from pair-wise loss or triplet
loss that needs a predefined margin constraint [15], the binary
loss can reduce the cost to tune such hyperparameter. c) The
attention module in SCAN is non-parametric, thus it can
deal with image sequence with various lengths and the input
feature dimensions of each frame are also variable. d) A dense
clip segmentation strategy is introduced to generate much
more probe-gallery pairs (including the hard positive and hard
negative pairs) to optimize the model.

As shown on the right of Fig.1, in practice, we first
extract the feature representation of each frame (black and
white rectangles) from both probe and gallery videos using
pre-trained CNN. Then we input the frame-level feature
representations from the probe and gallery videos into self
attention subnetwork (SAN) independently, After calculating
the correlation (the attention weight) between the sequence and
its frames, the output sequence representation is reconstructed
as a weighted sum of the frames at different temporal positions
in the input sequence. We also introduce the collaborative
attention subnetwork (CAN) to calculate the coupled feature
representations of the input sequence pair. The calculation
process of CAN is the same as the SAN, but the meaning of
the output varies according to different inputs. For instance,
if the input sequence-level feature is from the probe video and
the frame-level features are from the gallery video, the out-
put of CAN will be the probe-driven gallery representation.
Otherwise, it will be the gallery-driven probe representation.
After SAN and CAN, we calculate the difference between
self-representations of probe and gallery videos, as well as the
difference between their collaborative-representations. These
two differences are merged by the Hadamard product and fed
into a fully-connected layer to calculate the final matching
score.

In general, the contribution of this work can be summarized
in three folds.

• We propose a Self-and-Collaborative Attention Net-
work (SCAN) to efficiently align the discriminative
frames from two videos. It includes a non-parametric
attention module to generate self and collaborative
sequence representations by refining intra-sequence and
inter-sequence features of input videos, and a generalized
similarity measurement module to calculate the similarity
feature representations of video-pairs.

• We introduce such a module into video re-identification
task, and propose a novel and practical framework to
simultaneously deal with frame selection, video temporal
representation and similarity measurement. In addition,
a dense clip segmentation strategy is also introduced to
generate much more probe-gallery pairs to optimize the
model.

• The proposed model outperforms the state-of-the-art
methods on top-1 accuracy in three standard video
re-identification benchmarks.
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TABLE II

COMPARISONS BETWEEN PROPOSED SCAN AND OTHER STATE-OF-THE-ARTS FOR VIDEO PERSON RE-ID. � REPRESENTS THE METHODS OR
INFORMATION INDICATED BY THE COLUMN INDICES ARE ADOPTED. ‘NON-PARA.’ IS SHORT FOR NON-PARAMETRIZATION IN TEMPORAL

MODELING. ‘P-G. INTER.’ DENOTES PROBE-GALLERY INTERACTIONS DURING SEQUENCE REPRESENTATION GENERATION. THE ABBRE-
VIATIONS ‘ATTENTION’, ‘POOLING’ IN THE THIRD COLUMN REPRESENT ATTENTION MECHANISM AND POOLING OPERATION.

THE UPPERCASE ‘P’,‘T’ AND ‘B’ IN THE SIXTH COLUMN INDICATE PAIRWISE LOSS, TRIPLET LOSS AND BINARY LOSS,
RESPECTIVELY. IN THE LAST COLUMN, ‘CONS.’ DENOTES THE CLIP OF EACH VIDEO IS EXTRACTED FROM

CONSECUTIVE FRAMES, AND ‘RAND.’ MEANS RANDOMLY EXTRACTING SEVERAL FRAMES FROM THE VIDEO

AS THE CLIP. THE ‘DENSE’ INDICATES OUR MODEL SEGMENT THE IMAGE SEQUENCE INTO MULTIPLE CLIPS
FOR MODEL TRAINING

The rest of the paper is organized as follows. Section II
presents a brief review of related work. Section III introduces
our Self and Collaborative Attention Network. The experimen-
tal results, comparison and component analysis are presented
in Section IV. Section V concludes the paper.

II. RELATED WORK

A. Person Re-Identification

Person re-id in still image has been extensively explored
in the literature [1]–[3], [8]–[10], [17]–[20] in the past few
years. Traditional methods were mainly concentrated on the
hand-craft appearance feature design according to the human
domain knowledge [21]–[25], since ideal feature representa-
tion can be sufficiently against camera view changes [26].
Another crucial component for person re-identification is the
distance metric learning [27]–[32], which is applied to learn a
common space for data from different domains.. The other
approaches paid much attention on view-specific learning
mechanism which learned the individual matching weights
for each camera view. Some CCA-based methods [33], [34]
belonged to this category.

