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Abstract—Cross-domain visual data matching is one of the fundamental problems in many real-world vision tasks, e.g., matching 
persons across ID photos and surveillance videos. Conventional approaches to this problem usually involve two steps: i) projecting 
samples from different domains into a common space, and ii) computing (dis-)similarity in this space based on a certain distance. In this 
paper, we present a novel pairwise similarity measure that advances existing models by i) expanding traditional linear projections into 
affine transformations and ii) fusing affine Mahalanobis distance and Cosine similarity by a data-driven combination. Moreover, we 
unify our similarity measure with feature representation learning via deep convolutional neural networks. Specifically, we incorporate 
the similarity measure matrix into the deep architecture, enabling an end-to-end way of model optimization. We extensively evaluate 
our generalized similarity model in several challenging cross-domain matching tasks: person re-identification under different views and 
face verification over different modalities (i.e., faces from still images and videos, older and younger faces, and sketch and photo 
portraits). The experimental results demonstrate superior performance of our model over other state-of-the-art methods.

Index Terms—Similarity model, cross-domain matching, person verification, deep learning
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1 INTRODUCTION

VISUAL similarity matching is arguably considered as
one of the most fundamental problems in computer

vision and pattern recognition, and this problem becomes
more challenging when dealing with cross-domain data.
For example, in still-video face retrieval, a newly rising task
in visual surveillance, faces from still images captured
under a constrained environment are utilized as the queries
to find the matches of the same identity in unconstrained
videos. Age-invariant and sketch-photo face verification
tasks are also examples of cross-domain image matching.
Some examples in these applications are shown in Fig. 1.

Conventional approaches (e.g., canonical correlation
analysis [1] and partial least square regression [2]) for cross-
domain matching usually follow a procedure of two steps:

1) Samples from different modalities are first projected
into a common space by learning a transformation.
One may simplify the computation by assuming that
these cross domain samples share the same projection.

2) A certain distance is then utilized for measuring the
similarity/disimilarity in the projection space. Usu-
ally Euclidean distance or inner product are used.

Suppose that x and y are two samples of different modal-
ities, and U and V are two projection matrices applied on x
and y, respectively. Ux and Vy are usually formulated as
linear similarity transformations mainly for the convenience
of optimization. A similarity transformation has a good
property of preserving the shape of an object that goes
through this transformation, but it is limited in capturing
complex deformations that usually exist in various real
problems, e.g., translation, shearing, and their composi-
tions. On the other hand, Mahalanobis distance, Cosine sim-
ilarity, and their combination have been widely studied in
the research of similarity metric learning, but it remains less
investigated on how to unify feature learning and similarity
learning, in particular, how to combine Mahalanobis dis-
tance with Cosine similarity and integrate the distance met-
ric with deep neural networks for end-to-end learning.

To address the above issues, in this work we present a
more general similarity measure and unify it with deep con-
volutional representation learning. One of the key innova-
tions is that we generalize the existing similarity models from
two aspects. First, we extend the similarity transformations
Ux and Vy to the affine transformations by adding a transla-
tion vector into them, i.e., replacing Ux and Vy with LAxþ a
and LByþ b, respectively. Affine transformation is a generali-
zation of similarity transformation without the requirement
of preserving the original point in a linear space, and it is able
to capture more complex deformations. Second, unlike the
traditional approaches choosing either Mahalanobis distance
or Cosine similarity, we combine these two measures under
the affine transformation. This combination is realized in a
data-driven fashion, as discussed in the Appendix, resulting
in a novel generalized similaritymeasure, defined as:
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where sub-matrices A and B are positive semi-definite, rep-
resenting the self-correlations of the samples in their own
domains, and C is a correlation matrix crossing the two
domains.

Fig. 2 intuitively explains the idea.1 In this example, it is
observed that Euclidean distance under the linear transfor-
mation, as (a) illustrates, can be regarded as a special case of
our model with A ¼ UTU, B ¼ VTV, C ¼ �UTV, d ¼ 0,
e ¼ 0, and f ¼ 0. Our similarity model can be viewed as a
generalization of several recent metric learning models [3],
[4]. Experimental results validate that the introduction of
ðd; e; fÞ and more flexible setting on ðA;B;CÞ do improve
the matching performance significantly.

Another innovation of this work is that we unify feature
representation learning and similarity measure learning. In
literature, most of the existing models are performed in the
original data space or in a pre-defined feature space, that is,
the feature extraction and the similarity measure are stud-
ied separately. These methods may have several drawbacks
in practice. For example, the similarity models heavily rely
on feature engineering and thus lack of generality when
handling problems under different scenarios. Moreover, the
interaction between the feature representations and similar-
ity measures is ignored or simplified, thus limiting their
performances. Meanwhile, deep learning, especially the
Convolutional Neural Network (CNN), has demonstrated
its effectiveness on learning discriminative features from
raw data and benefited to build end-to-end learning frame-
works. Motivated by these works, we build a deep architec-
ture to integrate our similarity measure with the CNN-
based feature representation learning. Our architecture
takes raw images of different modalities as the inputs and

automatically produce their representations by sequentially
stacking shared sub-network upon domain-specific subnet-
works. Upon these layers, we further incorporate the com-
ponents of our similarity measure by stimulating them with
several appended structured neural network layers. The
feature learning and the similarity model learning are thus
integrated for end-to-end optimization.

In sum, this paper makes three main contributions to
cross-domain similarity measure learning.

� First, it presents a generic similarity measure by gen-
eralizing the traditional linear projection and dis-
tance metrics into a unified formulation. Our model
can be viewed as a generalization of several existing
similarity learning models.

� Second, it integrates feature learning and similarity
measure learning by building an end-to-end deep
architecture of neural networks. Our deep architec-
ture effectively improves the adaptability of learning
with data of different modalities.

� Third, we extensively evaluate our framework on four
challenging tasks of cross-domain visual matching:
person re-identification across views,2 and face verifi-
cation under different modalities (i.e., faces from still
images and videos, older and younger faces, and
sketch and photo portraits). The experimental results
show that our similarity model outperforms other
state-of-the-arts in three of the four tasks and achieves
the second best performance in the other one.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces our generalized
similarity model and discusses its connections to existing
works. Section 4 presents the proposed deep neural net-
work architecture and the learning algorithm in Section 4.2.
The experimental results, comparisons and ablation studies
are presented in Section 5. Section 6 concludes the paper.

Fig. 1. Typical examples of matching cross-domain visual data.
(a) Faces from still images and vidoes. (b) Front- and side-view persons.
(c) Older and younger faces. (d) Photo and sketch faces.

Fig. 2. Illustration of the generalized similarity model. Conventional
approaches project data by simply using the linear similarity transforma-
tions (i.e., U and V), as illustrated in (a), where Euclidean distance is
applied as the distance metric. As illustrated in (b), we improve existing
models by i) expanding the traditional linear similarity transformation into
an affine transformation and ii) fusing Mahalanobis distance and Cosine
similarity. One can see that the case in (a) is a simplified version of our
model. Please refer to Appendix section for the deduction details.

