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Abstract— Teaching a robot to predict and mimic how a
human moves or acts in the near future by observing a
series of historical human movements is a crucial first step in
human-robot interaction and collaboration. In this paper, we
instrument a robot with such a prediction ability by leveraging
recent deep learning and computer vision techniques. First, our
system takes images from the robot camera as input to produce
the corresponding human skeleton based on real-time human
pose estimation obtained with the OpenPose library. Then,
conditioning on this historical sequence, the robot forecasts
plausible motion through a motion predictor, generating a
corresponding demonstration.

Because of a lack of high-level fidelity validation, existing
forecasting algorithms suffer from error accumulation and inac-
curate prediction. Inspired by generative adversarial networks
(GANs), we introduce a global discriminator that examines
whether the predicted sequence is smooth and realistic. Our
resulting motion GAN model achieves superior prediction per-
formance to state-of-the-art approaches when evaluated on the
standard H3.6M dataset. Based on this motion GAN model, the
robot demonstrates its ability to replay the predicted motion in
a human-like manner when interacting with a person.

I. INTRODUCTION

Consider the following scenario: a robot is dancing with
a human. In a perfect dancing show, the robot not only
recognizes but also anticipates human actions, accurately
predicting limbs’ pose and position, so that it can interact ap-
propriately and seamlessly. The first step towards this ambi-
tious goal is for the robot to predict and demonstrate human
motion by observing human activities. More specifically, as
illustrated in Figure 1, while a person performs certain action,
the robot watches and mimics the person’s movements. After
the person stops, the robot predicts plausible future motion
of that person and generates a corresponding demonstration.

A core component in such a human-robot interaction and
collaboration [1], [2], [3] system is human motion prediction
that forecasts how a human moves or acts in the near future
by conditioning on a series of historical movements [4],
[5], [6], [7]. In addition, human motion prediction has wide
application potential in a variety of robotic vision tasks,
including action anticipation [8], [9], motion generation [10],
and autonomous driving systems [11].

Predicting plausible human motion for diverse actions,
however, is a challenging yet under-explored problem, be-
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Fig. 1: Human motion prediction in human-robot interaction
and collaboration. Left: while a person is standing in front
of a robot and performing the “greeting” action, the robot
is observing and mimicking the person. Middle: the robot’s
eyes are blinded with a sheet of paper, indicating no sen-
sory inputs. Right: the robot is demonstrating the predicted
“greeting” motion and interacting with the person.

cause of the uncertainty of human conscious movements and
the difficulty of modeling motion dynamics. Traditional ap-
proaches focus on bilinear spatio-temporal basis models [12],
hidden Markov models [13], Gaussian process latent variable
models [14], linear dynamic models [15], and restricted
Boltzmann machines [16], [17]. More recently, driven by
the advances of deep learning architectures and large-scale
public datasets, various deep learning based techniques have
been proposed and have significantly pushed the state of the
art [4], [5], [6], [7]. They formulate the task as a sequence-
to-sequence problem and solve it by using recurrent neural
networks (RNNs) to capture the underlying temporal depen-
dencies in the sequential data. Despite their extensive efforts
on exploring recurrent encoder-decoder architectures (e.g.,
encoder-recurrent-decoder (ERD) [4] and residual [6] archi-
tectures), they can only predict periodic actions well (e.g.,
walking) and show unsatisfactory performance on aperiodic
actions (e.g., discussion), due to error accumulation.

In this work, we aim to address human-like motion pre-
diction that ensures temporal coherence and fidelity of the
predicted motion and that can be deployed on the robot for
its interaction with humans. To achieve this, we propose a
novel motion GAN model that learns to validate the motion
prediction generated by the encoder-decoder network through
a global discriminator in an adversarial manner.