With the emergence of deep learning, several
distance-driven feature learning frameworks have been pro-
posed via adopting Convolutional Neural Networks (CNN) to
jointly learn similarity measurement and discriminative feature
representations for person re-identification [15], [35]–[40].
Combined with these frameworks, attention mechanism
has also been widely applied in the re-identification
problem. Notable models included attention to multi-level
features [41], [42], attention to discriminative pixels or
regions [20], [43], [44]. Besides the above methods, there
also exist some studies incorporating the affinities between
gallery images into the re-ranking process to further improve
the matching accuracy [17], [19], [45]–[48]. For example,
in [17], Zhong et al. used the k-reciprocal neighbors of
probe and gallery images to calculate the Jaccard distance
to further re-rank the matching list. Motivated by this work,
Shen et al. [19] further integrated the above process into

model training, and adopted gallery-to-gallery affinities to
refine the probe-to-gallery affinity with a simple matrix
operation.

Recently, the studies about video-based person
re-identification adopted image sequence to further improve
the matching accuracy [4]–[6], [12], [49]–[51]. For example,
McLaughlin et al. [4] proposed a basic pipeline for deep
video re-id. It uses CNN to extract the feature of each frame.
Then the RNN layer is applied to incorporate temporal
context information into each frame, and the temporal
pooling operation is adopted to obtain the final sequence
representation. Both the identity loss and siamese loss are
used to optimize parameters. In [5], Wu et al. proposed
a similar architecture to jointly optimize CNN and RNN
to extract the spatial-temporal feature representation for
similarity measurement. Same as the still image, one of the
remarkable property in recent video-based studies is applying
the attention mechanism to discover the discriminative
frames from probe and gallery videos. As shown in Table II,
Zhou et al. [6] proposed a temporal attention mechanism to
pick out the discriminative frames for video representation.
Moreover, the spatial RNN is adopted to integrate the context
information from six directions to enhance the representation
of each location in the feature maps. Li et al. [13] proposed
a spatiotemporal attention model and diversity regularization
to discover a set of distinctive body parts for the final
video representation. In [12], Xu et al. introduced the
shared attention matrix for temporal modeling, realizing the
information exchange between probe and gallery sequence in
the process of frame selection. In such case, the discriminative
frames can be aligned according to their attention weights.

The proposed SCAN is partially related to the above
methods [4]–[6], [12], [13], which adopt the attention mech-
anism to extract the rich spatial-temporal information for
feature representation. But the technical details of these work
are different from our method. Since the proposed SCAN
outputs the attention weights by leveraging global temporal
information and local discriminative information, it is more
robust to deal with the noise frames during alignment. On the
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other hand, it is a non-parametric module, thus can be more
flexible to deal with various sequence lengthes and feature
dimensions. In [52], Si et al. also applied the non-parametric
attention module for feature refinement and feature-pair align-
ment. The different between this method and our SCAN are
three folds. First, their method applied frame-level feature
refinement and the temporal modeling was omitted. Second,
they adopted Euclidean distance to measure the similarity
between the inter-sequence refined features and intra-sequence
refined features, but we proposed a novel similarity feature to
represent the difference between probe and gallery sequences.
At last, we replace the triplet loss in their method with
cross-entropy loss to optimize the model.

B. Self-Attention and Interaction Network

Recent developed self-attention [14] mechanism for
machine translation is also related to our work. It calculated
the response at one position as a weighted sum of all positions
in the sentence. The similarity idea was also introduced in
Interaction Networks (IN) [53]–[55] for modeling the pairwise
interactions in physical systems. Recently, Wang et al. [56]
extended these methods into computer vision area, and
proposed the Non-Local Network to model the long-range
spatial and temporal dependencies in a single block. In [57],
Zhou et al. proposed the Temporal Relation Network (TRN)
to learn temporal dependencies between video frames at
multiple time scales. The proposed SCAN is inspired by
above two works, but we further introduce the collaborative
representation mechanism to deal with the matching problem.

C. Collaborative Representation

Learning collaborative representation aims to represent a
sample as a weighted linear combination of all training
samples. It has been successfully applied in many com-
puter vision tasks, such as face recognition [58], [59], super-
resolution [60], and image denoising [61]. In this paper,
we introduce a collaborative representation into temporal mod-
eling, and combine it with deep neural networks for end-to-end
training. Specially, self and collaborative attention network are
proposed to represent the video as a weighted combination
of multiple frames. It is a non-parametric method that can
effectively align the discriminative frames in probe and gallery
videos.