1. Fig. 2 does not imply that our model geometrically aligns two
samples to be matched. Using this example we emphasize the superior-
ity of the affine transformation over the traditional linear similarity
transformation on capturing pattern variations in the feature space.

2. Person re-identification is arguably a cross-domain matching
problem. We introduce it in our experiments since this problem has
been receiving increasing attentions recently.
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2 RELATED WORK

In literature, to cope with the cross-domain matching of
visual data, one can learn a common space for different
domains. CCA [1] learns the common space via maximizing
cross-view correlation, while PLS [2] is learned via maximiz-
ing cross-view covariance. Coupled information-theoretic
encoding is proposed to maximize the mutual information
[5]. Another conventional strategy is to synthesize samples
from the input domain into the other domain. Rather than
learning the mapping between two domains in the data
space, dictionary learning [6], [7] can be used to alleviate
cross-domain heterogeneity, and semi-coupled dictionary
learning (SCDL [7]) is proposed to model the relationship on
the sparse coding vectors from the two domains. Duan et al.
proposed another framework called domain adaptation
machine (DAM) [8] for multiple source domain adaption but
they need a set of pre-trained base classifiers.

Various discriminative common space approaches have
been developed by utilizing the label information. Super-
vised information can be employed by the Rayleigh quo-
tient [1], treating the label as the common space [9], or
employing the max-margin rule [10]. Using the SCDL
framework, structured group sparsity was adopted to uti-
lize the label information [6]. Generalization of discrimina-
tive common space to multiview was also studied [11]. Kan
et al. proposed a multiview discriminant analysis (MvDA
[12]) method to obtain a common space for multiple views
by optimizing both inter-view and intra-view Rayleigh quo-
tient. In [13], a method to learn shape models using local
curve segments with multiple types of distance metrics was
proposed.

Moreover, for most existing multiview analysis methods,
the target is defined based on the standard inner product or
distance between the samples in the feature space. In the
field of metric learning, several generalized similarity/dis-
tance measures have been studied to improve recognition
performance. In [4], [14], the generalized distance/similar-
ity measures are formulated as the difference between the
distance component and the similarity component to take
into account both cross inner product term and two norm
terms. Li et al. [3] adopted the second-order decision func-
tion as distance measure without considering the positive
semi-definite (PSD) constraint. Chang and Yeung [15] sug-
gested an approach to learn locally smooth metrics using
local affine transformations while preserving the topological
structure of the original data. These distance/similarity
measures, however, were developed for matching samples
from the same domain, and they cannot be directly applied
to cross domain data matching.

To extend traditional single-domain metric learning,
Mignon and Jurie [16] suggested a cross-modal metric
learning (CMML) model, which learns domain-specific
transformations based on a generalized logistic loss. Zhai
et al. [17] incorporated the joint graph regularization with
the heterogeneous metric learning model to improve the
cross-media retrieval accuracy. In [16], [17], Euclidean dis-
tance is adopted to measure the dissimilarity in the latent
space. Instead of explicitly learning domain-specific trans-
formations, Kang et al. [18] learned a low rank matrix to
parameterize the cross-modal similarity measure by the

accelerated proximal gradient (APG) algorithm. However,
these methods are mainly based on the common similarity
or distance measures and none of them addresses the fea-
ture learning problem under the cross-domain scenarios.

Instead of using hand-crafted features, learning feature
representations and contextual relations with deep neural
networks, especially the convolutional neural network
(CNN) [19], has shown great potential in various pattern rec-
ognition tasks such as object recognition [20] and semantic
segmentation [21]. Significant performance gains have also
been achieved in face recognition [22] and person re-identifi-
cation [23], [24], [25], [26], mainly attributed to the progress in
deep learning. Recently, several deep CNN-based models
have been explored for similarity matching and learning. For
example, Andrew et al. [27] proposed a multi-layer CCA
model consisting of several stacked nonlinear transforma-
tions. Li et al. [28] learned filter pairs via deep networks to
handle misalignment, photometric and geometric trans-
forms, and achieved promising results for the person re-iden-
tification task. Wang et al. [29] learned fine-grained image
similarity with deep ranking model. Yi et al. [30] presented a
deep metric learning approach by generalizing the Siamese
CNN.Ahmed et al. [25] proposed a deep convolutional archi-
tecture to measure the similarity between a pair of pedestrian
images. Besides the shared convolutional layers, their net-
work also includes a neighborhood difference layer and a
patch summary layer to compute cross-input neighborhood
differences. Wang et al. [26] proposed a deep ranking frame-
work to learn the joint representation of an image pair and
return the similarity score directly, in which the similarity
model is replaced by full connection layers.

Our deep model is partially motivated by the above
works, and we target on a more powerful solution of cross-
domain visual matching by incorporating a generalized
similarity function into deep neural networks. Moreover,
our network architecture is different from existing works,
leading to new state-of-the-art results on several challeng-
ing person verification and recognition tasks.

3 GENERALIZED SIMILARITY MODEL

In this section, we first introduce the formulation of our
deep generalized similarity model and then discuss the con-
nections between our model and existing similarity learning
methods.

3.1 Model Formulation

According to the discussion in Section 1, our generalized
similarity measure extends the traditional linear projection
and integrates Mahalanobis distance and Cosine similarity
into a generic form, as shown in Eqn. (1). As we derive in
the Appendix, A and B in our similarity measure are posi-
tive semi-definite but C does not obey this constraint.
Hence, we can further factorize A, B and C, as:

A ¼ LA
TLA;

B ¼ LB
TLB;

C ¼ �Lx
C
TL

y
C:

(2)

Moreover, our model extracts feature representation (i.e.,
f1ðxÞ and f2ðyÞ) from the raw input data by utilizing the
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CNNs. Incorporating the feature representation and the
above matrix factorization into Eqn. (1), we can thus have
the following similarity model:

~Sðx; yÞ ¼ Sðf1ðxÞ; f2ðyÞÞ;

¼ ½f1ðxÞT f2ðyÞT 1�
A C d

CT B e

dT eT f
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75 f1ðxÞ

f2ðyÞ
1

2
64

3
75;

¼ kLAf1ðxÞk2 þ kLBf2ðyÞk2 þ 2dT f1ðxÞ
� 2ðLx

Cf1ðxÞÞT ðLy
Cf2ðyÞÞ þ 2eT f2ðyÞ þ f:

(3)

Specifically, LAf1ðxÞ, Lx
Cf1ðxÞ, dT f1ðxÞ can be regarded as

the similarity components for x, while LBf2ðyÞ, L
y
Cf2ðyÞ,

dT f2ðyÞ accordingly for y. These similarity components are
modeled as the weights that connect neurons of the last two
layers. For example, a portion of output activations repre-
sents LAf1ðxÞ by taking f1ðxÞ as the input and multiplying
the corresponding weights LA. In the following, we discuss
the formulation of our similarity learning.