Generative adversarial networks (GANs) [18] have shown
great progress in image generation and video sequence gen-
eration by jointly optimizing a generator and a discriminator
in a competitive game, where the discriminator aims to
distinguish the generated samples from the samples of the
training set and the generator tries to fool the discriminator.
In the spirit of GANs, we cast the encoder-decoder network
based predictor as a generator and introduce a discriminator
to validate the fidelity of the predicted motion sequence. The
discriminator aims to examine whether the generated motion
sequence is human-like and smooth overall by comparing the
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predicted sequence with the groundtruth sequence.
By integrating this novel, powerful motion GAN model

with other recent visual recognition techniques, we develop
a system that instruments a robot with the desired ability
of predicting and demonstrating human motion. More con-
cretely, our system takes images captured by the robot cam-
era as input to produce the corresponding human skeleton
based on real-time human pose estimation obtained with
the OpenPose library [19]. Given this historical skeleton se-
quence, the robot then forecasts plausible motion through the
motion GAN and generates a corresponding demonstration.

In summary, our contributions are three-fold:

• We develop a deep learning based human-robot inter-
action system that makes a robot capable of predicting
and demonstrating human motion.

• We propose a novel motion GAN model that introduces
a sequence-level discriminator and adversarial training
mechanism tailored to the motion prediction task.

• We show through extensive experiments on a large-
scale motion capture dataset that our motion GAN
significantly outperforms state-of-the-art prediction ap-
proaches and that our entire system instruments the
robot with the ability of replaying the predicted motion
in a human-like manner.

II. RELATED WORK

We briefly review the most relevant literature and discuss
the differences with respect to our work.

Generative adversarial networks. GANs have shown
impressive performance in image generation [20], [21],
[22], video generation [23], [24], [25], and other domain
tasks [26]. The key idea in GANs is an adversarial loss
that forces the generator to fool the discriminator. Instead of
developing new GAN objective functions as is normally the
case, our goal here is to investigate how to improve human
motion prediction by leveraging the GAN framework. Hence,
we design a discriminator with a recurrent architecture to ex-
amine the predicted sequence from a global perspective and
improve its smoothness and fidelity. Moreover, in contrast
with standard GANs, our generator is the RNN encoder-
decoder predictor without any noise inputs.

Encoder-decoder architectures. With the development of
RNNs, encoder-decoder networks have been widely used in a
variety of tasks, such as machine translation [27] and image
caption [28]. For the human motion prediction task that
we address, a 3-layer long short-term memory (LSTM-3LR)
network and an encoder-recurrent-decoder (ERD) model [4]
are proposed, which use curriculum learning to jointly learn
a representation of pose data and temporal dynamics. High-
level semantics of human dynamics are introduced into
the recurrent network by modeling a human activity with
a spatio-temporal graph [5]. These two approaches design
their models for specific actions and restrict the training
process on subsets of the motion capture dataset, such as
H3.6M [29]. More recently, to explore motion prediction for
general action labels, a simple residual encoder-decoder and

multi-action architecture [6] is proposed by using one-hot
vectors to incorporate the action label information.

However, error accumulation has been observed in the
predicted sequence, since RNNs cannot recover from their
own mistake [30]. This problem is alleviated by a noise
scheduling scheme [31] that adds noise to the input during
training [4], [5]. But this scheme makes the prediction
discontinuous and makes the the hyper-parameters hard to
tune. Despite their initial progress, all of these approaches
only consider the prediction locally by imposing the frame-
wise loss on the decoder. By contrast, we address the error
accumulation problem from a sequence-level perspective by
introducing a discriminator to explicitly check how human-
like generated sequences are.

III. OUR APPROACH

We now present our system that instruments a robot with
the ability of predicting and demonstrating human motion,
thus facilitating the human-robot interaction. As shown in
Figure 2, after a person performs some action in front of the
robot, the robot learns to predict and demonstrate how the
person moves or acts in the near future. Our key component
here is a motion GAN model, consisting of a predictor
and a discriminator, that forecasts plausible and human-
like motion. The predictor is an encoder-decoder network.
An input sequence is passed through the encoder to infer a
latent representation. This latent representation and a seed
motion are then fed into the decoder to output a predicted
sequence. To further evaluate the prediction fidelity from a
global perspective, we introduce a discriminator that judges
the realism and smoothness of the generated sequence. The
predictor and the discriminator are jointly optimized in a
competitive game. In the following sections, we first describe
how the entire system works at the inference (deployment)
stage and then discuss how we train our motion GAN.