III. METHODOLOGY

A. Deep Architecture
Given a query video I = {I t }T

t=1 (i.e. an image sequence)
of a person, where T is the number of frames in the video,
the target of video-based person re-identification is to find the
correct matching result among a large number of candidate
videos extracted from the different camera views. In other
words, for the video IA of person A, we wish to learn a
sequence-based re-identification model to distinguish whether
or not another video IA∗ captures the same person from other
space or time. In the following, we firstly give the framework
of proposed SCAN, and then describe technique details of its
modules.

1) Feature Extraction: Same as previous work [1], [4],
[49], all of the image sequences are divided into a gallery
set and a probe set. The gallery set is usually consisted of
one image sequence for each person captured from a special
camera view, and the other image sequences are employed
as the probe set. The performance of a video re-identification
model is evaluated according to the locations of the correctly
matched probe videos in the ranking list of corresponding
gallery videos. The deep architecture of proposed method is
illustrated in Fig. 2. Supposing the probe image sequence is
represented as Ip = {I t

p}T
t=1 and the gallery sequence is as

Ig = {I r
g }R

r=1. T and R indicate the length of the image
sequences. The probe and gallery sequences are at first fed
into CNN to extract the feature representation of each frame.
The parameters of CNN are shared for both sequences. Let
the feature representation of the probe and gallery person be
X = {xt |xt ∈ R

d }T
t=1 and Y = {yr |yr ∈ R

d}R
r=1, where d is the

dimension of the feature vector and is set as 2048 in practice.
We further apply the fc-0 layer to reduce the feature dimension
to 128 and denote them as X f = {xt

f }T
t=1 and Y f = {yr

f }R
r=1,

respectively.
2) Self Attention Subnetwork: After feature extraction,

the Self Attention Network (SAN) is adopted to select the
informative frames to further enhance the representation of
image sequence for each person. We first feed {X, X f } and
{Y, Y f } into SAN. Then the dimension of X and Y is reduced
from 2048 to 128 using fc-1 layer and denoted as Xs = {xt

s}T
t=1

and Ys = {yr
s }R

r=1. After that, the sequence-level representation
of Xs and Ys are produced through average pooling over
the temporal dimension. Let x̂s and ŷs be the sequence-level
feature vector of probe and gallery video in SAN, we further
enhance these feature representations by,

x̂x x =
T∑

t=1

f (xt
s , x̂s) ◦ xt

f ŷyy =
R∑

r=1

f (yr
s , ŷs) ◦ yr

f (1)

where f (., .) is a parameter-free correlation function, which
outputs the normalized correlation weight (i.e. attention
weight) of input features. It may have various forms [56]. In
this paper, f (., .) includes two operations that are Hadamard
product and the softmax operation along the temporal dimen-
sion (t and r ). The former is used to calculate the cor-
relation weights, and the latter is adopted to normalize
the weight vectors in each dimension. Such operation is
inspired by the recent proposed self-attention module [14] and
non-local operation [56] in deep neural network. Different
from non-local operation [56] which is used to aggregate
the representation of each site on the feature maps to refine
the feature of a certain location, the output of SAN is the
refined feature representation of the entire video clip, thus
the features in different dimensions may capture the different
spatial information for a certain identity. Through replacing
the dot product in [56] by the Hadamard product to calculate
the correlation weights, our method can reduce the impact of
dramatic spatial changes on the calculation of the correlation
weight. ◦ indicates the element-wise product. The subscript
x x indicates the probe-driven probe representation, while yy

indicates the gallery-driven gallery representation. The output
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Fig. 2. Architecture of proposed Self-and-Collaborative Attention Network for video-based person re-identification. This architecture is comprised of four
parts: shared convolution neural networks, self attention subnetwork (SAN), collaborative attention subnetwork (CAN) and similarity measurement module.
For each person in probe and gallery set, the video clips extracted from their image sequences are first fed into CNN to obtain frame-level features. Then
SAN and CAN are adopted to generate sequence-level representations according to the non-parametric attention mechanism. At last, the binary cross-entropy
loss and identity loss are used to optimize the parameters of SCAN. Zoom in four times for best view.

x̂x x and ŷyy are then passed into collaborative attention sub-
network.

3) Collaborative Attention Subnetwork: The input of CAN
is from two branches. One is the sequence-level representation
x̂x x and ŷyy from SAN, and the other is the frame-level
representations {X, X f } and {Y, Y f } from CNN. Same as
SAN, we reduce the dimension of X and Y from 2048 to 128
using fc-2 layer in CAN. The outputs are Xc = {xt

c}T
t=1 and

Yc = {yr
c}R

r=1. Then the cross-camera feature representation
can be computed as,

x̂yx =
T∑

t=1

f (xt
c, ŷyy) ◦ xt

f ŷxy =
R∑

r=1

f (yr
c, x̂x x) ◦ yr

f (2)

The subscript xy indicates the probe driven gallery repre-
sentation, and yx is the gallery driven probe representation.
The operation in Eqn.(2) enables probe and gallery video
to effectively select frames and corresponding discriminative
features from each other.