The objective of our similarity learning is to seek a

function ~Sðx; yÞ that satisfies a set of similarity/disimilar-
ity constraints. Instead of learning similarity function on
hand-crafted feature space, we take the raw data as
input, and introduce a deep similarity learning frame-
work to integrate nonlinear feature learning and general-
ized similarity learning. Recall that our deep generalized
similarity model is in Eqn. (1). ðf1ðxÞ; f2ðyÞÞ are the fea-
ture representations for samples of different modalities,
and we use W to indicate their parameters. We denote

FF ¼ ðLA;LB;L
x
C;L

y
C;d; e; fÞ as the similarity components

for sample matching. Note that ~Sðx; yÞ is asymmetric,

i.e., ~Sðx; yÞ 6¼ ~Sðy; xÞ. This is reasonable for cross-domain
matching, because the similarity components are
domain-specific.

Assume that D ¼ fðfxi; yig; ‘iÞgNi¼1 is a training set of
cross-domain sample pairs, where fxi; yig denotes the ith

pair, and ‘i denotes the corresponding label of fxi; yig indi-
cating whether xi and yi are from the same class:

‘i ¼ ‘ðxi; yiÞ ¼
�1; cðxÞ ¼ cðyÞ
1; otherwise;

�
(4)

where cðxÞ denotes the class label of the sample x. An ideal
deep similarity model is expected to satisfy the following
constraints:

~Sðxi; yiÞ
< �1; if ‘i ¼ �1
� 1; otherwise

�
(5)

for any fxi; yig.
Note that the feasible solution that satisfies the above

constraints may not exist. To avoid this scenario, we relax
the hard constraints in Eqn. (5) by introducing a hinge-like
loss:

GðW;FFÞ ¼
XN
i¼1
ð1� ‘i ~Sðxi; yiÞÞþ: (6)

To improve the stability of the solution, some regularizers
are further introduced, resulting in our deep similarity
learning model:

ðŴ; F̂Þ ¼ argmin
W;F

XN
i¼1
ð1� ‘i ~Sðxi; yiÞÞþ þCðW;FÞ; (7)

where CðW;FFÞ ¼ �kWk2 þ mkFFk2 denotes the regularizer
on the parameters of the feature representation and general-
ized similarity models.

3.2 Connection with Existing Models

Our generalized similarity learning model is a generaliza-
tion of many existing metric learning models, while they
can be treated as special cases of our model by imposing
some extra constraints on ðA;B;C;d; e; fÞ.

Conventional similarity model usually is defined as

SMðx; yÞ ¼ xTMy, and this form is equivalent to our model,

when A ¼ B ¼ 0, C ¼ 1
2M, d ¼ e ¼ 0, and f ¼ 0. Similarly,

the Mahalanobis distance DMðx; yÞ ¼ ðx� yÞTMðx� yÞ is
also regarded as a special case of our model, when
A ¼ B ¼M, C ¼ �M, d ¼ e ¼ 0, and f ¼ 0.

In the following, we connect our similarity model to two
state-of-the-art similarity learning methods, i.e., LADF [3]
and Joint Bayesian [4].

In [3], Li et al. proposed to learn a decision function that
jointly models a distance metric and a locally adaptive
thresholding rule, and the so-called LADF (i.e., Locally-
Adaptive Decision Function) is formulated as a second-
order large-margin regularization problem. Specifically,
LADF is defined as:

F ðx; yÞ ¼ xTAxþ yTAyþ 2xTCyþ dT ðxþ yÞ þ f: (8)

One can observe that F ðx; yÞ ¼ Sðx; yÞ when we set B ¼ A
and e ¼ d in our model.

It should be noted that LADF treats x and y using the

same metrics, i.e., A for both xTAx and yTAy, and d for dTx

and dTy. Such a model is reasonable for matching samples
with the same modality, but may be unsuitable for cross-
domain matching where x and y are with different modali-
ties. Compared with LADF, our model uses A and d to cal-

culate xTAx and dTx, and uses B and e to calculate yTBy

and eTy, making our model more effective for cross-domain
matching.

In [4], Chen et al. extended the classical Bayesian face
model by learning a joint distributions (i.e., intra-person
and extra-person variations) of sample pairs. Their decision
function is posed as the following form:

Jðx; yÞ ¼ xTAx þ yTAy� 2xTGy: (9)

Note that the similarity metric model proposed in [14] also
adopted such a form. Interestingly, this decision function is
also a special variant of our model by setting B ¼ A,
C ¼ �G, d ¼ 0, e ¼ 0, and f ¼ 0.

In summary, our similarity model can be regarded as the
generalization of many existing cross-domain matching and
metric learning models, and it is more flexible and suitable
for cross-domain visual data matching.
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4 JOINT SIMILARITY AND FEATURE LEARNING

In this section, we introduce our deep architecture that inte-
grates the generalized similarity measure with convolu-
tional feature representation learning.

4.1 Deep Architecture

As discussed above, our model defined in Eqn. (7) jointly
handles similarity function learning and feature learning.
This integration is achieved by building a deep architecture
of convolutional neural networks, which is illustrated in
Fig. 3. It is worth mentioning that our architecture is able to
handle the input samples of different modalities with
unequal numbers, e.g., 20 samples of x and 200 samples of y
are fed into the network in a way of batch processing.

From left to right in Fig. 3, two domain-specific sub-
networks g1ðxÞ and g2ðyÞ are applied to the samples of two
different modalities, respectively. Then, the outputs of g1ðxÞ
and g2ðyÞ are concatenated into a shared sub-network fð�Þ.
We make a superposition of g1ðxÞ and g2ðyÞ to feed fð�Þ. At
the output of fð�Þ, the feature representations of the two
samples are extracted separately as f1ðxÞ and f2ðyÞ, which is
indicated by the slice operator in Fig. 3. Finally, these
learned feature representations are utilized in the structured
fully-connected layers that incorporate the similarity com-
ponents defined in Eqn. (3). In the following, we introduce
the detailed setting of the three sub-networks.

Domain-specific sub-network. We separate two branches of
neural networks to handle the samples from different
domains. Each network branch includes one convolutional
layer with 3 filters of size 5� 5 and the stride step of 2 pix-
els. The rectified nonlinear activation is utilized. Then, we
follow by a one max-pooling operation with size of 3� 3
and its stride step is set as 3 pixels.

Shared sub-network. For this component, we stack one con-
volutional layer and two fully-connected layers. The convo-
lutional layer contains 32 filters of size 5� 5 and the filter
stride step is set as 1 pixel. The kernel size of the max-pool-
ing operation is 3� 3 and its stride step is 3 pixels. The out-
put vectors of the two fully-connected layers are of 400
dimensions. We further normalize the output of the second
fully-connected layer before it is fed to the next sub-
network.