A. Problem Formulation and Notation

Given a historical sequence, we aim to predict possible
motion in the near future. The input is denoted as X =
{x1,x2, ...,xn}, where xi ∈ Rk (i ∈ [1, n]) is a motion
capture (mocap) vector at the i-th timestep that consists of a
set of 3D body joint angles, n is the input sequence length,
and k is the number of joint angles. Our goal is to predict the
motion sequence X̂ = {x̂n+1, x̂n+2, ..., x̂n+m} in the next
m timesteps, where x̂j ∈ Rk (j ∈ [n+ 1, n+m]) is the
predicted mocap vector at the j-th timestep and m is the out-
put sequence length. The corresponding groundtruth of the m
timesteps is denoted as Xgt = {xn+1,xn+2, ...,xn+m}.

B. Prediction and Demonstration at Inference

The first phase in our system pipeline on the robot is to
capture an image from the robot. We use ROS [32] as our
method of communication with the camera, and any other
method of capturing an image from the robot will also work.
We then send the camera image to the OpenPose library [19],
which provides us with real-time pose estimations of all of
the humans in the current image frame. We use an off-board

563

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 17:50:09 UTC from IEEE Xplore.  Restrictions apply. 



Encoder Decoder

Conditioning
motion Seed 

motion

PredictionPredictor

Groundtruth
Real or fake?

Discriminator
Training:

Inference:

Encoder Decoder

Predictor

Predicted
motion

Demonstration
of prediction

Skeleton
generation

Conditioning
motion

Fig. 2: An overview of our motion GAN system that teaches robots to predict human motion. Blue-red skeletons represent
the input sequence and the groundtruth, and green-purple skeletons represent the prediction. During training, a conditioning
sequence is fed into an encoder network to learn a latent representation; this latent representation and a seed motion are then
fed into a decoder network. To further check how human-like and smooth the predicted sequence is, we design a global
discriminator that compares the prediction with the groundtruth. Our model simultaneously optimizes the predictor and the
discriminator to generate the final optimal prediction. During inference/deployment, after observing that a person performs
some action in front of the camera, the robot produces the skeleton sequence, and then predicts and demonstrates how the
person acts in the near future using the learned motion GAN model.

desktop computer with an Nvidia 1080 Ti GPU that allows
OpenPose [19] to process images at approximately 10fps.

The next phase is to transform each human pose from 2D
image coordinates into 3D points in space. There are various
ways to achieve this, such as using stereo cameras to sense
depth, using depth cameras, or using a model to predict the
3D positions in space. In our case, we use a depth camera that
is calibrated with our RGB camera to create a point cloud.
We then map the human pose coordinates in the 2D image
to points in the point cloud to determine the 3D coordinates
of each body part of the human skeleton.

After receiving the 3D coordinates of each body point,
we transform them into the same format that was used for
training on H3.6M and we then send them into our predictor.

C. Learning Motion GAN: Predictor

Human motion is modeled as sequential data and we
cast the motion prediction problem as finding a mapping
P from an input sequence to an output sequence. Such
a sequence-to-sequence problem is typically addressed by
learning an encoder-decoder network. The encoder learns a
latent representation from the conditioning sequence. The
decoder takes the latent representation and a seed motion as
input and produces the predicted sequence.

In our motion GAN, the predictor module is responsible
for learning the mapping P , so that the `2 distance between
the prediction and the groundtruth is minimized:

L`2 (P ) =E
[
‖P (X)−Xgt‖22

]
. (1)

We use a similar encoder-decoder network for our predic-
tor as in [6], given its state-of-the-art performance. Instead
of working with absolute angles, the encoder takes the
first order derivative velocities as input using a residual
connection. A one-hot vector is introduced to indicate the
action of the current input. We then concatenate the one-
hot vector with the input, and feed them into the encoder.
The decoder takes the output of itself as the next timestep
input. The encoder and the decoder consist of gated recurrent

unit (GRU) [33] cells instead of LSTM [34], since GRU
is computationally more efficient. Finally, we convert the
outputs of all the timesteps back to the absolute world frame,
and generate the absolute angle outputs. Figure 2 shows the
use of the encoder-decoder predictor in our motion GAN.