4) Similarity Measurement: We use the output of SAN and
CAN to calculate the similarity feature representation of probe
sequence and gallery sequence as follows,

s = (x̂x x − ŷyy) ◦ (x̂yx − ŷxy)

= (x̂x x ◦ x̂yx − ŷyy ◦ x̂yx) + (ŷyy ◦ ŷxy − x̂x x ◦ ŷxy)

= (X f · ĉx x ◦ X f · ĉyx − Y f · ĉyy ◦ X f · ĉyx)

+ (Y f · ĉyy ◦ Y f · ĉxy − X f · ĉx x ◦ Y f · ĉxy) (3)

where ĉx x , ĉyy , ĉxy , ĉyx denote the combination coefficient
matrices calculated by the non-parameter correlation function
f (., .). The meaning of subscripts are consistent with that
in the sequence-level representation. The operation · indi-
cates weighted combination along each feature dimension (i.e.
Hadamard product followed by column summation), and ◦

denotes the Hadamard product. According to Eqn. 3, the self
enhanced features can be thought as gating the collaborative
enhanced features. In other words, the self representations
of video-pair modulate their collaborative representations to
refine the corresponding discriminative frames and features to
calculate the final pair-wise similarity. Note that s is a vector
but not a scalar, which indicates the sequence-level similarity
after frame-oriented feature selection.

The above feature representation is then transformed by
a fully-connected layer, i.e. fc-3 layer, to obtain the final
matching score. At last, we adopt identity-pair annotations and
binary cross-entropy loss to optimize the matching scores. If
the probe video and gallery video present the same person
identity, the value of the label is 1, else it will be 0. The same
operation is also used in textual-visual matching problem [62].

B. Compared With Traditional Metric Learning

According to [31], the generalized linear similarity of two
feature vectors can be written as,

s̃ =
[
xT yT

] [
A −C

−D B

] [
x
y

]

= (xT Ax − yT Dx) + (yT By − xT Cy)

= [(Ãx)T Ãx − (D̃yy)T D̃x x]
︸ ︷︷ ︸

Part A

+ [(B̃y)T B̃y − (C̃xx)T C̃yy]
︸ ︷︷ ︸

Part B

(4)

where A, B, C and D are the parameters to be optimized, and
A = Ã

T
Ã, B = B̃

T
B̃, C = C̃

T
x C̃y and D = D̃

T
y D̃x . When

A = B = C = M and D = MT , it degenerates into
Mahalanobis distance with the form s̃ = (x − y)T M(x − y).
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Intuitively, Eqn.(3) has a very similar form with Eqn.(4).
The differences are three folds: First, we replace Ã, D̃ and B̃,
C̃ in Part A and Part B with two sets of frame-level feature
representations X f and Y f , respectively. Second, the feature
vector x and y in Eqn.(4) is replaced by the combination
coefficients ĉ in Eqn.(3), which are computed by correlation
function f (·, ·). For simplicity, we omit the subscript of ĉ.
Each column of ĉ is corresponding to the attention weights
for each frames. At last, some dot product operations are
replaced by element-wise product. The output of the Eqn.(4) is
the matching score, while the Eqn.(3) generates the similarity
feature representation which is further fed into binary classifier
for prediction.

By making an analogy with the form of proposed similarity
measurement and generalized linear similarity, we provide
insight by relating the attention-based similarity module to
the previous deep metric learning approach (i.e. parameterized
similarity module). Eqn.(3) and Eqn.(4) have the similar forms,
but their meanings are different. For the generalized linear
similarity in Eqn.(4), it projects the feature representation x
and y into a common feature space by using linear transfor-
mations. Ã, D̃ and B̃, C̃ are the parameters that need to be
optimized. In contrast to this, our method uses the temporal
attention weights ĉ to select the discriminative frames in
the probe and gallery videos to generate the final similarity
feature of the video pair. Such operation can be regarded
as projecting two image sequences into a common ‘frame
space’ to align the discriminative frames. Such a scheme
is significant in the temporal-based matching problem, and
can also be adopted as a common technique in a series of
video-based applications. In this sense, our work bridges the
generalized deep metric learning with the temporal frame
selection strategy. In addition, it provides a more intuitive
perspective to understand the meaning of proposed similarity
measurement.