Similarity sub-network. A slice operator is first applied in
this sub-network, which partitions the vectors into two
groups corresponding to the two domains. For the example
in Fig. 3, 220 vectors are grouped into two sets, i.e., f1ðxÞ
and f2ðyÞ, with size of 20 and 200, respectively. f1ðxÞ and
f2ðyÞ are both of 400 dimensions. Then, f1ðxÞ and f2ðyÞ are
fed to two branches of neural network, and each branch
includes a fully-connected layer. We divide the activations
of these two layers into six parts according to the six similar-
ity components. As is shown in Fig. 3, in the top branch the
neural layer connects to f1ðxÞ and outputs LAf1ðxÞ, Lx

Cf1ðxÞ,
and dT f1ðxÞ, respectively. In the bottom branch, the layer

outputs LBf2ðyÞ, Ly
Cf2ðyÞ, and eT f2ðyÞ, respectively, by con-

necting to f2ðyÞ. In this way, the similarity measure is tightly
integrated with the feature representations, and they can be
jointly optimized during the model training. Note that f is a
parameter of the generalized similarity measure in Eqn. (1).
Experiments show that the value of f only affects the learn-
ing convergence rather than the matching performance.
Thus we empirically set f ¼ �1:9 in our experiments.

In the deep architecture, we can observe that the similar-
ity components of x and those of y do not interact to each
other by the factorization until the final aggregation calcula-
tion, that is, computing the components of x is independent
of y. This leads to a good property of efficient matching. In
particular, for each sample stored in a database, we can pre-
computed its feature representation and the corresponding
similarity components, and the similarity matching in the
testing stage will be very fast.

4.2 Model Training

In this section, we discuss the learning method for our simi-
larity model training. To avoid loading all images into
memory, we use the mini-batch learning approach, that is,
in each training iteration, a subset of the image pairs are fed
into the neural network for model optimization.

For notation simplicity in discussing the learning algo-
rithm, we start by introducing the following definitions:

~x ¼D ½LAf1ðxÞ Lx
Cf1ðxÞ dT f1ðxÞ �T

~y ¼D ½LBf2ðyÞ L
y
Cf2ðyÞ eT f2ðyÞ �T ;

(10)

Fig. 3. Deep architecture of our similarity model. This architecture is comprised of three parts: domain-specific sub-network, shared sub-network and
similarity sub-network. The first two parts extract feature representations from samples of different domains, which are built upon a number of convo-
lutional layers, max-pooling operations and fully-connected layers. The similarity sub-network includes two structured fully-connected layers that
incorporate the similarity components in Eqn. (3).
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where ~x and ~y denote the output layer’s activations of the
samples x and y. Prior to incorporating Eqn. (10) into the
similarity model in Eqn. (3), we introduce three transforma-
tion matrices (using Matlab representation):

P1 ¼ Ir�r 0r�ðrþ1Þ
� �

;

P2 ¼ 0r�r Ir�r 0r�1
� �

;

p3 ¼ 01�2r 11�1
� �T

;

(11)

where r equals to the dimension of the output of shared
neural network (i.e., the dimension of fðxÞ and fðyÞ), an I
indicates the identity matrix. Then, our similarity model can
be re-written as:

~Sðx; yÞ ¼ ðP1~xÞTP1~xþ ðP1~yÞTP1~y� 2ðP2~xÞTP2~y
þ 2pT

3 ~xþ 2pT
3 ~yþ f:

(12)

Incorporating Eqn. (12) into the loss function Eqn. (6), we
have the following objective:

GðW;F;DÞ

¼
XN
i¼1
f1� ‘i½ðP1exiÞTP1exi þ ðP1eyiÞTP1eyi�

2ðP2exiÞTP2eyi þ 2pT
3 exi þ 2pT

3 eyi þ f �gþ

; (13)

where the summation term denotes the hinge-like loss
for the cross domain sample pair f~xi; ~yig, N is the total
number of pairs, W represents the feature representation
of different domains and F represents the similarity
model. W and F are both embedded as weights connect-
ing neurons of layers in our deep neural network model,
as Fig. 3 illustrates.

The objective function in Eqn. (13) is defined in sample-
pair-based form. To optimize it using SGD, one should
apply a certain scheme to generate mini-batches of the sam-
ple pairs, which usually costs much computation and mem-
ory. Note that the sample pairs in training set D are
constructed from the original set of samples from different

modalities Z ¼ ffXg; fYgg, where X ¼ fx1; . . . ; xj; . . . ; xMxg
and Y ¼ fy1; . . . ; yj; . . . ; yMyg. The superscript denotes the
sample index in the original training set, e.g.,

xj 2 X ¼ fx1; . . . ; xj; . . . ; xMxg and yj 2 Y ¼ fy1; . . . ; yj; . . . ;
yMyg, while the subscript denotes the index of sample pairs,
e.g., xi 2 fxi; yig 2 D.Mx andMy denote the total number of

samples from different domains. Without loss of generality,

we define zj ¼ xj and zMxþj ¼ yj. For each pair fxi; yig in D,
we have zji;1 ¼ xi and zji;2 ¼ yi with 1 � ji;1 �Mx and

Mx þ 1 � ji;2 �Mzð¼Mx þMyÞ. And we also have ezji;1 ¼ exi
and ezji;2 ¼ eyi.

Therefore, we rewrite Eqn. (13) in a sample-based
form:

LðW;F;ZÞ

¼
XN
i¼1
f1� ‘i½ðP1ezji;1ÞTP1ezji;1 þ ðP1ezji;2ÞTP1ezji;2�

2ðP2ezji;1ÞTP2ezji;2 þ 2pT
3 ezji;1 þ 2pT

3 ezji;2 þ f �gþ

; (14)

Given V ¼ ðW;FÞ, the loss function in Eqn. (7) can also be
rewritten in the sample-based form:

HðVÞ ¼ LðV;ZÞ þCðVÞ: (15)

The objective in Eqn. (15) can be optimized by the mini-
batch back propagation algorithm. Specifically, we update
the parameters by gradient descent:

V ¼ V� a
@

@V
HðVÞ; (16)

where a denotes the learning rate. The key problem of solv-

ing the above equation is calculating @
@VLðVÞ. As is dis-

cussed in [31], there are two ways to this end, i.e., pair-
based gradient descent and sample-based gradient descent.
Here we adopt the latter to reduce the requirements on
computation and memory cost.

Suppose a mini-batch of training samples fzj1;x ; :::;
zjnx ;x ; zj1;y ; :::; zjny;yg from the original set Z, where
1 � ji;x �Mx and Mx þ 1 � ji;y �Mz. Following the chain

rule, calculating the gradient for all pairs of samples is
equivalent to summing up the gradient for each sample,

@

@V
LðVÞ ¼

X
j

@L

@~zj
@~zj

@V
; (17)

where j can be either ji;x or ji;y.
Using zji;x as an example, we first introduce an indicator

function 1
zji;x
ðzji;yÞ before calculating the partial derivative of

output layer activation for each sample @L

@~zji;x
. Specifically, we

define 1
zji;x
ðzji;yÞ ¼ 1 when fzji;x ; zji;yg is a sample pair and

‘ji;x;ji;y
~Sðzji;x ; zji;yÞ < 1. Otherwise we let 1

zji;x
ðzji;yÞ ¼ 0.

‘ji;x;ji;y , indicatingwhere zji;x and zji;y are from the same class.