D. Learning Motion GAN: Discriminator

Previous work on human motion prediction only relies on
a plain predictor. While the encoder-decoder network as the
predictor can explore the temporal information of the motion
in a roughly plausible way, a critical high-level fidelity
examination of the prediction is missing. This leads to
error accumulation and inaccurate prediction and makes the
predicted motion converge to mean pose after a few frames,
as observed in our experiments and previous work [5], [6].
Inspired by GANs [18], our discriminator addresses these
issues through checking whether the predicted sequence is
smooth and human-like from a global perspective.

A traditional GAN framework consists of two neural
networks: a generative network that captures the data dis-
tribution and a discriminative network that estimates the
probability of a sample being real or generated (fake).
The generator is trained to generate samples to fool the
discriminator and the discriminator is trained to distinguish
the generation from the real samples.

Specifically, we design our discriminator D to distinguish
between the prediction X̂ and the groundtruth Xgt. Intu-
itively, the discriminator evaluates how smooth and human-
like the generated sequence is through directly comparing it
with the groundtruth at the sequence level. Following [18],
the minimax objective function is formulated as:

argmin
P

max
D
LGAN (P,D) =E [log (D(Xgt))] (2)

+E [log (1−D(P (X)))] .

Here in an adversarial manner, P tries to minimize the
objective function against D while D aims to maximize
it. The quality of our motion prediction is thus judged by
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evaluating how well the predicted X̂ via the predictor P
fools the discriminator D.

As for the discriminator architecture, given a predicted
sequence as input, we use a GRU layer to extract its latent
vector representation. We then feed this vector representation
into a fully-connected layer and a sigmoid layer and produce
the probability whether the sequence is real or generated.

We found that it is beneficial to mix the GAN objective
with the original hand-crafted `2 distance loss in Eqn. (1),
which is consistent with the recent work that uses GANs for
image-to-image translation [35]. Our final objective then is:

P ∗ = argmin
P

max
D
LGAN (P,D) + λL`2 (P ) , (3)

where λ is the trade-off hyper-parameter. While the objective
of the discriminator remains unchanged, the predictor aims
to not only fool the discriminator but also generate the
prediction that is close to the groundtruth in an `2 sense.

E. Implementation Details

In our motion GAN, we use a single GRU [33] with
hidden size 1,024 for the encoder and decoder, respectively.
Consistent with [6], we found that GRUs are computationally
less-expensive and a single layer of GRU outperforms multi-
layer GRUs. In addition, it is easier to train and avoids
overfitting compared with the deeper models in [4], [5]. We
use spatial embeddings for both the encoder and decoder.
The number of GRU parameters in the discriminator is not
affected by the sequence length, since sequences are fed into
the GRU layer sequentially and only the embedding size
(which is 1,024) and the hidden size (which is 1,024) affect
the GRU size. Moreover, our model has the same inference
time as the baseline model that only consists of a plain
predictor. We use a learning rate 0.005 and a batch size 16,
and we clip the gradient to a maximum `2-norm of 5. The
hyper-parameter λ is cross-validated and is set as 5. We run
50 epochs. We learn our motion GAN using PyTorch [36].

IV. EXPERIMENTS

In this section, we explore the use of our system to teach a
Pepper robot [37] to predict and demonstrate plausible future
motion when interacting with a person. To learn our motion
GAN, we leverage an auxiliary, large-scale annotated mocap
dataset, the Human 3.6M (H3.6M) dataset [29]. We begin
with descriptions of the dataset and baselines and explain the
evaluation metrics. Through extensive evaluation on H3.6M,
we show that our motion GAN outperforms state-of-the-
art approaches to motion prediction both quantitatively and
qualitatively. Finally, we present the results on the Pepper
robot, showing its ability to replay the predicted motion in
a human-like, realistic manner.