C. Implementation Details

1) Clip Segmentation: In practice, we segment every image
sequence into several video clips. The length of each clip is
10 and the segmentation stride is set as 5 in training and
test procedure. When the frames at the end of the video are
not sufficient to generate the clip, we discard the rest frames
directly. The advantages of such pre-processing strategy are
as follows: (a) It can generate a large amount of probe-gallery
pairs to optimize network parameters, which is critical for
the deep model training. Specially, it is beneficial to produce
much more hard positive/negative training pairs to promote
the training efficiency. (b) It avoids loading the entire image
sequence into the model for temporal modeling. In such case,
when the batch size is fixed, it can increase the diversity of
minibatch effectively. This ensures the training process more
stable and BatchNorm (BN) [63] more efficient to accelerate
the model convergence. In the test phase, we select 10% clip
pairs with the highest matching score from coupled image
sequences and average their matching scores as the final
confidence score. We rank all of the confidence scores and
return the final ranking list to calculate the matching accuracy.

It is worth noting that the re-ranking technique, such as [17],
is omitted in this paper.

2) Training Process: All of the CNN models in this work
are pre-trained on ImageNet [64]. We fine-tune the models
using 16 identities in each batch. For each identity, we ran-
domly load 2 video clips for training. Thus, there are 32 clips
with 320 video frames as the input for each iteration. The input
frames are resized into 256 × 128 pixels. Horizontal flipping
is also used for data augmentation. We adopt Online Instance
Matching (OIM) [65] loss as the identity loss function. We
train our models on 4-GPU machine. Each model is optimized
30 epoches in total, and the initial learning rate is set as
0.001. The learning rate is updated with the form, lr =
lr0×0.001(epoch/10), where lr0 denotes the initial learning rate.
We use a momentum of 0.9 and a weight decay of 0.0001.
The parameters in BN layers are also updated in the training
phase.

IV. EXPERIMENTS

A. Experimental Setting

1) Datasets: We evaluate the performance of proposed
method on three well known video re-identification bench-
marks: the iLIDS-VID dataset [75], the PRID 2011 dataset
[76] and the MARS dataset [49]. (a) iLIDS-VID contains
600 image sequences of 300 pedestrians under two cameras.
Each image sequence has 23 to 192 frames. Both of the
training and test set have 150 identities. (b) PRID is another
standard benchmark for video re-identification. It consists of
300 identities and each has 2 image sequences. The length
of sequences varies from 5 to 675. (c) MARS is one of the
largest video person re-identification dataset which contains
1, 261 different pedestrians and 20, 715 tracklets captured
from 6 cameras. In this dataset, each person has one probe
under each camera, resulting in 2, 009 probes in total. The
dataset is divided into training and test sets that contains 631
and 630 persons respectively.

2) Evaluation Metric: Two widely used evaluation metrics
are employed for comparison. The first is the cumulative
matching characteristic (CMC) [77], which shows the prob-
ability of that a query identity appearing in different locations
of the returned list [78]. In such case, re-id task is considered
as a ranking problem and usually there is only one ground truth
matching result for a given query. Since the videos in MARS
dataset are captured from 6 camera, the ranking list may
contain multiple matching results. Thus, we also adopt mean
average precision (mAP) [78] to evaluate the performance in
this dataset. In this case, the re-id problem is regarded as the
retrieval problem. For each query, we first calculate average
precision (AP) [79] as follows,

AP = 1∑n
i=1 ri

n∑

i=1

ri

(∑i
j=1

i

)
, (5)

where ri is 1 if the person in returned video i has the same
identity with the query, and 0 otherwise. n is the total number
of returned videos. Then, the mean value of APs of all queries
is calculated as the mAP, which considers both precision and
recall of the method.
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TABLE III

PERFORMANCE COMPARISON ON THE ILIDS-VID BY STATE-OF-THE-ART METHODS. OUR MODEL IS BASED
ON RESNET50. TOP-1, -5, -10, -20 ACCURACIES(%) ARE REPORTED

Fig. 3. Merging strategy of the RGB and optical flow branch.

3) Optical Flow: For further improving the performance
of video re-id, we use the optical flow [80], [81] to extract
the motion information from image sequence. In practice,
the dimension of input optical flow for each frame is 2 ∗ H ∗
W , where 2 denotes the number of vertical and horizontal
channels. H and W indicate the height and width of the map.
The value range of optical flow is scaled to 0 to 255. Through
one convolution layer (with BN and ReLU operation) and
one pooling layer, the dimension of feature maps in optical
branch becomes 64∗ 1

4 H ∗ 1
4 W , which is same as RGB branch.

Then an element-wise addition is applied to merge these two
modalities, and the outputs are fed into the rest layers. Fig. 3
illustrates the operation.