With 1
zji;x
ðzji;yÞ, the gradient of ~zji;x can bewritten as

@L

@~zji;x
¼ �

X
ji;y

21
zji;x
ðzji;yÞ‘ji;x;ji;yðPT

1 P1~z
ji;x � PT

2 P2~z
ji;y þ p3Þ:

(18)

The calculation of @L

@~zji;y
can be conducted in a similar way.

The algorithm of calculating the partial derivative of output
layer activation for each sample is shown in Algorithm 1.

Note that all the three sub-networks in our deep architec-
ture are differentiable. We can easily use the back-propaga-
tion procedure [19] to compute the partial derivatives with
respect to the hidden layers and model parameters V. We
summarize the overall procedure of deep generalized simi-
larity measure learning in Algorithm 2.

If all the possible pairs are used in training, the sample-
based form allows us to generate nx � ny sample pairs from a
mini-batch of nx þ ny. On the other hand, the sample-pair-

based form may require 2nxny samples or less to generate

nx � ny sample pairs. In gradient computation, from Eqn.

(18), for each sample we only require calculating PT
1 P1~z

ji;x

once and PT
2 P2~z

ji;y ny times in the sample-based form. While

in the sample-pair-based form, PT
1 P1~z

ji;x and PT
2 P2~z

ji;y should
be computed nx and ny times, respectively. In sum, the sam-

ple-based form generally results in less computation and
memory cost.
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Algorithm 1. Calculate the Derivative of the Output
Layer’s Activation for Each Sample

Input:
The output layer’s activation for all samples

Output:
The partial derivatives of output layer’s activation for all the
samples

1: for each sample zj do
2: Initialize the partner set Mj containing the sample zj

withMj ¼ ;;
3: for each pair fxi; yig do
4: if pair fxi; yig contains the sample zj then
5: if pair fxi; yig satisfies ‘i ~Sðxi; yiÞ < 1 then
6: Mi  fMi, the corresponding partner of zj in

fxi; yigg;
7: end if
8: end if
9: end for
10: Compute the derivatives for the sample zj with all the

partners in Mj, and sum these derivatives to be the

desired partial derivative for sample zj’s output layer’s
activation using Eqn. (18);

11: end for

Algorithm 2. Generalized Similarity Learning

Input:
Training set, initialized parametersW and FF, learning rate a,
t 0

Output:
Network parametersW and FF

1: while t <¼ T do
2: Sample training pairs D;
3: Feed the sampled images into the network;
4: Perform a feed-forward pass for all the samples and

compute the net activations for each sample zi;
5: Compute the partial derivative of the output layer’s

activation for each sample by Algorithm 1.
6: Compute the partial derivatives of the hidden layers’

activations for each sample following the chain rule;
7: Compute the desired gradients @

@VHðVÞ using the
back-propagation procedure;

8: Update the parameters using Eqn. (16);
9: end while

Batch process implementation. Suppose that the training
image set is divided into K categories, each of which con-
tains O1 images from the first domain and O2 images from
the second domain. Thus we can obtain a maximum num-
ber ðK �O1Þ � ðK �O2Þ of pairwise samples, which is
quadratically more than the number of source images
K � ðO1 þO2Þ. In real application, since the number of
stored images may reach millions, it is impossible to load all
the data for network training. To overcome this problem,
we implement our learning algorithm in a batch-process
manner. Specifically, in each iteration, only a small subset of
cross domain image pairs are generated and fed to the net-
work for training. According to our massive experiments,
randomly generating image pairs is infeasible, which may
cause the image distribution over the special batch becom-
ing scattered, making valid training samples for a certain

category very few and degenerating the model. Besides,
images in any pair are almost impossible to come from the
same class, making the positive samples very few. In order
to overcome this problem, an effective cross domain image
pair generation scheme is adopted to train our generalized
similarity model. For each round, we first randomly choosebK instance categories. For each category, a number of cO1

images first domain and a number of cO2 from second
domain are randomly selected. For each selected images in
first domain, we randomly take samples from the second
domain and the proportions of positive and negative sam-
ples are equal. In this way, images distributed over the gen-
erated samples are relatively centralized and the model will
effectively converge.

5 EXPERIMENTS

In this section, we apply our similarity model in four repre-
sentative tasks of matching cross-domain visual data and
adopt several benchmark datasets for evaluation: i) person
re-identification under different views on CUHK03 [28] and
CUHK01 [32] datasets; ii) age-invariant face recognition on
MORPH [33], CACD [34] and CACD-VS [35] datasets; iii)
sketch-to-photo face matching on CUFS dataset [36]; iv) face
verification over still-video domains on COX face dataset
[37]. On all these tasks, state-of-the-art methods are
employed to compare with our model.

Experimental setting. Mini-batch learning is adopted in
our experiments to save memory cost. In each task, we ran-
domly select a batch of sample from the original training set
to generate a number of pairs (e.g., 4;800). The initial param-
eters of the convolutional and the full connection layers are
set by two zero-mean Gaussian Distributions, whose stan-
dard deviations are 0:01 and 0:001 respectively. Other spe-
cific settings to different tasks are included in the following
sections.

In addition, ablation studies are presented to reveal the
benefit of each main component of our method, e.g., the
generalized similarity measure and the joint optimization of
CNN feature representation and metric model. We also
implement several variants of our method by simplifying
the similarity measures for comparison.

5.1 Person Re-Identification

Person re-identification, aiming at matching pedestrian
images across multiple non-overlapped cameras, has
attracted increasing attentions in surveillance. Despite that
considerable efforts have been made, it is still an open prob-
lem due to the dramatic variations caused by viewpoint and
pose changes. To evaluate this task, CUHK03 [28] dataset
and CUHK01 [32] dataset are adopted in our experiments.

CUHK03 dataset [28] is one of the largest databases for
person re-identification. It contains 14,096 images of 1,467
pedestrians collected from five different pairs of camera
views. Each person is observed by two disjoint camera
views and has an average of 4.8 images in each view. We
follow the standard setting of using CUHK03 to randomly
partition this dataset for 10 times, and a training set (includ-
ing 1,367 persons) and a testing set (including 100 persons)
are obtained without overlap.
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CUHK01 dataset [32] contains 971 individuals, each hav-
ing two samples from disjoint cameras. Following the set-
ting in [25], [28], we partition this dataset into a training set
and a testing set: 100 individuals for testing and the others
for training.

For evaluation on these two benchmarks, the testing set is
further randomly divided into a gallery set of 100 images
(i.e., one image per person) and a probe set (including
images of individuals from different camera views in con-
trast to the gallery set) without overlap for 10 times. We use
Cumulative Matching Characteristic (CMC) [38] as the eval-
uation metric in this task.

In our model training, all of the images are resized to
250� 100, and cropped to the size of 230� 80 at the center
with a small random perturbation. During every round of
learning, 4,800 pairs of samples are constructed by selecting
60 persons (or classes) and constructing 80 pairs for each
person (class). For CUHK01, due to each individual only
have two samples, the 80 pairs per individual will contain
some duplicated pairs.