Dataset. We use H3.6M [29] as an auxiliary source for
training our motion GAN as well as evaluating its perfor-
mance. H3.6M is an important benchmark in human motion
analysis, which includes 3.6 million 3D mocap data and
seven actors performing 15 varied activities, such as walking,
smoking, and taking pictures. Following the experimental
setup in [4], [5], [6], we downsample H3.6M by two, train

on six subjects, and test on subject five. We also follow the
standard split to divide the dataset into training, validation,
and test sets [6]. During training, we feed our model with
50 mocap frames (2 seconds in total) and forecast the future
25 frames (1 second in total). We test on both the test set of
H3.6M and the videos captured by Pepper.

A. Evaluation on the H3.6M Dataset

Table I and Figure 3 show the quantitative and qualitative
comparisons between our motion GAN and state-of-the-art
approaches on the test set of H3.6M, respectively.

Baselines. We compare with five recent approaches to
human motion prediction based on deep RNNs: LSTM-
3LR and ERD [4], SRNN [5], and sampling-based loss and
residual sup. [6]. We also include a zero-velocity baseline
as in [6], which constantly predicts the last observed frame.
This is a simple yet strong baseline, and these learning based
approaches reported that they did not consistently outperform
the zero-velocity baseline.

Evaluation metrics. We evaluate the performance using
the same error measurement as in [4], [5], [6] for a fair
comparison, which is the Euclidean distance between the
prediction and the groundtruth in the angle space. Follow-
ing [16], [6], we exclude the translation and rotation of the
whole body. In addition to the quantitative evaluation, we
also visualize the predictions frame by frame, following a
similar procedure as in [4], [5], [6].

Quantitative evaluation. Table I summarizes the com-
parisons between our motion GAN and the baselines on
walking, eating, smoking, and discussion actions. We observe
that our motion GAN significantly outperforms these deep
learning based approaches, achieving the state-of-the art
performance. This thus validates that the sequence-level
fidelity examination of the predicted sequence is essential
for more accurate motion prediction.

Moreover, Table I shows that the zero-velocity baseline
performs well on complicated motions (e.g., smoking and
discussion) in short time periods. Although it simply uses
the last observed frame as the prediction, zero-velocity is
superior to the other learning based baselines, because these
actions are very difficult to model. By contrast, our model
consistently outperforms zero-velocity for longer time hori-
zons (> 80ms). The baseline models only verify predictions
frame by frame and ignore their temporal dependencies.
Our motion GAN, however, enables us to globally deal
with the entire generated sequence and check how smooth
and human-like it is. Such a property thus facilitates the
prediction of complicated motions.

Qualitative comparisons. Figure 3 visualizes the predic-
tions of challenging actions, including smoking and discus-
sion, with the input motions and groundtruth motions shown
in black and the generated motions shown in magenta, cyan,
and blue. For reasons of space, we visualize our predictions
and compare them with only the best performing baselines,
sampling-based loss and residual sup. [6]. One noticeable
difference between these visualizations is the degree of
plausibility. The predictions of residual sup. converge to
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Fig. 3: Qualitative comparisons between our motion GAN and the best performing baselines, e.g., sampling-based loss
and residual sup. [6], for motion prediction on discussion and smoking activities. For each activity, from top to bottom:
groundtruth, sampling-based loss, residual sup., and our motion GAN. For each row, the left black skeletons are the input
sequences, the right black skeletons are the groundtruth, and the right colorful skeletons are the predicted sequences. Ours
demonstrate more smooth and human-like predictions. Best viewed in color with zoom.