B. Comparison With State-of-the-Arts

We firstly report the comparison of proposed method with
existing eleven state-of-the-art video person re-identification
methods on iLIDS-VID dataset and PRID2011 dataset, includ-
ing LFDA [3], LADF [2], STFV3D [66], TDL [67], CNN-
RNN [4], CNN+XQDA [49], TAM+SRM [6], ASTPN [12],
QAN [16], RQEN [70], STAN [13] ST-Tubes [71]. The first
four methods are traditional methods without using deep mod-
els, while the others adopt deep neural networks to extract the
feature representation of each frame. We use ResNet50 [82]
as the basic model of proposed SCAN. Following [12], each
dataset is randomly split into 50% of identities for training
and others for testing. All experiments are repeated 10 times

with different train/test splits, and the averaged results are
reported [12]. As shown in Table III and Table IV, our method
achieves state of the art 88.0% and 95.3% top-1 accuracy on
iLIDS-VID and PRID2011, outperforming the existing best
method STAN [13] with 7.8% and 2.1%, respectively.

For the iLIDS-VID and PRID2011 dataset, only CNN-
RNN [4] and ASTPN [12] adopt optical flow to capture the
motion information. According to Table III, Table IV and
Fig.5, when we use AlexNet as the backbone network whose
depth is close to their SiameseNet (3 ∼ 5 convolution layers),
our method (i.e. with optical flow), which achieves top-1 accu-
racy 69.8% and 85% on iLIDS-VID and PRID2011 dataset,
still outperforms the above two approaches.

To further demonstrate the effectiveness of SCAN
on the data captured from multiple camera views,
we compare it with state-of-the-arts on MARS dataset,
including CNN+Kissme+MQ [49], Latent Parts [10],
TAM+SRM [6], QAN [16], K-Recip. [17], TriNet [72],
RQEN [70], DuATM [52], STAN [13], Part-Aligned [73] and
STA [74]. Table V reports the retrieval results. Our method
achieves 87.2% and 86.6% top-1 accuracy with and without
using optical flow, which surpasses all existing work. For
the mAP, top-5 and top-20 accuracy, our method achieves
competitive results compared to the most recent work
in Table V, implying that the proposed SCAN is also suitable
for large-scale video re-identification task. It is noteworthy
that the STA [74] is the only method that goes beyond the
performance of ours. However, it need to calculate the spatial
and temporal attention scores simultaneously, which brings
in more computational cost in the training and test phase.

The reason that the proposed method outperforming most
of the state-of-the-arts can be summarized into three aspects.
Firstly, compared with recent proposed temporal model-
ing methods [4], [12], which usually adopt RNN or LSTM
to generate video representations, the self-attention mecha-
nism reweights the frames in each video and refines the
intra-video representations according to the updated weights.
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TABLE IV

PERFORMANCE COMPARISON ON THE PRID2011 BY STATE-OF-THE-ART METHODS. OUR MODEL IS BASED
ON RESNET50. TOP-1, -5, -10, -20 ACCURACIES(%) ARE REPORTED

TABLE V

PERFORMANCE COMPARISON ON THE MARS BY STATE-OF-THE-ART METHODS. OUR MODEL IS BASED

ON RESNET50. TOP-1, -5, -20 ACCURACIES(%) AND mAP(%) ARE REPORTED

Such scheme reduces the impact of noise frames with variant
appearance on intra-person feature representations. Secondly,
the collaborative-attention mechanism effectively captures the
discriminative frames to learn inter-video representations,
achieving more accurate similarity between probe and gallery
image sequences. In addition, transforming such matching
problem into a binary classification problem makes the opti-
mization of such problem easier than previous pair-wise loss
or triplet loss based schemes, which need to predefine a
suitable margin threshold to leverage convergence speed and
over-fitting problem. At last, a dense clip segmentation strat-
egy produces many hard positive and hard negative pairs to
learn the similarity between two videos, making the proposed
model more robust in the test phase.

C. Ablation Study

To investigate the efficacy of proposed SCAN, we conduct
ablation experiments on iLIDS-VID, PRID2011 and MARS

dataset. The average pooling over temporal dimension is used
to be our baseline model and ResNet50 [82] is adopted as the
bottom Convolutional Neural Networks if not specified. The
overall results are shown on Table VI. We also consider the
impact of the cutting length of video clips. The comparison
results are shown in Table VII.