Results on CUHK03. We compare our approach with sev-
eral state-of-the-art methods, which can be grouped into
three categories. First, we adopt five distance metric learn-
ing methods based on fixed feature representation, i.e., the
Information Theoretic Metric Learning (ITML) [5], the Local
Distance Metric Learning (LDM) [39], the Large Margin
Nearest Neighbors (LMNN) [40], the learning-to-rank

method (RANK) [41], and the Kernel-based Metric Learning
method (KML) [23]. Following their implementation, the
handcrafted features of dense color histograms and dense
SIFT uniformly sampled from patches are adopted. Second,
three methods specially designed for person re-identifica-
tion are employed in the experiments: SDALF [42], KISSME
[43], and eSDC [44]. Moreover, several recently proposed
deep learning methods, including DRSCH [45], DFPNN
[28] and IDLA [25], are also compared with our approach.
DRSCH [45] is a supervised hashing framework for inte-
grating CNN feature and hash code learning, while DFPNN
and IDLA have been introduced in Section 2.

The results are reported in Fig. 4a. It is encouraging to see
that our approach significantly outperforms the competing
methods (e.g., improving the state-of-the-art rank-1 accu-
racy from 54.74 percent (IDLA [25]) to 58.39 percent).
Among the competing methods, ITML [5], LDM [39],
LMNN [40], RANK [41], KML [23], SDALF [42], KISSME
[43], and eSDC [44] are all based on hand-crafted features.
And the superiority of our approach against them should
be attributed to the deployment of both deep CNN features
and generalized similarity model. DRSCH [45], DFPNN [28]
and IDLA [25] adopted CNN for feature representation, but
their matching metrics are defined based on traditional lin-
ear transformations.

Results on CUHK01. Fig. 4b shows the results of our
method and the other competing approaches on CUHK01.
In addition to those used on CUHK03, one more method,
i.e., LMLF [24], is used in the comparison experiment.
LMLF [24] learns mid-level filters from automatically dis-
covered patch clusters. According to the quantitative
results, our method achieves a new state-of-the-art with a
rank-1 accuracy of 66.50 percent.

5.2 Age-Invariant Face Recognition

Age invariant face recognition is to decide whether two
images with different ages belong to the same identity. The
key challenge is to handle the large intra-subject variations
caused by aging process while distinguishing different
identities. Other factors, such as illumination, pose, and
expression, make age invariant face recognition more diffi-
cult. We conduct the experiments using three datasets, i.e.,
MORPH [33], CACD [34], and CACD-VS [35].

MORPH [33] contains more than 55,000 face images of
13,000 individuals, whose ages range from 16 to 77. The
average number of images per individual is 4. The training
set consists of 20,000 face images from 10,000 subjects, with
each subject having two images with the largest age gap.
The test set is composed of a gallery set and a probe set
from the remaining 3,000 subjects. The gallery set is com-
posed of the youngest face images of each subject. The
probe set is composed of the oldest face images of each sub-
ject. This experimental setting is the same with those
adopted in [46] and [34].

CACD [34] is a large scale dataset released in 2014, which
contains more than 160,000 images of 2,000 celebrities. We
adopt a subset of 580 individuals from the whole database in
our experiment, in which we manually remove the noisy
images. Among these 580 individuals, the labels of images
from 200 individuals have been originally provided, and we
annotate the rest of the data. CACD includes large variations

Fig. 4. CMC curves on (a) CUHK03 [28] dataset and (b) CUHK01 [32] for
evaluating person re-identification. Our method has superior performan-
ces over existing state-of-the-arts overall.
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not only in pose, illumination, expression but also in ages.
Based on CACD, a verification subset called CACD-VS [35]
is further developed, which contains 2,000 positive pairs and
2,000 negative pairs. The setting and testing protocol of
CACD-VS are similar to the well-known LFW benchmark
[47], except that CACD-VS contains much more samples for
each person.

All of the images are resized to 200� 150. For data aug-
mentation, images are cropped to the size of 180� 130 at
the center with a small random perturbation when feeding
to the neural network. Sample-based mini-batch setting is
adopted, and 4,800 pairs are constructed for each iteration.

Results on MORPH. We compare our method with sev-
eral state-of-the-art methods, including topological dynamic
Bayesian network (TDBN) [48], cross-age reference coding
(CARC) [34], probabilistic hidden factor analysis (HFA)
[46], multi-feature discriminant analysis (MFDA) [49] and
3D aging model [50]. The results are reported in Table 1(a).
Thanks to the use of CNN representation and generalized
similarity measure, our method achieves the recognition
rate of 94.35 percent, and significantly outperforms the com-
peting methods.

Results on CACD. On this dataset, the protocol is to
retrieve face images of the same individual from gallery sets
by using a probe set, where the age gap between probe face
images and gallery face images is large. Following the
experimental setting in [34], we set up 4 gallery sets accord-
ing to the years when the photos were taken: ½2004�2006�,
½2007�2009�, ½2010�2012�, and ½2013�. And we use the set of
½2013� as the probe set to search for matches in the rest of
three sets. We introduce several state-of-the-art methods for
comparison, including CARC [34], HFA [46] and one deep
learning based method, Deepface [52]. The results of CARC
[34] and HFA [46] are borrowed from their papers. The
results of Deepface [52] and our approach (i.e., Ours-1) are
implemented based on the 200 originally annotated individ-
uals, where 160 samples are used for model training. From
the quantitative results reported in Fig. 5, our model
achieves superior performances over the competing meth-
ods. Furthermore, we also report the result of our method
(i.e., Ours-2) by using images of 500 individuals as training

samples. One can see that, the performance of our model
can be further improved by increasing training data.

Results on CACD-VS. Following the setting in [35], we
further evaluate our approach by conducting the general
face verification experiment. Specifically, for all of the com-
peting methods, we train the models on CACD and test on
CACD-VS, and the optimal threshold value for matching is
obtained by exhaustive search. The results produced by our
methods and the others (i.e., CARC [34], HFA [46], HD-LBP
[51] and Deepface [52]) are reported in Table 1(b). It is worth
mentioning that our method improves the state-of-the-art
recognition rate from 87.6 percent (by CARC [34], [52]) to
89.8 percent. Thanks to the introduction of generalized simi-
larity measure our approach achieves higher verification
accuracy than Deepface. Note that an explicit face alignment
was adopted in [52] before the CNN feature extraction,
which is not in our framework.

5.3 Sketch-Photo Face Verification

Sketch-photo face verification is an interesting yet challeng-
ing task, which aims to verify whether a face photo and a
drawing face sketch belong to the same individual. This
task has an important application of assisting law enforce-
ment, i.e., using face sketch to find candidate face photos. It
is however difficult to match photos and sketches in two
different modalities. For example, hand-drawing may bring
unpredictable face distortion and variation compared to the
real photo, and face sketches often lack of details that can be
important cues for preserving identity.

We evaluate our model on this task using the CUFS data-
set [36]. There are 188 face photos in this dataset, in which
88 are selected for training and 100 for testing. Each face has
a corresponding sketch that is drawn by the artist. All of
these face photos are taken at frontal view with a normal
lighting condition and neutral expression.