Walking Eating Smoking Discussion
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

zero-velocity [6] 0.39 0.68 0.99 1.15 1.32 0.27 0.48 0.73 0.86 1.38 0.26 0.48 0.97 0.95 1.69 0.31 0.67 0.94 1.04 1.96
ERD [4] 1.30 1.56 1.84 − 2.38 1.66 1.93 2.28 − 2.41 2.34 2.74 3.73 − 3.82 2.67 2.97 3.23 − 2.92
LSTM-3LR [4] 1.18 1.50 1.67 − 2.20 1.36 1.79 2.29 − 2.82 2.05 2.34 3.10 − 3.42 2.25 2.33 2.45 − 2.93
SRNN [5] 1.08 1.34 1.60 − 2.13 1.35 1.71 2.12 − 2.58 1.90 2.30 2.90 − 3.23 1.67 2.03 2.20 − 2.43
sampling-based loss [6] 0.92 0.98 1.02 1.20 1.59 0.98 0.99 1.18 1.31 1.55 1.38 1.39 1.56 1.65 2.31 1.78 1.80 1.83 1.90 1.61
residual sup. [6] 0.28 0.49 0.72 0.81 1.03 0.23 0.39 0.62 0.76 1.08 0.33 0.61 1.05 1.15 1.50 0.31 0.68 1.01 1.09 1.69

motion GAN (Ours) 0.27 0.44 0.63 0.74 1.00 0.22 0.35 0.59 0.70 1.03 0.28 0.48 0.96 0.94 1.39 0.41 0.63 0.79 0.91 1.50

TABLE I: Detailed prediction error comparisons between our motion GAN and previously published methods, e.g., zero-
velocity, LSTM-3LR and ERD [4], SRNN [5], sampling-based loss and residual sup. [6] baselines, for motion prediction
on walking, eating, smoking, and discussion activities of the H3.6M dataset. Our motion GAN consistently outperforms
the state-of-the-art deep learning based approaches. The zero-velocity baseline achieves better performance for smoking and
discussion at 80ms prediction, but our model beats zero-velocity in all the other cases, increasing well in long time horizons.

Fig. 4: OpenPose body joints from the left image are matched
with a point cloud to generate our 3D skeleton output on the
right.

mean poses and the predictions of sampling-based loss often
drift away from the input sequences, whereas our predictions
are the closest to the groundtruth. Moreover, our model
performs increasingly well during the inference stage in a
long-term period, which shows that our motion GAN deals
well with error accumulation.

B. Motion Prediction on Pepper

We test our human motion prediction system on a real
robot called Pepper from Softbank Robotics [37]. Pepper has
two RGB cameras and one Asus Xtion depth sensor on its
head. We first calibrate images from one RGB camera with
the depth sensor to create point clouds. We then process
each RGB image using OpenPose [19] to get the locations

of the human joints in image coordinates, from which we
map to points in the corresponding point cloud to determine
the 3D skeleton points of the human in robot coordinates, as
shown in Figure 4. In addition, Pepper has 6 joints on both
of its arms that are fairly similar to human arms as well
as 2 degrees of freedom movements in its neck [37]. We
make use of all these degrees of freedom when mimicking
and showing the prediction of human motion. We derive a
geometric mapping from the 3D skeleton points (i.e., the
output of the predictor) to the angular joints on the robot,
so that we can display any human motions that are within
Pepper’s joint limits. Figure 5 shows that Pepper successfully
mimics a person’s current motion and then predicts and
demonstrates the person’s future motion after being blinded.

V. CONCLUSIONS

In this paper, we have developed a deep learning based
system that enables robots to predict and demonstrate human
motion. To this end, we propose a novel motion GAN
model to improve the prediction plausibility from a global
perspective. A discriminator is introduced to validate the
sequence-level fidelity of predicted sequences. After learning
the motion GAN model from H3.6M, an auxiliary, large-
scale annotated mocap dataset, we integrate it with other
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Fig. 5: Demonstrations of prediction on Pepper for discussion action (top row) and greeting action (bottom row). Pepper is
mimicking the person’s actions (as shown in the left two columns) until it is blinded (as shown in the third column on the
left), and then begins executing motions based on its prediction (as shown in the right columns).

recent visual recognition techniques into an end-to-end pre-
diction system. Experiments on H3.6M and a Pepper robot
validate the effectiveness of our approach. In the future, we
will extend our system from single subject motion to multiple
subject motions and have the robot execute collaborative
actions with humans by anticipating their future movements.
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