1) Instantiations: We compare our full model with seven
simplified settings, including

• using the average pooling over temporal dimension to
calculate the feature representation of both the probe and
gallery sequences;

• using max pooling to replace average pooling in above;
• using Self Attention Network (SAN) to compute probe

and gallery video features separately;
• using average pooling to obtain the video-level feature

representation firstly, and using Collaborative Attention
Network (CAN) to reconstruct probe and gallery video
representations;
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TABLE VI

COMPARISON OF DIFFERENT TEMPORAL MODELING METHODS. TOP-1, -5 ACCURACIES(%) AND mAP(%) ARE REPORTED

TABLE VII

SETTING THE LENGTH OF VIDEO CLIPS IS CRITICAL. THE ‘STRIDE’ DENOTES THE OVERLAP OF TWO CONSECUTIVE CLIPS. TOP-1, -5 ACCURACIES(%)
AND mAP(%) ARE REPORTED

• using SAN to calculate probe video feature, followed
by employing such feature representation to reconstruct
gallery video representation by CAN, and setting can be
viewed as a single-path variant of the proposed SCAN;

• using the same FC layer in SAN and CAN, i.e. the f c1
and f c2 share the parameters, and such setting is named
as same fc layer in the rest article.

• using dot product to instead Hadamard product to calcu-
late the correlation weight in Eqn.(1) and Eqn.(2), and
this setting is denoted as dot product for comparison.

According to Table VI, we have several important findings.
First, the baseline model (i.e. ave. pooling) has already out-
performed several state-of-the-art methods with a margin. It
demonstrates the effectiveness of proposed pipeline, includ-
ing clip segmentation and binary cross-entropy loss. Second,
the matching accuracy achieves a slightly improvement when
only using SAN or CAN for temporal modeling, but sin-
gle path SCAN outperforms the baseline with a margin. It
suggests that the SAN and CAN modules are coupled when
aligning the discriminative frames in the probe and gallery
image sequences. Third, the performance of the single-path
SCAN is less than our full model, reflecting the importance
of generalized similarity representation between probe and
gallery sequences in the matching problem. At last, when
sharing the parameters in the f c1 and f c2 layer or replacing
Hadamard product with dot product in Eqn.(1) and Eqn.(2),
the accuracy of SCAN decreases on all of three datasets, but
still outperforms the most of state-of-the-arts. It demonstrates
the robustness of proposed framework. Meanwhile, we suggest
using different FC layers and Hadamard product to further
promote the performance of our method in practice.

2) Video Clip With Different Length: Using clip segmen-
tation strategy can well improve the performance of video
recognition [83]. In this paper, we also investigate the per-
formance of the SCAN model using different length of

video clips. We cut the input image sequence into several clips
with 10 frames, 16 frames and 20 frames, and the number of
overlapped frames (i.e., the stride of the sliding window over
the temporal dimension) is set as 3, 5, 8 and 10, respectively.
In Table VII, the setting with (10 frames, 5 stride) achieves the
best performance over all of the evaluation metrics. We can
also observe that as the clip length grows, the accuracy drops
gradually. It demonstrates the cutting strategy can provide
more diverse pairs in the minibatch, which increases the model
capacity effectively.

3) The Depth of Neural Networks: Deeper neural networks
have been beneficial to image classification task. To further
analyze proposed SCAN, we also conduct experiments for
different depths of pre-trained CNN. We test AlexNet [84] and
ResNet [82] with three different depths, i.e., 50, 101 and 152
layers. As shown in Fig. 5, ResNet has an obvious advantage
in re-id task. With the same setting, increasing the depth of
ResNet can only achieve slight improvement when optical flow
is ignored. It means when the depth is larger than 50, our
method is not very sensitive to the depth of the network. On the
other hand, when we take the optical flow into consideration,
the accuracies of deeper ResNets have declined a little. This
may be caused by the suboptimal optical flow merging strategy
in the bottom layer of the network.

According to Fig. 5, we also find that the improvement by
using optical flow on MARS is little, e.g. the top-1 accuracy by
using ResNet50 is 87.2% vs. 86.6% with and without optical
flow, and the mAP is 77.2% vs. 76.7%. Such experiment
result is consistent with the opinion in [49] that motion
features (e.g. optical flow, HOG3D, GEI and so on) have poor
performance on MARS. The reason can be summarized in two-
fold. Firstly, as one of the largest datasets for video-based re-
id, MARS contains many pedestrians sharing similar motion
feature, thus it is more difficult than the other two datasets to
distinguish different persons based on motions. Secondly, since
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TABLE VIII

CROSS DATASET MATCHING RESULTS. THE FIRST ROW INDICATES THE NAME OF TEST DATASET. THE FIRST AND SECOND COLUMN
INDICATE THE METHOD AND THE TRAINING SET, RESPECTIVELY. TOP-1, -5 -10 AND -20 ACCURACIES(%) ARE REPORTED

Fig. 4. Top-1 and top-5 accuracies(%) on iLIDS-VID and PRID2011 dataset
by using varying ensemble rates.

the samples are captured by six cameras in MARS, motion
of the same identity may undergo significant variations due
to pedestrian pose change, so the motion-based feature can
provide less information to discriminate the same person with
various motion views.