All of the photos/sketches are resized to 250� 200, and
cropped to the size of 230� 180 at the center with a small
random perturbation. 1,200 pairs of photos and sketches
(i.e., including 30 individuals with each having 40 pairs) are
constructed for each iteration during the model training. In
the testing stage, we use face photos to form the gallery set
and treat sketches as the probes.

We employ several existing approaches for comparison:
the eigenface transformation based method (ET) [53], the
multi-scale Markov random field based method (MRF) [36],
and MRF+ [54] (i.e., the lighting and pose robust version of

TABLE 1
Experimental Results for Age-Invariant Face

Recognition

(a) Recognition rates on the MORPH dataset.

Method Recognition rate

TDBN [48] 60%
3D Aging Model [50] 79.8%
MFDA [49] 83.9%
HFA [46] 91.1%
CARC [34] 92.8%
Ours 94.4%

(b) Verification accuracy on the CACD-VS dataset.

Method verification accuracy

HD-LBP [51] 81.6%
HFA [46] 84.4%
CARC [34] 87.6%
Deepface [52] 85.4%
Ours 89.8%

Fig. 5. The retrieval performances on CACD dataset for age-invariant
face recognition. Ours-1 and Ours-2 are our method, while the latter
uses more training samples.
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[36]). It is worth mentioning that all of these competing
methods need to first synthesize face sketches by photo-
sketch transformation, and then measure the similarity
between the synthesized sketches and the candidate
sketches, while our approach works in an end-to-end way.
The quantitative results are reported in Table 2. Our method
achieves 100 percent recognition rate on this dataset.

5.4 Still-Video Face Recognition

Matching person faces across still images and videos is a
newly rising task in intelligent visual surveillance. In these
applications, the still images (e.g., ID photos) are usually cap-
tured under a controlled environment while the faces in sur-
veillance videos are acquired under complex scenarios (e.g.,
various lighting conditions, occlusions and low resolutions).

For this task, a large-scale still-video face recognition
dataset, namely COX face dataset, has been released
recently,3 which is an extension of the COX-S2V dataset
[60]. This COX face dataset includes 1,000 subjects and each
has one high quality still image and 3 video cliques respec-
tively captured from three cameras. Since these cameras are
deployed under similar environments ( e.g., similar results
are generated for the three cameras in [37], we use the data
captured by the first camera in our experiments.

Following the setting of COX face dataset, we divide the
data into a training set (300 subjects) and a testing set (700
subjects), and conduct the experiments with 10 random
splits. There are two sub-tasks in the testing: i) matching
video frames to still images (V2S) and ii) matching still
images to video frames (S2V). For V2S task we use the video
frames as probes and form the gallery set by the still images,
and inversely for S2V task. The split of gallery/probe sets is
also consistent with the protocol required by the creator.
All of the image are resized to 200� 150, and cropped to
the size of 180� 130 with a small random perturbation.
1,200 pairs of still images and video frames (i.e., including
20 individuals with each having 60 pairs) are constructed
for each iteration during the model training.

Unlike the traditional image-based verification problems,
both V2S and S2V are defined as the point-to-set matching
problem, i.e., one still image to several video frames (i.e., 10
sampled frames). In the evaluation, we calculate the dis-
tance between the still image and each video frame by our
model and output the average value over all of the distan-
ces. For comparison, we employ several existing point-to-
set distance metrics: dual-space linear discriminant analysis
(PSD) [55], manifold-manifold distance (PMD) [56],

hyperplane-based distance (PAHD) [57], kernelized convex
geometric distance (PCHD) [58], and covariance kernel
based distance (PSDML) [59]. We also compare with the
point-to-set correlation learning (PSCL-EA) method [37],
which specially developed for the COX face dataset. The
recognition rates of all competing methods are reported in
Table 3, and our method achieves excellent performances,
i.e., the best in S2V and the second best in V2S. The experi-
ments show that our approach can generally improve per-
formances in the applications to image-to-image, image-to-
video, and video-to-image matching problems.

5.5 Ablation Studies

In order to provide more insights on the performance of our
approach, we conduct a number of ablation studies by iso-
lating each main component (e.g., the generalized similarity
measure and feature learning). Besides, we also study the
effect of using sample-pair-based and sample-based batch
settings in term of convergence efficiency.

Generalized similarity model. We design two experiments
by using handcrafted features and deep features, respec-
tively, to justify the effectiveness of our generalized similar-
ity measure.

(i) We test our similarity measure using the fixed hand-
crafted features for person re-identification. The experimen-
tal results on CUHK01 and CUHK03 clearly demonstrate the
effectiveness of our model against the other similarity mod-
els without counting on deep feature learning. Following
[44], we extract the feature representation by using patch-
based color histograms and dense SIFT descriptors. This fea-
ture representation is fed into a full connection layer for
dimensionality reduction to obtain a 400-dimensional vector.
We then invoke the similarity sub-network (described in
Section 4) to output the measure. On both CUHK01 and
CUHK03, we adopt several representative similarity metrics
for comparison, i.e., ITML [5], LDM [39], LMNN [40], and
RANK [41], using the same feature representation.

The quantitative CMC curves and the recognition
rates of all these competing models are shown in Figs. 6a
and 6b for CUHK03 and CUHK01, respectively, where
“Generalized” represents our similarity measure. It is
observed that our model outperforms the others by large
margins, e.g., achieving the rank-1 accuracy of 31.85 per-
cent against 13.51 percent by LDM on CUHK03. Most of
these competing methods learn Mahalanobis distance
metrics. In contrast, our metric model combines Mahala-
nobis distance with Cosine similarity in a generic form,
leading to a more general and effective solution in match-
ing cross-domain data.

TABLE 2
Recognition Rates on the CUFS Dataset

for Sketch-Photo Face Verification

Method Recognition rate

ET [53] 71.0%
MRF [36] 96.0%
MRF+ [54] 99.0%
Ours 100.0%

TABLE 3
Recognition Rates on the COX Face Dataset

Method V2S S2V

PSD [55] 9.90% 11.64%
PMD [56] 6.40% 6.10%
PAHD [57] 4.70% 6.34%
PCHD [58] 7.93% 8.89%
PSDML [59] 12.14% 7.04%
PSCL-EA [37] 30.33% 28.39%
Ours 28.45% 29.02%

3. The COX face DB is collected by Institute of Computing Technol-
ogy Chinese Academy of Sciences, OMRON Social Solutions Co. Ltd,
and Xinjiang University.
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(ii) On the other hand, we incorporate several representa-
tive similarity measures into our deep architecture and
jointly optimize these measures with the CNN feature learn-
ing. Specifically, we simplify our network architecture by
removing the top layer (i.e., the similarity model), and mea-
sure the similarity in either the Euclidean embedding space
(as Baseline-1) or in the inner-product space (as Baseline-2).
These two variants can be viewed as two degenerations of
our similarity measure (i.e., affine Euclidean distance and
affine Cosine similarity). To support our discussions in
Section 3.2, we adopt the two distance metric models LADF
[3] and BFR (i.e., Joint Bayesian) [4] into our deep neural
networks. Specifically, we replace our similarity model by
the LADF model defined in Eqn. (8) and the BFR model
defined in Eqn. (9), respectively. Moreover, we implement
one more variant (denoted as “Linear” in this experiment),
which applies similarity transformation parameters with
separate linear transformations for each data modality. That
is, we remove affine transformation while keeping separate
linear transformation by setting d ¼ 0, e ¼ 0 and f ¼ 0 in
Eqn. (1). Note that the way of incorporating these metric
models into the deep architecture is analogously to our met-
ric model. The experiment is conducted on four bench-
marks: CUHK03, MORPH, COX-V2S and COX-S2V, and
the results are shown in Figs. 6c, 6d, 6e, 6f, respectively. Our

method outperforms the competing methods by large mar-
gins on MORPH and COX face dataset. On CUHK03 (i.e.,
Fig. 6c), our method achieves the best rank-1 identification
rate (i.e., 58:39 percent) among all the methods. In particular,
the performance drops by 4 percent when removing the
affine transformation on CUHK03.