4) Different Ensemble Rates: In the test phase, the pro-
posed model averages the k% probe-gallery clip-pairs with the
highest matching scores to estimate the final matching results.
k% indicates the ensemble rate. Such ensemble strategy can
effectively inhibit the effects of clip-pairs with very low
matching confidences. To investigate the effect of ensemble
rate on matching accuracies, we adopt different ensemble rates
to evaluate the performance. Fig. 4 reports the top-1 and top-
5 accuracies on iLIDS-VID and PRID2011 dataset by using
7 ensemble rates. It shows that different datasets have their
own appropriate ensemble rate. According to a comprehensive
analysis of the results on these two datasets, we set the
ensemble rate as 10% for all of the experiments in this paper.

D. Cross-Dataset Generalization

Due to the variety conditions in the process of data collec-
tion, the data distributions of different datasets may have great
bias. The performance of the model trained on one dataset may
drop a lot on another one. To evaluate the generalization ability
of proposed model, as well as to understand the difference
of standard benchmarks, we conduct cross-dataset validation
with two settings. Following [85], for the first setting, the re-id
model is trained on the large-scale MARS dataset and tested
on the iLIDS-VID and PRID2011. The second one is training
on iLIDS-VID or PRID2011, and testing on the other dataset.
Table VIII shows the top-1,-5,-10,-20 accuracies.

According to Table VIII, models trained on MARS dataset
achieve better generalization performance on both iLIDS-VID

Fig. 5. The performance of the models using different depth on iLIDS-
VID, PRID2011 and MARS dataset. w/o and w/ indicate with and without
the optical flow, respectively. Top-1, -5 and -10 accuracies(%) and mAP(%)
are reported.

and PRID2011. It shows the benefits of large-scale datasets
in training the models with better generalization ability.
However, the accuracies of all methods still decline sharply,
which demonstrates the disparities of the data distributions
between MARS and the other two datasets. When trained
on MARS dataset, our model achieves 19.3% and 46% of
top-1 accuracies on iLIDS-VID and PRID2011, exceeding
all compared methods and outperforming [85] with 1.2% and
9.8%, which proves certain generality of proposed SCAN by
using large-scale dataset.

For the second setting, when the model is trained on one
of the two small datasets, the matching accuracies drop a lot
on another dataset compared with Table III and IV. Specially,
when training on PRID2011 dataset, our model achieves best
cross-dataset performance on iLIDS-VID with 9.7% top-1
accuracy. If we adopt iLIDS-VID as the training set, the top-1
accuracy of SCAN on PRID2011 is 42.8%, outperforming the
other baselines. But it declines more than half of the accuracy
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compared with our best model in Table IV. The above results
suggest that the proposed SCAN has certain generalization for
the small dataset cross testing compared with other baselines,
but still need to be further improved. They also demonstrate
that iLIDS-VID dataset is more diverse and challenging than
PRID2011 dataset.

V. CONCLUSIONS

In this paper, we propose a temporal oriented similar-
ity measurement to further promote the performance of
video-based person re-identification. A novel module named
Self-and-Collaborative Attention Network (SCAN), which
integrates frame selection, temporal pooling and similarity
measurement into a simple but effective module, is introduced
to pursuit this goal. Different from previous deep metric
learning methods that project the video-level representations
into a common feature space for similarity measurement,
SCAN is a well designed non-parametric module which can
align the discriminative frames between probe and gallery
videos in the ‘frame space’. Such a scheme is significant
in the temporal-based matching problem, as well as other
video-based vision problem. Extensive experiments demon-
strate that the proposed SCAN outperforms the state-of-the-
arts on top-1 accuracy.

Several directions can be considered to further improve
our model. First, extending SCAN into the spatial-temporal
dimension is an intuitive idea. Second, how to efficiently inte-
grate the multi-modality information, e.g., RGB and optical
flow, into a single framework is still an open issue. Third,
combining proposed method with other visual tasks, such as
video object detection or video-based instance segmentation,
is also an exciting research direction. At last, combining our
model with unsupervised methods is also a potential direction.
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