It is interesting to discover that most of these competing
methods can be treated as special cases of our model. And
our generalized similarity model can fully take advantage
of convolutional feature learning by developing the specific
deep architecture, and can consistently achieve superior
performance over other variational models.

Deep feature learning. To show the benefit of deep feature
learning, we adopt the handcrafted features (i.e., color histo-
grams and SIFT descriptors) on CUHK01 and CHUK03
benchmark. Specifically, we extract this feature representa-
tion based on the patches of pedestrian images and then
build the similarity measure for person re-identification.
The results on CUHK03 and CHUK01 are reported in
Figs. 6g and 6h, respectively. We denote the result by using
the handcrafted features as “hand.fea + gen.sim” and the
result by end-to-end deep feature learning as “deep.fea +
gen.sim”. It is obvious that without deep feature representa-
tion the performance drops significantly, e.g., from 58.4 to
31.85 percent on CUHK03 and from 66.5 to 39.5 percent on

Fig. 6. Results of the ablation studies demonstrating the effectiveness of each main component of our framework. The CMC curve and recognition
rate are used for evaluation. The results of different similarity models are shown using the handcrafted features (in (a) and (b)) and using the deep
features (in (c)-(f) ), respectively. (g) and (h) show the performances with/without the deep feature learning while keeping the same similarity model.
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CUHK01. These above results clearly demonstrate the effec-
tiveness of utilizing deep CNNs for discriminative feature
representation learning.

Sample-pair-based versus sample-based batch setting. In addi-
tion, we conduct an experiment to compare the sample-
pair-based and sample-based in term of convergence effi-
ciency, using the CUHK03 dataset. Specifically, for the sam-
ple-based batch setting, we select 600 images from 60
people and construct 60,000 pairs in each training iteration.
For the sample-pair-based batch setting, 300 pairs are ran-
domly constructed. Note that each person on CUHK03 has
10 images. Thus, 600 images are included in each iteration
and the training time per iteration is almost the same for the
both settings. Our experiment shows that in the sample-
based batch setting, the model achieves rank-1 accuracy of
58:14 percent after about 175,000 iterations, while in the
other setting the rank-1 accuracy is 46:96 percent after
300,000 iterations. These results validate the effectiveness of
the sample-based form in saving the training cost.

6 CONCLUSION

In this work, we have presented a novel generalized similar-
ity model for cross-domain matching of visual data, which
generalizes the traditional two-step methods (i.e., projection
and distance-based measure). Furthermore, we integrated
our model with the feature representation learning by
building a deep convolutional architecture. Experiments
were performed on several very challenging benchmark
dataset of cross-domain matching. The results show that
our method outperforms other state-of-the-art approaches.

There are several directions along which we intend to
extend this work. The first is to extend our approach for
larger scale heterogeneous data (e.g., web and user behavior
data), thereby exploring new applications (e.g., rich infor-
mation retrieval). Second, we plan to generalize the pair-
wise similarity metric into triplet-based learning for more
effective model training.

APPENDIX

Derivation of Equation (1)

As discussed in Section 1, we extend the two linear projec-
tions U and V into affine transformations and apply them
on samples of different domains, x and y, respectively. That
is, we replace Ux and Vy with LAxþ a and LByþ b, respec-
tively. Then, the affine Mahalanobis distance is defined as:

DM ¼ ðLAxþ aÞ � ðLByþ bÞk k22

¼ xT yT 1
� �

SM

x

y

1

2
64

3
75; (19)

where the matrix SM can be further unfolded as:

SM ¼
LT
ALA �LT

ALB LT
Aða� bÞ

�LT
BLA LT

BLB LT
Bðb� aÞ

ðaT � bT ÞLA ðbT � aT ÞLB a� bk k22

2
64

3
75: (20)

Furthermore, the affine Cosine similarity is defined as the
inner product in the space of affine transformations:

SI ¼ ðLa Axþ a
a ÞT ðLa Byþ b

a Þ;

¼ xT yT 1
� �

SI

x

y

1

2
64

3
75: (21)

The corresponding matrix SI is,

SI ¼
0

L
a T
AL
a
B

2
L
a T
Ab
a

2

L
a T
BL
a
A

2 0
L
a T
Ba
a

2

b
a T

L
a
A

2
a
a T

L
a
B

2 a
a T

b
a

2
6664

3
7775; (22)

We propose to fuseDM and SI by a weighted aggregation
as follows:

S ¼ mDM � �SI

¼ xT yT 1
� �

S

x

y

1

2
64

3
75: (23)

Note that DM is an affine distance (i.e., nonsimilarity) mea-
sure while SI is an affine similarity measure. Analogous to
[14], we adopt mDM � �SI (m; � � 0) to combine DM and SI.
The parameters m , �, DM and SI are automatically learned
through our learning algorithm. Then, the matrix S can be
obtained by fusing SM and SI:

S ¼
A C d
CT B e
dT eT f

2
4

3
5; (24)

where

A ¼ mLT
ALA

B ¼ mLT
BLB

C ¼ �mLT
ALB � �

L
a T
AL
a
B

2

d ¼ mLT
Aða � bÞ � �

L
a T
Ab
a

2

e ¼ mLT
Bðb � aÞ � �

L
a T
Ba
a

2

f ¼ m a � bk k22��aa T
b
a
:

(25)

In the above equations, we use 6 matrix (vector) variables,
i.e., A, B, C, d, e and f , to represent the parameters of the
generalized similarity model in a generic form. On one
hand, given m, �, SM and SI, these matrix variables can be
directly determined using Eqn. (25). On the other hand, if
we impose the positive semi-definite constraint on A and B,
it can be proved that once A, B, C, d, e and f are determined
there exist at least one solution of m, �, SM and SI, respec-
tively, that is, S is guaranteed to be decomposed into the
weighted Mahalanobis distance and Cosine similarity.
Therefore, the generalized similarity measure can be
learned by optimizing A, B, C, d, e and f under the positive
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semi-definite constraint on A and B. In addition, C is not
required to satisfy the positive semidefinite condition and it
may not be a square matrix when the dimensions of x and y
are unequal.
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